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Dynamical constants of structured photons with parabolic-cylindrical symmetry
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Electromagnetic modes with parabolic-cylindrical symmetry and their dynamical variables are studied both
in the classical and quantum realms. As a result, a dynamical constant for the electromagnetic field is identified

and linked to the symmetry operator which supports it.
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I. INTRODUCTION

The dynamical variables of the electromagnetic (EM)
field define its mechanical identity and are essential for un-
derstanding the effects of the field on charged particles. As a
consequence, finding the natural dynamical variables of the
EM field and their relations to mode properties has been
directly linked to the development of classical and quantum
EM theories. Historically, the photon concept emerged from
suggesting a definite relationship between the energy (linear
momentum) of a photon and the frequency w (wave vector k)
of plane waves. Similarly, the relationship between the an-
gular momentum of EM waves and their polarization is very
important for understanding, e.g., atomic processes mediated
by photons.

Photons associated to EM modes with non-Cartesian sym-
metries are characterized by sets of dynamical constants dif-
ferent from those of plane waves. An example corresponds to
circular-cylindrical EM waves known as Bessel modes [1] or
their paraxial analog, i.e., Laguerre-Gaussian beams [2].
Bessel photons carry a well-defined orbital angular momen-
tum [2,3] proportional to the winding number m of their
vortices [4,5]. Another example corresponds to Mathieu
modes which exhibit elliptical-cylindrical ~symmetry.
Mathieu photons carry constant values for the balanced com-
position of the orbital angular momentum with respect to the
foci of the elliptical coordinate system [6].

The purpose of this Brief Report is to analyze the me-
chanical properties of the EM modes for the last coordinate
system with translational symmetry along an axis known to
have separable analytical solutions, i.e., the parabolic-
cylindrical coordinate system. The solutions of the corre-
sponding wave equation can be expressed in terms of Weber
functions, giving this name to the EM modes. We show that
a balanced composition of a component of the lineal momen-
tum with a component of the angular momentum is a natural
dynamical variable for these modes. Weber photons carry a
well-defined value of this variable.

Weber beams of zero order have already been experimen-
tally generated by means of a thin annular slit modulated by
the proper angular spectra [7]. This setup was conceived as a
variation of that originally used by Durnin et al. [1] for gen-
erating Bessel beams. Higher-order Weber beams can also be
produced by holograms encoded on plates [7] or in spatial
light modulators [8].

A. Parabolic-cylindrical coordinates

The parabolic-cylindrical coordinate system (u,v,z) is de-
fined by the transformations [9]
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1
x+iy=5(u+iv)2, =2z, (1)

where x, y, and z are the well-known Cartesian coordinates
and u e (—o0,%) and v € [0,%). Surfaces of constant u form
half-confocal parabolic cylinders that open toward the nega-
tive x axis, while the surfaces of constant v form confocal
parabolic cylinders that open in the opposite direction. The
foci of all these parabolic cylinders are located at x=0 and
y=0 for each z value. The scaling factors associated to u# and
v are h,=h,=h=\u?>+v> In the following, the notation é,
represents the unitary vector related to a given coordinate x,
the shorthand notation 4, is used for partial derivatives with
respect to the variable x, and dy=:d,.,= %&,, with ¢ the velocity
of light in vacuum.

II. PARABOLIC SCALAR FIELD AND ITS
DYNAMICAL VARIABLES

The scalar wave equation has separable solutions invari-
ant under axial propagation,

V=2V, W)= W7 e 2w (2)

in four coordinate systems: Cartesian, circular-, elliptic-, and
parabolic-cylindrical coordinates. For parabolic-cylindrical
symmetry Helmholtz equation reads

(W20, + ) + K Ju,v) =0, K =k*-k,  (3)

where the real constants k=w/c are the magnitude of the
wave vector for a given frequency w, k, its axial component,
and k, its perpendicular component. If ¢(u,v)=U(u)V(v),

(R + K u® =2k, a)U(u) =0, (4)

