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We consider the thermodynamic properties of the squeezed vacuum state of a frequency-modulated quantum
harmonic oscillator. We analytically relate the squeezing parameter to the irreversible work and the degree of
nonadiabaticity of the frequency transformation. We furthermore determine the optimal modulation that leads
to maximal squeezing, and discuss its implementation as well as the detection of squeezing in single cold ion
traps.
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The time-dependent quantum harmonic oscillator serves
as a model system for a variety of physical problems. No-
table examples include the generation of nonclassical states
�1� and the dynamics of cold ions in Paul traps �2�. More
recently, it has played a major role in the study of cosmo-
logical particle creation �3�, the optimization of quantum
heat engines �4�, and nonequilibrium quantum thermody-
namics �5�. An experimental investigation of a harmonic
atom trap with frequency jumps has moreover been reported
in Ref. �6�. The importance of the time-dependent quantum
oscillator stems from the fact that it is an exactly solvable
system. The propagator and the transitions probabilities of an
oscillator with time-dependent frequency and time-
dependent linear driving have been first derived by Husimi
using a Gaussian wave-function ansatz �7�. A more general
method based on invariant operators has been later devel-
oped by Lewis and Riesenfeld �8�.

A remarkable property is that the state of the oscillator is
squeezed when its angular frequency is changed in a nona-
diabatic way �9,10�. The degree of squeezing depends on the
specific frequency modulation considered and various proto-
cols have been discussed �11–14�. Efficient schemes for the
production of squeezed states are nowadays essential for
high-precision measurements, such as in interferometric
gravity wave detectors �15�. In addition, squeezing appears
as a crucial resource for entanglement creation in quantum
information applications with continuous variables �16,17�.
The determination of an optimal squeezing protocol is, thus,
of high importance.

The quantum harmonic oscillator with arbitrary frequency
modulation has recently been studied from a thermodynami-
cal point of view in Ref. �18�. Using the general formula for
the probability density of quantum work introduced in Ref.
�19�, the statistics of the total work performed on an isolated,
but initially thermal, oscillator during adiabatic and nonadia-
batic variations in its angular frequency has been determined.
In particular, an expression for the irreversible work, also
often referred to as dissipative work �20�, has been obtained.
The irreversible work is defined as the difference between
the total work �W� and the free-energy difference �F �the
reversible work�: �Wirr�= �W�−�F. The total work is here
given by the difference between final and initial energies of
the oscillator, �W�= �H����− �H�0��, where H�t� is the time-
dependent Hamilton operator the quantum oscillator. On the
other hand, the free-energy difference can be written in terms
of the partition function Z�t� in the usual manner as

�F=F���−F�0�=−kT ln Z��� /Z�0�, with T the initial tem-
perature of the oscillator. The irreversible work corresponds
to the energy absorbed by the system during a nonadiabatic
transformation and is, therefore, zero for an adiabatic revers-
ible change in the frequency. It also represents the energy
that would be dissipated into a heat bath at temperature T,
would the system be weakly coupled to one �21�. The irre-
versible work has been related to a parameter Q� �see Eq.
�10� below�, originally introduced by Husimi. The latter can
be regarded as a measure of the degree of nonadiabaticity
�18�: Q� is unity for an adiabatic transformation of the oscil-
lator’s frequency and increases monotonically the less adia-
batic a transformation is.

In this Brief Report, we express the amount of squeezing
generated by an arbitrary frequency change in terms of the
nonadiabaticity parameter Q� and the irreversible work
�Wirr� for an oscillator initially in the ground state. By con-
sidering the thermodynamics of vacuum squeezing and, in
particular, by quantifying the degree of squeezing with the
help of the nonadiabaticity parameter, we are able to extend
initial studies of squeezing production in frequency-
modulated harmonic oscillators. We further use optimal con-
trol theory �22� to determine the modulation that leads to
maximal squeezing and compare the results with those ob-
tained in Ref. �13�. We finally discuss the experimental
implementation of the optimal modulation as well as the de-
termination of the thermodynamic and squeezing properties
of the quantum oscillator using single ions in linear Paul
traps.

I. THERMODYNAMICS OF SQUEEZING

A quantum harmonic oscillator with time-dependent fre-
quency ��t� and unit mass is described by the Hamilton op-
erator,

H�t� = 1
2 �p2 + �2�t�q2� . �1�

We consider a protocol where the frequency is changed from
an initial value ��0�=�0 to a final value ����=�1 during
time �. The solution of the Heisenberg equations of motion
for the position and momentum operators q�t� and p�t� can
then be written in the general form,

q�t� = q�0�Y�t� + p�0�X�t� , �2�
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p�t� = q̇�t� , �3�

where the two functions X�t� and Y�t� are the solutions of the
equation of motion of the corresponding classical oscillator,

Ẍ+�2�t�X=0, with initial conditions, X�0�=0, Ẋ�0�=1 and

Y�0�=1, Ẏ�0�=0. The latter ensure that the canonical com-
mutation relation, �x , p�= i, is satisfied �we set �=1 through-
out�. The position and momentum variances for an oscillator
initially in the ground state follow accordingly as

