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Local controllability of quantum networks
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We give a sufficient criterion that guarantees that a many-body quantum system can be controlled by
properly manipulating the (local) Hamiltonian of one of its subsystems. The method can be applied to a wide
range of systems: it does not depend on the details of the couplings but only on their associated topology. As
a special case, we prove that Heisenberg and Affleck-Kennedy-Lieb-Tasaki chains can be controlled by oper-
ating on one of the spins at their ends. In principle, arbitrary quantum algorithms can be performed on such

chains by acting on a single qubit.
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I. INTRODUCTION

The main obstacle in developing an efficient quantum in-
formation technology is posed by the difficulties one faces in
achieving coherent control of quantum mechanical systems,
i.e., in externally manipulating them while preserving their
quantum coherence. There are three aspects that make con-
trol hard: first, quantum systems are often rather small, so
local addressing is difficult. Second, control turns the quan-
tum computer into an open system, which introduces noise.
Third, due to shielding and off-resonance problems, in gen-
eral there are “invisible” components of an extended con-
trolled system (say the qubits of a quantum computer) that
one cannot directly address. It is well known that quantum
control can be simplified by properly exploiting the free
Hamiltonian evolution of the controlled system [1-5]. Using
this idea the problem of achieving “complete control every-
where” on an extended quantum system can be reduced to
“some control everywhere.” In this approach each compo-
nent of the extended system is individually [1,3,5,6] or
jointly [7-9] addressed by the controlling setup, but the latter
is assumed to perform only a limited set of allowed transfor-
mations. While this partially solves the problem of local ad-
dressing (at least from a theoretical perspective) and reduces
some “harder” quantum transformations to easier ones (for
example, two-qubit gates to one-qubit gates), the problem of
coupling the quantum system to the external world and the
problem of invisible qubits remain. One way to cope with
these issues is to replace the “some control everywhere” ap-
proach with a “complete control somewhere” approach,
where “somewhere” is ideally a small portion C of a larger

system V=CU C that we want to control (C being the part of
V on which we do not have direct access). In this scenario
two alternative control techniques have been proposed so far:
an algebraic control (AC) method [2,10-12] and a control by
relaxation (RC) method [13,14] (see Fig. 1). In the former
case one assumes unlimited direct access on C by means of
time-dependent local Hamiltonians which are properly
modulated—see below for details. In the latter case instead
one assumes to operate on C by means of a limited set of
quantum gates that couple it with some external, completely
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controlled, quantum memory M. Here the control is realized
by transferring the states of V into M where they are manipu-
lated (e.g., transformed or measured) and then transferred
back to V.

In this Rapid Communication we show that an easy-to-
check graph infection criterion that has been developed for
control by relaxation [13] can also be used for algebraic con-
trol. This is a major improvement with respect to previous
works on the subject [2,10-12] since it allows us to check
AC controllability of large many-body systems. As a special
case we prove that Heisenberg spin chains of arbitrary
length admit algebraic control when acted upon at one end
spin only. This gives a nontrivial example of such mediated
control and has important consequences for quantum compu-
tation: in principle, arbitrary quantum algorithms can be per-
formed on such chains by acting on a single qubit. The con-
trollability even holds when magnetic fields spoil the
conservation of excitations (in this case the criterion is no
longer applicable to RC). Since the criterion developed here
is of topological nature, it does not depend on the details of
the couplings and can therefore be applied to a wide range of
experimental realizations of many-body quantum informa-
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FIG. 1. Schematic comparison of algebraic control and control
by relaxation. Left panel: controlling a subsystem C of a larger

system V=CU C is sufficient to control the whole system (algebraic
control). Right panel: the control is performed on a controlled

memory. States on C can be transferred from/to M through C.
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tion processing, ranging from optical lattices [15], to arrays
of coupled cavities [16,17], to solid-state qubits [1,18]. Fi-
nally, the issue of how local time-dependent terms in the
Hamiltonian can influence the global dynamics is also inter-
esting from a purely theoretical perspective.

II. ALGEBRAIC CONTROL

We start by reviewing the basic properties of AC. In al-

gebraic control [2-5] the composite system V=CUC is de-
scribed by a global Hamiltonian of the form
Hy+ Ekfk(t)h(ck) ®1¢. Here Hy is some fixed coupling Hamil-
tonian on V while A% are a set of local controlling Hamilto-
nians operating on C that can be activated through the (time-
dependent) modulating parameters f;(¢). At the mathematical
level, a general necessary and sufficient criterion for this
scheme has been derived [2-5]. It states that V is AC con-
trollable by pro%)erly tuning the functions f;(z) if and only if
(iff) iHy and ihck) are generators of the Lie algebra £(V) of
the composite system V (the set of all skew-Hermitian op-
erators of V), i.e.,

(iHy, L(C)) = L(V), (1)

where, for the sake of simplicity, we have assumed the ih(ck)’s
to be generators of the local Lie algebra L£(C) of C and
where we use the symbol (A, B) to represent the algebraic
closure of the operator sets A and 5. In simpler terms this
implies that any possible quantum transformation on V can
be operated by acting on C iff all elements of £(V) can be
obtained as a linear combinations of iHy, £(C), and iterated
commutators of these operators.

