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In an arbitrated quantum signature scheme, the signatory signs the message and the receiver verifies the
signature’s validity with the assistance of the arbitrator. We present an arbitrated quantum signature scheme
using two-particle entangled Bell states similar to the previous scheme using three-particle entangled
Greenberger-Horne-Zeilinger states �G. H. Zeng and C. H. Keitel, Phys. Rev. A 65, 042312 �2002��. The
proposed scheme can preserve the merits in the original scheme while providing a higher efficiency in trans-
mission and reducing the complexity of implementation.
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I. INTRODUCTION

Classical signature is an essential cryptographic primitive
and has been employed in various applications, particularly
in secure electronic commerce. However, if quantum com-
puters could be available someday, Shor’s algorithm �1�
would break most of the classical signature schemes, whose
security depends on the intractability of factoring large num-
bers or solving discrete logarithms. Researchers and scholars
turn to investigate quantum signature, which is supposed to
provide an alternative with unconditional security. Recently,
some progress has been made on quantum signature �2–9�.

In a recent paper, an arbitrated quantum signature scheme
providing many merits was proposed �3�. In such a scheme,
both known and unknown quantum states could be signed,
and the unconditional security was ensured by using the cor-
relation of Greenberger-Horne-Zeilinger �GHZ� triplet states
�10� and quantum one-time pads. However, we observe that
although the scheme in Ref. �3� takes advantage of the cor-
relation of GHZ states, the correlation between the arbitrator
and the other two parties has not been used. The arbitrator is
unnecessary to be entangled and thus the GHZ states used in
Ref. �3� can be replaced with Bell states. Moreover, the
preparation and distribution of two-particle entangled Bell
states are much easier to be implemented than that of three-
particle entangled GHZ states with the present-day technolo-
gies. Therefore, we present an efficient arbitrated quantum
signature scheme using two-particle entangled Bell states
while retaining the advantages of the original scheme.

This Brief Report is organized as follows. First, in Sec. II,
we give an arbitrated quantum signature scheme similar to
that in Ref. �3� using Bell states. In Sec. III, we discuss the
security and the efficiency of the proposed scheme. Finally,
in Sec. IV, we make a conclusion.

II. ARBITRATED QUANTUM SIGNATURE
USING BELL STATES

From the arbitrated quantum signature scheme in Ref. �3�,
we observe that the main functions of the arbitrator are dis-

tributing reliable GHZ states and deciphering the ciphertext
encrypted with the key KA to help the receiver Bob verify the
signature. The arbitrator has nothing to do with the correla-
tion caused by the three-particle entangled GHZ states but
just sends his GHZ particles to Bob in step V3 of the veri-
fying phase �11�. Thus, the arbitrator is unnecessary to be
entangled with the other two participants and the three-
particle entangled GHZ states used in the scheme can be
displaced by two-particle entangled Bell states.

In the following, according to the original scheme pro-
posed in Ref. �3� and the corresponding comments on this
scheme �11,12�, we present an efficient arbitrated quantum
signature scheme using two-particle entangled Bell states,
which can maintain the advantages of the scheme in Ref. �3�.
The proposed scheme can be applied to both known and
unknown quantum states and still provides unconditional se-
curity by utilizing the correlation of Bell states and quantum
one-time pads.

The presented scheme also involves three participants,
namely, signatory Alice, receiver Bob, and the arbitrator, and
includes three phases, the initializing phase, the signing
phase, and the verifying phase.

A. Initializing phase

Step I1. Alice shares her secret key KA with the arbitrator
through quantum key distribution protocols �13–15�, which
were proved to be unconditionally secure �16,17�. Likewise,
Bob obtains his secret key KB shared with the arbitrator.

Step I2. The arbitrator that should be trusted by both Alice
and Bob generates N Bell states ���= ���1� , ��2� , . . . , ��N��
with ��i�= 1

�2
��00�AB+ �11�AB�, where the subscripts A and B

correspond to Alice and Bob, respectively. Then the arbitra-
tor distributes one particle of each Bell state to Alice and the
other to Bob employing a secure and authenticated method
�18,19�. This step can also be achieved as follows: first, the
arbitrator and Alice can share N Bell sates of almost perfect
fidelity even if they are far away from each other �16�
through the use of quantum repeaters �20,21� and fault-
tolerant quantum computation �22,23�, then the arbitrator
sends his own particle of each Bell state to Bob in a secure
and authenticated way �18,19�.*liqin805@163.com
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B. Signing phase

Step S1. Alice obtains a qubit string �P�
= ��p1� , �p2� , . . . , �pN�� related to the message with �pi�=�i�0�
+�i�1�. Here note that if known quantum states are to be
signed, �P� can be prepared any copies and if unknown quan-
tum states are to be signed, three copies of �P� are necessary
�one to be combined with the Bell states, one to produce the
secret qubit string �RA�, and the other to be sent to Bob�, but
if the dimension of �P� is not sufficiently large, more copies
are needed to obtain a lower error probability of comparison
tests for unknown quantum states and then reduce the failure
probability of the verifying phase. Besides, the message
states are provided depending on the specific applications. If
Alice knows the information of the states, she can prepare
them many copies, if Bob knows, he can provide many cop-
ies of the message states to Alice, and if the identities of the
states are unknown to both Alice and Bob, the third party
who needs Alice’s signature of certain message to be verified
by Bob is required to offer Alice the message states.