(2 + K v*+ 2k, a)V(v) =0, (5)

with 2k, a the separation constant. These equations are
known as parabolic cylinder or Weber differential equations.
Solutions for this differential set can be expressed as Frobe-
nius series, parabolic cylinder functions, Whittaker func-
tions, Hermite functions, and others [10-12]. Here, the solu-
tions are expressed in terms of confluent hypergeometric
functions of the first kind, |F1,

4 n, .an,.
UI’,kL,a(u)zsngp 1/46 (gu/2)1F1<f_l§»_2E;l§u>» (6)
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with ¢,=k, u? {,=k,v* and n,=1 (n,=3) for even (odd)
parity functions: U,(—u)=U,(u) [U (-u)=-U,(u)]. The nor-
malization factors are taken as

Vi sec(iam)

IT(3/4 -

Vys al0) = 5,00 e G 1 (l“— 2 5) (7)

V2 sec(ia)

T T4 —ia2)|

Se =

These expressions reduce directly to the Frobenius series,
presented in Ref. [10] and used in Ref. [13], to introduce
parabolic optical wave fields in the paraxial regime. In order
to guarantee that these scalar fields vanish when the absolute
values of the coordinate variables tend to infinity, ¢ must be
real [11]. The set {¥, ,,«=(k,,w,a)} is complete and or-
thogonal. Each function V¥, . satisfies the eigenvalue equa-
tions,

BY, (wv,2,0) =V, (~u,v,2,0) = (- 1)V, (u,0,2,1), (8)

—id ¥, (u,v,2,0) =k, V¥, (u,0,2.1), 9)
io ¥, (uv,z.1)= 0¥, (4,0,2,1), (10)
v: P
2AV, (u,v,2,1) = I?(;g - pﬁi V, (u,0,2,1)
=2k, a¥, (u,0,2,1). (11)

The operator A is directly identified as a generator of the
balanced composition of a rotation around the z axis and
translations along the y axis since

A=(112)d,+ ydh, = xd, = (Lp, + p,1)/2, (12)
where [,=—i(7X V), and py=—id,. For scalar fields and
space-time continuous symmetries, the generators of infini-
tesimal transformations turn out to be good realizations of
the corresponding dynamical operator. In that sense, A can
be related to the product of the z component of the angular
momentum and the y component of the linear momentum.
Then, the eigenvalue equation Eq. (11) means that the scalar
field W, . carries a well-defined value of that momenta
product.
Traveling scalar Weber modes are defined by

y [units of 4]
y [units of 4]

-150  -100 50 0 50 100 150
x [units of 4]

X [umts of 4]
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T k(1) = [ (w,0) = ithy, (,0) [ &Y 2, (13)

and these modes are orthonormal [12]

f V(AP (f):i—”a(kz—k;)ﬁ(h—k;)a(a—a’).
R3 1

III. PARABOLIC-CYLINDRICAL EM MODES

In Coulomb gauge, any given solution for the vector elec-
tromagnetic field, A, can be written as a superposition of
modes related to a complete set of solutions for the scalar
wave equation, W, which are identified as Hertz potentials
[14]. For EM fields in parabolic-cylindrical coordinates hav-
ing a well-defined behavior under 3,

— ATEWi (TM)
= A, MY+ AL ONY (14)
with the vector operators given by the expressions

- a A A > A A A

M= f(eu&,, -é,d,), N= Zz(euﬁu +¢,0,) —é,V2. (15)
The constants A;TE) and .A;TM) are proportional to the ampli-
tudes of the transverse electric (TE) and transverse magnetic
(TM) EM fields as can be directly seen from their connection
with the associated electric and magnetic fields, E=-d,A

and B=V X A, yielding

E, == AT M¥, ~ AT N, .
B, = A0 N, —~ AT N, . (16)

Similar expressions can be written for the traveling EM
modes associated to Eq. (13). The intensity and polarization
structure of an EM Weber beam are illustrated in Fig. 1. The
instantaneous electric field orientation has a nontrivial struc-
ture and, as a function of time, E preserves its direction
while its magnitude oscillates at each point.