�q2� =
Y2

2�0
+

�0X2

2
, �4�

�p2� =
Ẏ2

2�0
+

�0Ẋ2

2
, �5�

�qp� =
YẎ

2�0
+

�0XẊ

2
. �6�

As shown by Husimi, details about a specific protocol ��t� is
fully contained in a function Q��t� defined as �7�

Q��t� =
1

2�0��t�
��0

2��2�t�X2 + Ẋ2� + �2�t�Y2 + Ẏ2� . �7�

By using Eqs. �4� and �5�, we easily find that

Q��t� = ��t�	 Y2

2�0
+

�0X2

2

 +

1

��t�
	 Ẏ2

2�0
+

�0Ẋ2

2



=
1

��t�
��p2� + �2�t��q2�� , �8�

where the parenthesis is recognized as twice the expectation
value of Hamiltonian �1�. We, thus, obtain that the mean
energy of the oscillator at any given time is simply

�H�t�� =
��t�

2
Q��t� . �9�

The above equation provides some insight into the physical
meaning of the parameter Q��t�: For an adiabatic transforma-
tion, Q��t�=1, and the mean energy of the oscillator is just
given by the ground-state energy. This corresponds to the
known classical result that the action of the system, defined
as the ratio of the energy and the angular frequency, is a
time-independent constant. On the other hand, for a nonadia-
batic change in the frequency, the value of Q��t��1 indi-
cates how far the final state of the oscillator is from its initial
�equilibrium� ground state. The latter statement can be made
more precise by directly computing the irreversible work
�Wirr� at the final time �. By evaluating the total work �W�
and the free-energy difference �F for Hamiltonian �1�, one
finds �18�

�Wirr� =
����

2
�Q���� − 1� . �10�

The irreversible work is, therefore, zero for adiabatic trans-
formations, as expected, and grows linearly with the nona-
diabaticity parameter Q��t�.

Let us now establish a relationship between the irrevers-
ible work and the degree of squeezing of the harmonic os-
cillator. At any given time, a squeezed oscillator state can be
parameterized as �23�

�x2� =
1

2�
�e−2r cos2 � + e2r sin2 �� , �11�

�p2� =
�

2
�e−2r sin2 � + e2r cos2 �� , �12�

�qp� = sinh�2r�sin � cos � . �13�

The time dependence of the squeezing parameter r�t� and the
rotation angle ��t� is controlled by the frequency modulation
��t�. One should note that the mean values �x� and �p� re-
main here zero at all times. By inserting Eqs. �11� and �12�
into Eq. �8�, we obtain the following relation between Q� and
the squeezing parameter r:

Q��t� = cosh 2r�t� . �14�

Equation �14� is an important result that directly connects the
degree of squeezing of the oscillator to the nonadiabaticity
parameter, and thus to the frequency modulation ��t�. It
clearly shows that squeezing requires a nonadiabatic change
in the frequency, Q��t��1, and that large squeezing implies
an exponential increase in Q��t�: Q��t��exp�2r�t�� /2. By
further combining Eqs. �10� and �14�, we arrive at

�Wirr� = ����sinh2 r��� . �15�

Two limiting cases follow from this equation: �Wirr���r2

for small squeezing and �Wirr���e2r /4 for large squeezing.
A high degree of squeezing, thus, requires an exponentially
large amount of irreversible work. Equations �10�, �14�, and
�15� reveal the intimate and simple relationship existing be-
tween the vacuum squeezing properties of the time-
dependent harmonic oscillator on the one hand and its non-
equilibrium thermodynamic properties on the other: the
knowledge of the squeezing parameter allows the determina-
tion of both the degree of nonadiabaticity of the frequency
modulation and the amount of irreversible work produced.
Conversely, the knowledge of the nonequilibrium thermody-
namic state of the quantum oscillator gives direct access to
its vacuum squeezing.

II. OPTIMIZATION OF SQUEEZING

An important question from a theoretical as well as prac-
tical point of view is the determination of a frequency pro-
tocol that leads to maximum squeezing for a prescribed
maximal modulation amplitude. We use in the following op-
timal control theory to answer this question for fixed values
of the initial and final frequencies �0 and �1 of the harmonic
oscillator. Optimal control theory �OCT� is a powerful math-
ematical optimization method based on the calculus of varia-
tions �22�. It allows determining the function that minimizes
a given cost functional in analogy to the familiar Euler-
Lagrange equations of classical mechanics that minimize the
action of a system. The results of a numerical implementa-
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tion of OCT using Pontryagin’s principle for �0=1 and
�1=2 are summarized in Figs. 1–3. The oscillator is taken to
be initially in the ground state and the cost functional to
minimize is chosen as 1 / �H�t��, since the average energy is a
monotonous function of the squeezing �see Eqs. �9� and
�14��. Figure 1 shows the optimal frequency modulation as a
function of time; we observe that it consists of a regular
sequence of frequency jumps at which ��t� abruptly switches
from �0 to �1 and back. The corresponding squeezing pa-
rameter, depicted in Fig. 2, increases by discrete increments
at each of the frequency jumps until the modulation is termi-
nated.