Step S2. Alice transforms the qubit string �P� into a secret
qubit string �RA� in terms of the key KA. For instance, assume
that the key KA is related to a collection of unitary operators
MKA

= �MKA
1

1 ,MKA
2

2 , . . . ,MKA
N

N �. If KA
i =0, she applies the bit flip

operation �x, namely, MKA
i

i =�x, and if KA
i =1, she applies the

phase flip operation �z, namely, MKA
i

i =�z. Here notice that

unitary operations are preferable since the encrypted states
with MKA

can be decrypted with the corresponding Hermitian
conjugate operators MKA

† , while measurement operations are
not usually reversible. Denote �RA�=MKA

�P�
= ��r1� , �r2� , . . . , �rN�� with �ri�=MKA

i
i �pi�.

Step S3. Alice combines each message state and the Bell
state by carrying out a joint measurement on both states and
obtains the three-particle entangled state,

��i� = �pi� � ��i�

= 1
2 ���12

+ �A��i�0�B + �i�1�B� + ��12
− �A��i�0�B − �i�1�B�

+ ��12
+ �A��i�1�B + �i�0�B� + ��12

− �A��i�1�B − �i�0�B�	 , �1�

where ��12
+ �A, ��12

− �A, ��12
+ �A, and ��12

− �A represent the four
Bell states �24�.

Step S4. Alice implements a Bell measurement on each
three-particle entangled state ��i� and obtains MA
= �MA

1 ,MA
2 , . . . ,MA

N�, where MA
i represents one of the four

Bell states.

Step S5. Alice generates the signature �S�=EKA
�MA , �RA��

of the message �P� by encrypting MA and �RA� with the secret
key KA using the quantum one-time pad algorithm. Note that
MA, even if sometimes depicted by classical bits, can be
transformed into qubits �MA� according to the Bell basis.
Then both �MA� and �RA� can be encrypted by quantum one-
time pad algorithms �25�.

Step S6. Alice transmits the signature �S� followed by the
message �P� to Bob.

C. Verifying phase

Step V1. Bob encrypts �S� and �P� using the key KB and
sends the resultant outcomes �YB�=EKB

��S� , �P�� to the arbi-
trator.

Step V2. The arbitrator decrypts �YB� with KB and gets �S�
and �P�. Then he decrypts �S� using KA and obtains MA and
�RA�� which should be compared with �RA�=MKA

�P�. If �RA��
= �RA�, the arbitrator sets the verification parameter r=1; oth-
erwise sets r=0.

Notice that this step includes quantum state comparison.
The comparison of known quantum states can be made defi-
nitely, while the comparison of unknown quantum states can-
not. Nevertheless, the error probability of determining
whether two quantum bit strings are identical can be made
small enough by adopting the approach in Ref. �26�. The
approach was restated as follows.

Let �i�i=1,2 , . . . ,N� be the modulus of the inner product
of the ith pair qubits in �RA�� and �RA�. If N is not sufficiently
large sometimes, many copies �i.e., 3m copies� of �P� are
required, 2m copies to produce two copies of the extensive

message state �P̄�= � i=1
m �P�, and the other m copies to form

the extensive secret qubit string �R̄A�= � i=1
m �RA� in the signing

phase. For the ith pair qubits in �RA�� and �RA�, we compare
�RA�

i��m and �RA
i ��m �m copies of each pair�. Let n= �2m�! and

�0 ,�1 , . . . ,�n−1 comprise all the permutations on 2m items.
Besides, a n-dimensional ancilla system Q in the state �0� is
introduced. We first perform the n-dimensional quantum
Fourier transform F on the ancilla system Q which maps

�0� →
1
�n



j=0

n−1

�j� . �2�

Then applying permutation � j in one-to-one correspondence
with the value of Q being �j� on �RA�

i��m�RA
i ��m, the state of

the entire system should be

1
�n



j=0

n−1

�j�� j��RA�
i� ¯ �RA�

i��RA
i � ¯ �RA

i �� . �3�

Finally we perform F† on Q and measure it with the projec-
tion operator �0��0� � I. If �RA�

i�= �RA
i �, the measurement out-

come must be 0; otherwise, the probability of obtaining 0
�the error probability� is

TABLE I. The quantity of the transmitted qubits for the arbi-
trated quantum signature �AQS� when signing N-qubit message.

