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We propose an experimental procedure to cool fermionic atoms loaded into an optical lattice. The central
idea is to spatially divide the system into entropy-rich and -poor regions by shaping the confining potential
profile. Atoms in regions of high entropy per particle are subsequently isolated from the system. We discuss
how to experimentally carry out this proposal and perform a quantitative study of its efficiency. We find that
the entropy per particle, s, can typically be reduced by a factor of 10 such that entropies lower than s /kB

�0.2 can be reached. Cooling into highly sought-after quantum phases �such as an antiferromagnet� can thus
be achieved. We show that this procedure is robust against variations of the experimental conditions.
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I. INTRODUCTION

Rapid experimental progress in manipulating ultracold
atomic gases has provided physicists with increased control
over quantum many-particle systems �1�. This was recently
evidenced by the observation of a Mott-insulating phase of
fermionic atoms in a three-dimensional �3D� optical lattice
�2,3�. More complex quantum phases, such as Néel antifer-
romagnets, strongly correlated Fermi liquids, or spin liquids
in frustrated geometries, could also be realized using cold
atoms. However, such phases typically emerge in a tempera-
ture regime lower than currently achievable. In existing ex-
periments, the atomic cloud is precooled by evaporation in a
harmonic trap and, in a second step, transferred into the pe-
riodic potential of an optical lattice. Loading the atoms into
the lattice is ideally performed adiabatically, i.e., conserving
the entropy of the system. Present experiments indicate an
entropy per particle of s��2To /TF�1.5–2 in the limit of a
noninteracting Fermi gas �2,3�, with To and TF as the system
and Fermi temperatures and kB set to 1 �4�. These values of s
are well above the onset of interesting correlated phases.
Thus, developing novel cooling techniques for lattice quan-
tum gases, as we propose in this Rapid Communication, is a
crucial step to demonstrate that cold atoms can indeed ad-
equately simulate strongly correlated condensed-matter sys-
tems.

Cooling atomic gases in optical lattices is the focus of an
increasing number of studies. For bosons loaded into an op-
tical lattice, it was proposed to create entropy-rich regions
that are later isolated from the rest of the system �5,6�. These
proposals were inspired by earlier experiments in which an
adiabatic deformation of the external trapping potential was
used to increase the phase-space density of Bose gases �7,8�.
For fermions in the absence of a lattice potential, it was
suggested to cool the gas by taking advantage of a Feshbach
resonance �9,10�. For fermions loaded to an optical lattice
very few proposals have been put forward. Most of them
apply to noninteracting Fermi gases �11� or are based on the
use of a Bose-Einstein condensate as a heat reservoir �12,13�.
However, the possible limitation of entropy reduction due to
inelastic collisions between bosons and fermions has not
been addressed yet.

In this Rapid Communication, we propose an experimen-
tally realistic procedure to cool two-component fermionic
mixtures in optical lattices. The key idea is to spatially divide
the trapped fermionic gas into regions of low and high en-
tropies per particle by shaping the trapping potential. The
two regions are then adiabatically isolated from each other
and the atoms from the entropy-rich regions are disposed of.
The remaining atoms have a drastically reduced entropy per
particle. In fact, we find that the system temperature can be
reduced by typically 1 order of magnitude while retaining
half of the particles. In addition, the cooling efficiency re-
mains high over a wide range of interatomic coupling
strengths, initial particle numbers, and trap anisotropies.
Hence, with this method, it should be possible to reach
highly anticipated quantum phases not yet observed. Such
phases include the Néel antiferromagnet in a cubic lattice
and, perhaps even more excitingly, spin liquids or other ex-
otic spin-disordered phases in frustrated lattice geometries
�14�. Interestingly, for systems slightly away from half fill-
ing, we can also reach sufficiently low entropy per particle to
enter the strongly correlated Fermi-liquid regime. Finally,
our proposal, which relies only on adding a limited number
of lasers to engineer the trap potential, can be well integrated
into existing experimental setups.