It is interesting to compare the above frequency protocol
obtained with the help of OCT to the one studied analytically
by Janszky and Adam �13�. Although the two protocols are
not exactly identical, they lead to very similar squeezing re-
sults �see Figs. 1–3�. Janszky and Adam considered a se-
quence of sudden frequency changes between �0 and �1,
separated by some delay times �i. They found that squeezing
was strongest when these delay times were given by a quar-
ter of the oscillation periods of the oscillator, that is,

�0=� /2�0 before a jump from �0 to �1 and �1=� /2�1
before a jump from �1 to �0. The latter condition exactly
corresponds to the time needed to exchange position and
momentum axes in phase space. The total squeezing gener-
ated after n such cycles was shown to be

e2r = ��1/�0�n. �16�

The degree of squeezing achieved by such a protocol, there-
fore, increases exponentially with the number of cycles. It
then follows from Eq. �14� that the nonadiabaticity parameter
also grows exponentially with n for large squeezing,
Q��t����1 /�0�n /2. We have checked that the frequency
modulation of Janszky and Adam is actually a stable solution
of the optimal control algorithm.

III. IMPLEMENTATION IN ION TRAPS

A squeezed vacuum state of a quantum harmonic oscilla-
tor was created and observed experimentally using a single
ion confined in a Paul trap �24�. Paul traps are ultrastable rf
traps that allow preparing, manipulating, and measuring
quantum states with high precision �25�. The first observa-
tion of quantum jumps was performed in a single-ion trap
�26�. The frequency of a trap is determined by the external
electrode voltages and by the size of the trap. A voltage
modulation, therefore, directly leads to a modulation of the
motional frequency. Since commercial electronic compo-
nents can achieve fast voltage switching rates, as compared
to the trap frequency, tailored frequency variations can be
implemented.

In the experiment �24�, the squeezed vacuum state of a
harmonically confined 9Be+ ion was generated by cooling
the ion to its motional ground state using sideband cooling,
and by irradiating it with two Raman beams with a frequency
difference 2�0. The latter induces a parametric driving at
frequency 2�0, which squeezes the ground state of the ion.
The squeezed state was detected by laser-coupling motional
and electronic levels of the ion and observing the fluores-
cence signal of the ground state. The probability Pg�t� that
the ion remains in the electronic ground state after a given
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FIG. 1. �Color online� Frequency modulation of the harmonic
oscillator as a function of time for fixed initial and final frequencies
�0=1 and �1=1.3. The dashed �red� line is the result obtained by
optimal control theory and the solid �blue� line corresponds to the
result of Ref. �13�.
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FIG. 2. �Color online� Vacuum squeezing of the harmonic oscil-
lator generated by the frequency modulation shown in Fig. 1. The
dashed �red� line is the result obtained by optimal control theory
and the solid �blue� line corresponds to the result of Ref. �13�. The
dotted �green� line shows the nonoptimal squeezing produced by a
periodic driving at frequency 2�0, ��t�=�0+ ��1−�0�sin�2�0t� /2.
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FIG. 3. �Color online� Nonadiabaticity parameter Q��t�, Eq.
�14�, generated by the frequency modulation shown in Fig. 1. The
dashed �red� line is the result obtained by optimal control theory
and the solid �blue� line corresponds to the result of Ref. �13�.
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coupling time t depends on the level population of the
motional degree of freedom. The probability distribution of
the motional Fock state Pn is a known function of the
squeezing parameter and is given by the Fourier transform of
the time signal Pg�t� �mapped by sequential experimental
runs with different final times�. The squeezing parameter
	=exp�2r� could then be deduced by fitting the function
Pg�t�, yielding a value 	=40. We can evaluate the corre-
sponding nonadiabaticity parameter from Eq. �14� to be
Q����=20. The squeezing protocol used in the experiment is
not optimal and similar �or higher� squeezing values could be
obtained in less time by employing the optimal squeezing
modulation discussed in the previous section �see Fig. 2�.

It is worth noticing that the squeezing parameter can also
be determined from a measurement of the mean energy of
the oscillator, by combining Eqs. �9� and �14�. The average
energy of the oscillator at a given time can be evaluated from
the measured level population Pn via the simple expression
�H�t��=�n��n�n+1 /2�Pn. By proceeding this way, the
squeezing parameter can, hence, be determined directly with-
out doing any numerical fit.

IV. CONCLUSION

We have presented a relationship between the degree of
nonadiabaticity, the irreversible work and the vacuum
squeezing of frequency–modulated quantum harmonic oscil-
lator. We have found that both the nonadiabaticity parameter
Q� and the amount of irreversible work grow exponentially
with large squeezing. We have moreover determined the op-
timal modulation that leads to maximal squeezing using op-
timal control theory and found that the result is very similar
to the protocol investigated analytically by Jansky and Adam
�13�. We have in addition discussed the experimental imple-
mentation in single-ion traps and proposed a new method to
measure the degree of squeezing and determine the nonadia-
baticity parameter.
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