Although the general arguments in [2] suggest that most
quantum systems satisfy criterion (1), up to now only few
examples have been presented [10-12]. Indeed condition (1)
can be tested numerically only for relatively small systems
(say maximally ten qubits). It becomes impractical instead
when applied to large many-body systems where V is a col-
lection of quantum sites (e.g., spins) whose Hamiltonian is
described as a summation of two-site terms. The main result
of this Rapid Communication is the derivation of an induc-
tive easy-to-check method to test the AC controllability con-
dition (1) for such configurations.

III. GRAPH CRITERION

The proposed method exploits the topological properties
of the graph defined by the coupling terms entering the
many-body Hamiltonian Hy. This allows us to translate the
AC controllability problem into a simple graph infection
property which can be easily tested. We start reviewing the
latter for the most general setup, which will show more
clearly where the topological properties come from.

The graph infection property was introduced in [13] and
analyzed from a purely graph theoretical perspective in [19].
In words, the infection process can be described as follows:
an initial set of nodes of the graph is “infected.” The infec-
tion then spreads by the following rule: an infected node
infects a “healthy” neighbor if and only if it is its only
healthy neighbor. If eventually all nodes are infected, the

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 79, 060305(R) (2009)

FIG. 2. Example for a graph that fulfills the infection criterion.
The set C of “infecting nodes” is given by the black nodes and the
gray line shows the order in which new nodes can be added to the
set P, such that Egs. (3) and (4) hold.

initial set is called infecting. More formally, we consider an
undirected graph G=(V,E) characterized by a set of nodes V
and by a set of edges E, and a subset CCV. We call C

infecting G if there exists an ordered sequence
{Py;k=1,2,...,K} of K subsets of V,
C=P,CP,C - CPC - CPc=V, (2

such that each set is exactly one node larger than the previ-
ous one,

P \ Py ={my}, (3)

and there exists an n;, € P such that m, is its unique neighbor
outside Py:

Ng(ng) N VAP, = {mk}» (4)

with Ng(ny) ={n € V|(n,n;) € E} being the set of nodes of V
which are connected to n; through an element of E. The
sequence P provides a natural structure (Fig. 2) on the graph
which allows us to treat it almost as a chain (although the
graphs can be very much different from chains, see also the
examples given in [13]). In particular, it gives us an index k
over which we will be able to perform inductive proofs.

The link to quantum mechanics is that each node n of the
graph has a quantum degree of freedom associated with the
Hilbert space H,,, which describes the nth site of the many-
body system V we wish to control. The coupling Hamil-
tonian determines the edges through

HV= 2 Hnm? (5)

(n,m)eE

where H,,,=H,,, are some arbitrary Hermitian operators act-
ing on H, ® H,,. Within this context we call Hamiltonian (5)
algebraically propagating if for all n € V and (n,m) € E one
has

([iH s L(n)], L(n)) = L(n,m), (6)

where for a generic set of nodes PCV, L(P) is the Lie
algebra associated with the Hilbert space ®,,.pH,, [20]. The
graph criterion can then be expressed as follows:

Theorem. Assume that Hamiltonian (5) of the composed
system V is algebraically propagating and that C CV infects
V. Then V is algebraically controllable acting on its subset C.

Proof. To prove the theorem we have to show that
Eq. (1) holds, or equivalently that L(V)C{iHy,L(C))
(the opposite inclusion being always verified). To do so we
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proceed by induction over k=1,...,K,
L(P,) C(iHy, L(C)).

Basis: by Eq. (2) we have £(P,)=L(C) C(iHy,L(C)). In-
ductive step: assume that for some k<K

L(Py) C(iHy,L(C)). (7

showing that

We now consider n;, from Eq. (4). We have

L(ny) CL(P,) C(iHy,L(C)) and

[ian,mkvﬁ(nk)] = [lHV"C(nk)] - 2 [ian,mvE(nk)]s

m

where the sum on the right-hand side contains only nodes
from P, by Eq. (4). It is therefore an element of £(P;). The
first term on the right-hand side is a commutator of an ele-
ment of £(P;) and iHy and thus an element of {(iH,L(C))
by Eq. (7). Therefore [iH,, ,, ,L(n)]C(iHy,L(C)) and by
algebraic propagation Eq. (6) we have

<[ian,mk’£(nk)]’£(nk)> = L(ny,my) C(iHy,L(C)).

But  (L(Py),L(n,m))=L(P,1) by Eq. (3) so
L(P;,1) C(iHy,L(C)). Thus by induction

L(Pg) = L(V) C(iHy, L(C)) C L(V). (8)

|
The above theorem has split the question of algebraic
control into two separate aspects. The first part, the algebraic
propagation Eq. (6), is a property of the coupling that lives
on a small Hilbert space H,®H,, and can therefore be
checked easily numerically—we have for instance verified
this property for Heisenberg-type (see below), Affleck-
Kennedy-Lieb-Tasaki (AKLT) [21], and for SU(3) Hamilto-
nians [22]. The second part is a topological property of the
(classical) graph. An important question arises here if this
may not only be a sufficient but also a necessary criterion. As
we will see below, there are systems where C does not infect
V but the system is controllable for specific coupling
strengths. However the topological stability with respect to
the choice of coupling strengths is no longer given.