IV. DYNAMICAL CONSTANTS FOR PARABOLIC-
CYLINDRICAL EM MODES

Given a symmetry generator Noether theorem is usually
applied to the field Lagrangian density

FIG. 1. (Color online) Sample of (a) trans-
verse intensity and (b) polarization structure of an
odd EM TE Weber field. They correspond to the
eigenvalue a=-2, k,=0.995w/c, and the unit of
length is taken as the wavelength.
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3
g= é > (9,A,— 3,A,)(HA” — "AH) (17)

w,v=0

in order to find a dynamical constant for the electromagnetic
field. This theorem states that [15] if under an infinitesimal
transformation of the space coordinates x,,—x,+X Zéwp
anq the field A, —A,+2 P} 0w, the Lagrangian is left in-
variant, then the current,

0,=E,+A,, (18)
ag
Er=-2 : (19)
? = 0(0,A,)
A= oL XA, .- £X" (20)
p_x,o d(d,A\) ° Mo r”

has a null divergence. As a consequence, ®2 defines the den-
sity of a dynamical variable whose integrated value over a
volume can change only due to the flux of the current @L
through the surface that delimits the volume.

Since we are working with EM modes that have a particu-
lar symmetry the subset of all possible transformations
whose generators are directly identified from the eigenvalue
Egs. (8)—(11) is particularly relevant. Under an infinitesimal
translation along the main direction of propagation 8z or a
time translation ot, the EM field changes according to the
expressions A, —A,+d,A, 6z or A,—A,+d,A,0, respec-
tively. This is reflected in the fact that the field-momentum-
like variable

. ror 1 > S(i
(ipacp'se’) — | B g (U] i
Pt = f PeEY X B ). i=TETM  (21)

is independent of time if the integration is taken over the
whole space. Similarly, the energylike integral

. o 1 > (s Sy R
glrmr' =~ f IAED,-ED L +BY-BY ] (22)

is also constant. In fact, Pgi””’(””’“’) and EEper' k) are pro-
portional to each other with k,/ @ the constant of proportion-
ality. Notice that, in both cases, the dynamical constant can
be inferred from the factor =) defined in Eq. (19) up to a
term proportional to the divergence of a vector field, for
instance,

1 | B
=0_ - _
5= Ei EdA; = 477(E X B)j Ei ai(EiAj), (23)

where E; contains just the transformation of the field A,,.

Under an infinitesimal rotation around the z axis with
an angle dw, the electromagnetic field A has a well-defined
transformation rule, A;=A;— €;3A;0w, which is independent
of the origin of space coordinates. If one considers the No-
ether term Eg, Eq. (19), an expression for the helicity is
found

SUd"paer’s) = (1/4.c) L FHED XA, ). (24)

This is another dynamical constant for Weber EM modes as
can be directly verified by substituting the general expression
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for the vectors E and A in terms of the Hertz parabolic
modes. As expected, it turns out that for a given mode p, «,
the helicity S, is different from zero only if the amplitudes
AT™) and ATE) that define the polarization of a mode are
complex. The Noether term A, Eq. (20), defines the density
of the z component of the orbital angular momentum

ipp Kk’ 1 (i >
Ll EQ? (ED)(ud, —va) AN ). (25)
For Weber modes, similarly to periodic plane waves [16],

L£.=V-G+ 6L, with the latter term becoming zero for p=p’,
k=«". Explicitly,

. kk? e
G= hAY Y M(RAY) ).,
877k’c§( o M(RA L ),
5L<TE>=k—2i2 (RN V(MY )
< 87k.c oy / PR P
kk! KK .
™) _ TE I \
o™ =2 S - == (N1, )N, ). (26)

Z

Thus, a not null orbital angular momentum for a given Weber
mode (p, k) in a volume V can be due just to a flux of the
vector field G through the boundary surface.

Let us consider A as generator of a transformation for the
vector field A. Noether theorem as described above concerns
first-order differential operators as generators of continuous
symmetries while A contains second-order operators. Never-
theless, the Eg term associated to this transformation gives
rise to

Qiprp’ k") =

1 o .
(i) (i) 3
4arc V% (EP'K)jA(Ap’,K’)fd X

E. (E—)‘[(j,)K)jA(A)gg,K’)j = klaEP,K : A),'7',K’ +V. é(i)’
J

!