II. COOLING SCHEME

Let us begin with a spin-1
2 mixture of fermionic atoms

precooled in a dipole trap. As a first step, we apply a three-
dimensional optical lattice potential �Fig. 1�a��. To allow the
atoms to thermalize, the loading is done in the presence of a
finite but weak interatomic coupling. We also keep the lattice
sufficiently shallow for the atoms to redistribute efficiently.
As a second step, we modulate the entropy distribution by
creating a potential depression, a dimple, in the middle of the
harmonic trap. This dimple must be sufficiently deep and
narrow for fermionic atoms to accumulate in it and form a
band insulator �15�. The entropy per particle in this “core
region” is very small. In contrast, in the outer region, called
“storage region,” the potential profile is kept shallow in order
to create a low-density liquid over a wide volume. Under
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such conditions and at small interaction strength, the entropy
per particle in the storage region is very high. We then sepa-
rate the core and storage regions by slowly rising potential
barriers and obtain the potential profile shown on Fig. 1�b�.
As a third step, we remove the storage region �Fig. 1�c��. We
are left with a new effective system characterized by a very
small entropy per particle �16�. Finally, as a last step, the
band insulator is relaxed adiabatically into an experimentally
relevant phase. For example, if the aim is to form a Mott-
insulating state, the filling can be lowered by slowly flatten-
ing the potential in the core region and by turning off or
pushing outwards the barriers �Fig. 1�d��.

III. SHAPING THE POTENTIAL PROFILE

The above procedure relies on the ability to add a tailored
potential profile on top of a lattice potential with amplitude
Vlattice. To modulate the entropy distribution, the global po-
tential, shown in Fig. 2, should realize tight trapping in the
core region, surrounded by a wide shallow ring in the storage
region isolated from the core by high potential barriers. To
produce this profile, we envision to use three elements, �i� a
shallow harmonic trap �either magnetic or optical�, �ii� a
dimple which confines atoms in a small region around the
trap symmetry axis and helps to create the band insulator,
and �iii� a cylindrically symmetric potential barrier to isolate
entropically poor and rich regions. The dimple �ii� and po-
tential barrier �iii� are produced by red- and blue-detuned
laser beams, respectively, creating attractive or repulsive di-
pole potentials. The dimple has a Gaussian profile, while the
barrier should rather be a narrow annulus. Experimentally
this can be realized either by setting a tightly focused laser
beam in rapid rotation or by engineering the beam profile
using phase plates or other diffractive optics �17�. Conse-
quently, in addition to the lattice potential, the trapping pro-
file is given by

V�r� = Vharmonic + Vdimple + Vbarrier,

with

Vharmonic�r� = Vh�x2 + y2 + �2z2�/a2,

Vdimple�r� = − Vd exp�− 2�x2 + y2�/wd
2� ,

Vbarrier�r� = Vb exp�− 2��x2 + y2 − rb�2/wb
2� ,

where V�h,d,b	 are the potential amplitudes, � is a measure of
the anisotropy of the harmonic trap, w�d,b	 are the waists of
the Gaussian laser beams forming the dimple and barrier, rb
is the radius of the cylindrical barrier, and a is the lattice
spacing.

IV. EFFICIENCY OF THE PROCEDURE

The efficiency of the proposed cooling scheme can be
quantitatively estimated under the assumption that shaping
the potential profile is an adiabatic process. Possible devia-
tions from adiabacity will be discussed later on. Under the
adiabatic assumption the meaningful quantity is the entropy
per particle rather than temperature itself. The cooling effi-
ciency depends on how much entropy per particle is left in
the core region, sC=SC /NC, at the precise moment when the
increasing barrier height causes the two regions to stop ex-
changing entropy compared to the initial entropy per particle,
sT=ST /NT. The quantities SC/T and NC/T are the entropy and
number of atoms in the core �C� and total system �T�. The
described situation is shown in Fig. 2. At later times, the core
entropy remains unchanged as the two regions are now iso-
lated from one another preventing the backflow of entropy.

To determine the efficiency of the cooling scheme, we
describe the two-component mixture of fermions using a
Hubbard-type Hamiltonian �19�

H = − J 

�i,j��

�ci�
† cj� + H.c.� + U


i

n̂i↑n̂i↓ − 

i�

�in̂i�.