IV. APPLICATION TO SPIN NETWORKS

An important example of the above theorem is systems of
coupled spin-1/2 systems (qubits). We consider the two-body
Hamiltonian given by the following Heisenberg-type cou-

pling:
Hnm = Cnm(XnXm + YnYm + AZI‘LZIH) > (9)

where the c,,, are arbitrary coupling constants, A is an an-
isotropy parameter, and X, Y, and Z are the standard Pauli
matrices. The edges of the graph are those (n,m) for which
¢,m* 0. The relaxation controllability of this model was ex-
tensively analyzed in Refs. [13,14] while, in the restricted
case of the single excitation subspace, its algebraic control-
lability was exactly solved in Refs. [12,23].

To apply our method we have first shown that the Heisen-
berg interaction is algebraically propagating. In this case the
Lie algebra L(n) is associated to the group su(2) and it is
generated by the operators {iX,,iY,,iZ,}. Similarly the alge-
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bra L(n,m) is associated with su(4) and it is generated by the
operators {iX,[1,,,iX,X,,,iX,,)Y s - ,iZ,Z,,}. The identity (6)
can thus be verified by observing that

[Xn’Hnm] = ZnYm - Yan’
[Zn’Zn Ym - Yan] = Xan’
[Yn’Xan] = Znan

[Xil > Zl‘lZl‘ﬂ] = Yan >

where for the sake of simplicity irrelevant constants have
been removed. Similarly using the cyclicity X—Y —Z—X
of the Pauli matrices we get

Xan - YnXm - Zn Ym’
ZﬂZﬂl - XnXm - Yn Ym’

Yan - ZnXm - Xl‘l Ym *
Finally, using
[Zan’ Zl‘l Ym] = Xﬂ1 >

and cyclicity, we obtain all 15 basis elements of L(n,m)
concluding the proof. According to our theorem we can thus
conclude that any network of spins coupled through
Heisenberg-type interaction is AC controllable when operat-
ing on the subset C, if the associated graph can be infected.
In particular, this shows that Heisenberg-type chains with
arbitrary coupling strengths admit AC controllability when
operated at one end (or, borrowing from [2], that the extreme
of such chains are universal quantum interfaces for the whole
system). We remark that in this case, knowledge about the
coupling parameters of the Hamiltonian can be obtained by
controlling one end qubit only [24]. The case A=0 on the
other hand is an interesting example where relaxation control
is possible but our theorem cannot be applied. Using the
numerical method from [5] we found that already a chain of
length N=2 cannot be controlled by acting with arbitrary
Pauli operators on one end—see also Ref. [10]. For the case
A #0, a star with N=4 provides a good example that prop-
erty (6) without graph infection does not suffice to provide
controllability (Fig. 3). Another interesting example is an
Ising chain with a magnetic field in a generic direction,
which is controllable for N=2,3 but, perhaps surprisingly,
not for longer chains. Finally, we have confirmed that SU(3)
and AKLT Hamiltonians are algebraically propagating.
These interactions have the form

Hiy = € (A(S,S,,)* + BS,:S,,), (10)

where S, is the spin operator of particle n. The analytical
method sketched above for the Heisenberg chain turns out to
be quite cumbersome, so we used the numerical methods
given in [5] to check that Eq. (6) holds. Since Eq. (6) lives in
a small Hilbert space, this computation is efficient and fast. It
then follows by our theorem that these systems are control-
lable for arbitrary length.
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FIG. 3. Examples of small spin networks and their controllabil-
ity. The black circles are the controlled parts C and the white ones

the uncontrolled part C. The dashed line stands for a coupling of the
X, X, +Y,Y,, type (which is not algebraically propagating) and the
solid line stands for the full (possibly anisotropic) Heisenberg cou-
pling (9) with A # 0. The filled/empty boxes below each graph in-
dicate whether or not it can be controlled by algebraic methods, by
relaxation, and whether the graph infection property holds. For the
last two examples the graph is not infected and controllability de-
pends explicitly on the coupling strengths (all of which are assumed
to be equal).

V. CONCLUSIONS

In this Rapid Communication we have presented a crite-
rion to determine if a many-body quantum system allows for
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algebraic control by operating on a proper subset of it. In
contrast to previous proposals the method does not require
the knowledge of the spectrum of the system Hamiltonian.
Instead it exploits some topological properties of the graph
associated with its coupling terms. As a special case, we have
proven that Heisenberg and AKLT chains can be controlled
by operating on one of the spins at their ends. In principle,
arbitrary quantum algorithms can be performed on such
chains by acting on a single qubit. This motivates the search
for further explicit specific and efficient control schemes on
spin chains.
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