R - kk . - R
C™=¢,c™ = ﬁc,c == (0¥, MV, .. (27)

The first resulting term in Eq. (27) is proportional to the
integrand that defines the energy, Eq. (22). Thus, for integra-
tions over a finite volume V), C% defines the flux of 2
through the surface around the integration volume. Equation
(27) supports the identification of 2 as the electromagnetic
dynamical variable related to the generator A.

As for the discrete symmetry, using the properties of the
scalar function U under the reflection of u and the expression
of the EM modes in terms of Hertz potentials, it is straight-
forward to find the reflection properties of the electric field

E, , for each mode

;Ig E(TE) — (_ I)P(_ E(TE) E(TE) E(TE))
utp.x 4

DoKX DK YT DL KT

B E"(TM) =(- 1)p(E(TM) _E(TM) E(TM)) (28)
u™p,k :

JN D.K.y> DKL
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V. QUANTIZATION OF THE EM FIELD
IN TERMS OF WEBER MODES

Standard quantization rules require a proper normalization
of the EM modes so that each traveling photon carries an
energy fiw. The classical electric field amplitude is substi-
tuted by the electric field per photon times the creation
operator for the given traveling mode, Ag)—s Kfzi’),
le J>=f/k*,’. The quantum energy and the momentum
along z operators take the form

E=D hoNY, P,=> kN, (29)

in terms of the number operator

Nm__(m 6 4 g0,

[a(t) E{/,)I]: KK . (30)

allowing the identification of #ik, and Aw with the photon
momentum along z and the photon energy, respectively. As
for the helicity,

: 2w

K

B ihk.c . . A(TE) A(TM)+
S = E _~(CZE(TE)THE(TM) _ aE(TE)aE(TM) ) (3 1)

A quantum analysis of the relation between polarization and
helicity can be carried out in analogy with the study in Ref.
[5] for Bessel fields. Finally, in the quantum realm the field
operator associated to A is

A=, 1%k, aN. (32)

An overall factor # was introduced so that the dynamical
variable 2 for a photon has units of linear momentum times
angular momentum as expected for the quantum variable as-
sociated to p,/..
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VI. DISCUSSION

The parabolic-cylindrical modes differ from other sepa-
rable cylindrical modes by having (I,p,+p,l,)/2 as a symme-
try operator. We showed that the quantum numbers of the
EM modes {kz,w,a} are related to their linear momentum
along z, the energy, and the symmetrized product of the an-
gular momentum along z and the momentum along y. The
helicity, a property intrinsic to the vector nature of the EM
field, was shown to be diagonal in the circular basis resulting
from the complex superposition of TE and TM modes. The
dynamical variable 2 is gauge dependent although it can be
written in a gauge- independent looking form for monochro-
matic modes for which E —zwA « Contrary to standard
EM dynamrcal variables whrch depend on products of E
and B, 2 depends on the products of E, B, and their
derivatives. Since Weber EM modes form a complete set,
A=(1/4mc)2;f Vd xE;AA; will be a conserved quantity for
any EM wave A whenever the flux of 2 through asymptotic
parabolic cylinder surfaces at infinity is null. This flux can be
evaluated writing the given EM field Aasa superposition of
Weber modes and applying Eq. (27).

The mechanical effects of Weber beams on cold atoms
deserve a detailed study both quantum mechanically and
semiclassically (in complete analogy to that already done for
Mathieu beams [6]). However, there are some qualitative
features that can be expected without performing such an
analysis. For instance, since under stationary conditions cold
noninteracting atoms in a red-detuned light beam have a
higher probability of being located in the higher intensity
regions of the beam, the corresponding squared atomic wave
function mimics the intensity pattern of the light field. Thus,
for a Weber lattice, the atomic wave function is expected to
have a geometrical structure similar to that of the scalar We-
ber function, Eq. (2). This structure gives rise to the eigen-
value equations Eqgs. (8)—(11). Thus, necessarily 2 defines a
natural dynamical variable for the mechanical description of
the atomic cloud in a Weber lattice. A careful analysis con-
cerning this idea is in progress.
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