Here ci�
† and ci� are the creation and annihilation operators of

the fermions with �= �↑ ,↓	, J is the hopping matrix element,
U is the on-site repulsion, �i is the local chemical potential,
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FIG. 2. �Color online� Occupation number �dashed line, upper
panels�, entropy per particle �solid line, upper panels�, and potential
profile �18� �solid line, lower panels� in the presence of the dimple
and barriers, as a function of the transverse �left� and axial �right�
coordinates. The potential is offset such that V=0 is at the bottom of
the dimple. We chose the following experimentally realistic param-

eters: U
6J =0.5,

Vh

6J =1.8�10−4, �2=50,
Vb

6J =6, rb=15a, wb=5a,
Vd

6J
=15, wd=15a, and 12�104 atoms. The average entropy per particle
in the total system is sT=1.95 and in the core region sC=0.198. The
ratio of particles in the core region versus the total particle number

is
NC

NT
=0.404. Inset: 3D rendering of the potential profile showing an

isopotential surface � V
6J =16�.

(a) (b)

(c) (d)

FIG. 1. �Color online� Cooling scheme. �a� The atoms trapped in
a parabolic profile are loaded into an optical lattice. �b� A band
insulator is created in a dimple at the center of the trap. This core
region is isolated from the rest of the system, the storage region, by
rising potential barriers. �c� The storage region is removed from the
system. �d� The band insulator is relaxed to the desired quantum
phase, e.g., a Mott insulator by flattening the dimple and turning off
or pushing outwards the barriers.
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and n̂i�=ci�
† ci� is the number operator on site i. All potential

profiles are treated in the local-density approximation
�LDA�, i.e., assuming a spatially varying chemical potential
�i=�0−Vi. To use LDA, local densities and entropies must
be obtained for the homogeneous system. These quantities
are calculated using dynamical mean-field theory �20�. In
particular, the entropy is calculated as in �21�.

In the upper panel of Fig. 3, we show, for a three-
dimensional gas ��2=50�, that the final entropy per particle
in the system core, sC, can be reduced by a factor of 10 as
compared to the initial entropy per particle, sT. This is done
while retaining about half of the particles. For sT=1.95 and
NT=12�104 atoms, about 5�104 atoms are kept. The lower
panel of Fig. 3 shows that the efficiency of our cooling
scheme is very stable against variations in the interaction
strength and initial particle number. Clearly, the procedure is
most efficient at small values of the interaction strength, but
the deviations for other interaction strengths are small. Ex-
perimentally a compromise has to be found between a small
value giving an optimal gain and the time of thermalization
for which scattering processes must take place. Finally, we
made sure that this cooling scheme is efficient both for
quasi-two-dimensional �large �2� and three-dimensional
�small �2� systems. However, in two dimensions, to obtain
similar NC’s and maintain the same efficiency, larger radial
sizes for both the core and storage regions are required as
less particles can be stacked along the z direction.

The reduction in the entropy per particle by one order of
magnitude as compared to the current experimental situation
opens the door to study a wealth of unexplored phenomena
in cold atomic systems. As an example, in Ref. �21�, a �pes-
simistic� lower bound on the entropy per particle needed to

stabilize antiferromagnetic long-ranged order was estimated
to be s0.2. Using our cooling scheme, entropies per par-
ticle lower than this value can actually be reached in the core
region. Starting from initial temperatures currently accessible
experimentally, To /TF�0.15–0.2 �2,3�, system temperatures
of To /TF�0.014–0.02 are achieved.

Finally, two remarks are in order. First, higher efficiencies
could be obtained by removing more atoms or engineering
flatter outer regions that can store more entropy. Second, the
weak dependence of the efficiency on the initial entropy
�Fig. 3� suggests that this procedure can as well be per-
formed several times in a row to reach very low tempera-
tures. However, as all changes have to be performed slowly,
the total time required to cool the system will grow with the
number of repetitions.

V. REMOVAL OF STORAGE ATOMS

Having shown how the proposed cooling scheme can de-
crease the entropy in the core region, we now address the
fate of the entropy-rich part isolated from the core by the
potential barrier. If storage atoms do not disturb the subse-
quent experimental measurements, they can simply be
“pushed outwards” by dynamically increasing the barrier ra-
dius and raising its height �23� to avoid “spilling” the storage
atoms into the core region. However, in many cases, getting
rid of these atoms or transferring them to a different hyper-
fine state could be advantageous for later detection. Several
different removal or transfer schemes may be envisaged de-
pending on the details of the experimental setup. These
schemes do not need to be adiabatic as the storage atoms are
already isolated from the core.

One possible removal scheme relies on applying a linear
potential gradient −Fx �which could be due to gravity or to
an intentionally applied magnetic gradient� and weakening
the shallow trap along the x direction. Under the influence of
the applied force, storage atoms will undergo Bloch oscilla-
tions �24� interrupted by Landau-Zener �nonadiabatic� tran-
sitions to higher bands. These transitions can lead to outcou-
pling of “atom bursts” at multiples of the Bloch period TB
=h /Fa �25�. Atoms in the core region are confined by the
combined dimple/barrier potentials, and the potential gradi-
ent merely shifts the potential minimum by a small amount.
To achieve significant outcoupling rates, one should also sig-
nificantly lower the lattice depth along x. In the weak-
binding limit, the Landau-Zener formula indeed predicts a
transition rate �out�

1
TB

e−ALZ �24�, where ALZ=ma�2 /4	2F
and where � is the band gap which should be as small as
possible. For instance, for a lattice depth of 0.5ER��
�0.2ER�, a=266 nm, and F /m�10 m /s2, we find �out
�10 s−1 for 40K atoms �ALZ�3� and essentially zero for 6Li
atoms �ALZ�144� �26�. Another possibility to decrease the
band gap is to excite the storage atoms to a higher Bloch
band �24�. In order to leave the core atoms untouched, the
excitation beams should have a “hollow” profile �created us-
ing the same techniques as the potential barriers� to suppress
the transition probability near the center of the cloud.
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FIG. 3. �Color online� Upper panel: entropy per particle in the
core, sC, and ratio of particles remaining in the core, NC /NT, after
cooling, as a function of the initial total entropy per particle, sT, for
�2=50, U

6J =0.5, and NT=12�104. Lower panel: sc as a function of
sT for different interaction strengths and total particle numbers at
�2=50. The parameters used to shape the trap are the same as in
Fig. 2 �22�. The black arrow in the lower panel indicates the pessi-
mistic estimate of the entropy per particle required to reach the
antiferromagnet for large interaction strengths �21�.
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VI. DEVIATION FROM ADIABATICITY

In an experimental setup, one has to find a compromise
between changing the potential profile slowly �which favors
adiabacity� or quickly �which subjects the system to external
disruptions only for a short time�. To approximate the heat-
ing induced by nonadiabaticity, we perform time-dependent
simulations of the cooling and subsequent relaxation into a
Mott-insulating state within an experimentally realistic time.
As a measure of the induced heating, we determine the en-
ergy absorbed by the core region during the process. We use
the adaptive time-dependent density-matrix renormalization-
group method �27,28� to simulate the procedure in a one
dimensional fermionic system described by the Hubbard
model. The simulations follow this sequence: we �i� shape
the trap �by increasing the dimple amplitude and the barrier
height�, �ii� relax the band insulator �by simultaneously push-
ing outwards the barriers, decreasing the dimple amplitude,
and adjusting the density by changing the parabolic trapping
potential�, and �iii� tune the interaction strength to its final
value. We assume a linear variation in each parameter with
time. For a total procedure time of the order of 500 	

J �700
ms for 40K atoms in a lattice with Vlattice=8ER�, the system
remains very close to its ground state �29� and the energy
absorbed by the system is smaller by more than 1 order of
magnitude than the superexchange coupling 4J2 /U. Conse-
quently, the heating induced by the nonadiabaticity is small
enough not to hinder the efficiency of our cooling scheme.

We expect that for a three-dimensional system the time
scales for the redistribution of atoms are even more favorable
than for the one dimensional case simulated here.

VII. CONCLUSION

We proposed an efficient scheme to cool fermionic atoms
confined to optical lattices. This cooling procedure relies on
spatially dividing the trapped fermionic gas into regions of
low and high entropies per particle using a complex potential
profile. We find that, for a two-component fermionic mixture
loaded into a cubic lattice potential, this scheme reduces the
system temperature by typically 1 order of magnitude while
keeping approximately half of the atoms. The procedure re-
mains efficient over a wide range of interatomic coupling
strengths, initial particle numbers, and trap anisotropies. This
method can be used to cool atoms into highly sought-after
quantum phases such as the Néel antiferromagnet, spin liq-
uids, and strongly correlated Fermi liquids.
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