Transmission
AQS using GHZ states

in Ref. �3�a
AQS using
Bell states

Alice→Bob 4N 4N

Bob→The arbitrator 5N 4N

The arbitrator→Bob 7N+1 6N+1

aNote that the quantity here differs from that counted in Ref. �4�
since we count N Bell states as 2N qubits.
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� 1
�n



j=0

n−1

�0�F†�j�� j��RA�
i� ¯ �RA�

i��RA
i � ¯ �RA

i ���2

= �1

n


j=0

n−1

� j��RA�
i� ¯ �RA�

i��RA
i � ¯ �RA

i ���2

=
�m!�2

�2m�!
k=0

m m

k
�2

�i
2k �

�m!�2

�2m�!
�1 + �i�2m

� ��m1 + �i

2
�2m

. �4�

Suppose the attacker should successfully forge l�l�N� qu-
bits for passing the comparison tests and �
=max��1 ,�2 , . . . ,�N	. The error probability after all the com-
parison tests must be p̄e���m� 1+�2

2 �2lm which can be made
small enough by choosing a suitable l and m.

Step V3. The arbitrator obtains �P� from �RA� according to
the key KA. This process can be accomplished by carrying
out Hermitian conjugate operations MKA

† on �RA�, that is,
�P�=MKA

† �RA�=MKA

† MKA
�P�.

Step V4. The arbitrator sends the encrypted results �YaB�
=EKB

�MA , �S� , �P� ,r� to Bob.
Step V5. Bob decrypts �YaB� and obtains MA, �S�, �P�, and

r. If r=0, Bob considers that the signature has been obvi-
ously forged and rejects it; otherwise, Bob goes on the fur-
ther verification.

Step V6. According to Alice’s measurement outcomes MA
and Eq. �1�, Bob obtains �P�� by implementing the corre-
sponding transformations denoted as Eq. �5� on his particles
of the Bell states. For example, if Alice’s measurement result
is ��12

+ �A, then the state in Bob’s hand must be �i�0�B
+�i�1�B. Thus Bob can obtain �P�� by applying the identity
transformation I. The other transformations can be elabo-
rated in the similar way. Then he makes comparisons be-
tween �P�� and �P�. Here the way of comparing �P�� and �P�
is the same as that of comparing �RA�� and �RA� in step V2. If
�P��= �P�, Bob accepts the signature �S� of the message �P�;
otherwise he rejects it.

��12
+ �A → I, ��12

− �A → �z,

��12
+ �A → �x, ��12

− �A → �z�x. �5�

We conclude this section that the proposed arbitrated sig-
nature scheme using Bell states is suitable for both known
and unknown quantum states as the original scheme in Ref.
�3� did. And we emphasize that in the scheme of Ref. �3� and
the scheme presented above, the fact that unknown quantum
states can be signed is not in contradiction with the conse-
quence given in Ref. �18� that it is impossible to sign un-
known quantum states. The significant reason is that a trusted
arbitrator is introduced. Barnum et al. �18� showed that,
since authentication of unknown quantum states requires en-
cryption, signing them is impossible: any protocol which al-
lows one receiver to learn the identity of the state also allows
him or her to modify it without risk of detection, and thus all
potential receivers of an authenticated state must be trustwor-
thy. In the scheme in Ref. �3� and the scheme we propose,

the signature �S�=EKA
�MA , �RA�� can be considered as a spe-

cial kind of authentication. Due to the quantum one-time
pad, the receiver Bob or other malicious parties can obtain
nothing from �S�, while the arbitrator who is trustworthy can
verify it. In fact, the verification of the signature is imple-
mented by the arbitrator who gives a parameter to indicate
whether the signature is valid. The receiver only gets such
parameter and other useful information to complete the fur-
ther verification.

III. SECURITY ANALYSIS AND DISCUSSION

A secure quantum signature scheme should satisfy two
requirements: one is that the signature should not be forged
by the attacker �including the malicious receiver� and the
other is the impossibility of disavowal by the signatory and
the receiver. We show that the proposed scheme can offer
unconditional security as the scheme in Ref. �3� did.

A. Impossibility of forgery

If the malicious receiver Bob attempts to counterfeit the
signatory Alice’s signature �S�=EKA

�MA , �RA�� to his own
benefit, he has to know Alice’s secret key KA. However, this
is impossible due to the unconditionally secure quantum key
distribution. Besides, the use of quantum one-time pad algo-
rithm enhances the security. Thus Bob cannot get the correct
�RA�. Subsequently the parameter r used in the verifying
phase will not be right, so the arbitrator will discover this
forgery.

If the attacker Eve tries to forge Alice’s signature �S�
=EKA

�MA , �RA�� for his own sake, he also should know Al-
ice’s secret key KA. However, the public information that he
can obtain such as �S�, �P�, �YB�, and �YaB� betrays nothing
about the secret key KA. Hence the forgery for Eve is also
impossible. In the worse situation, for instance, in which the
secret key KA is exposed to Eve, Eve still cannot forge the
signature since he cannot create appropriate MA related to the
new message. Bob would find such forgery using the corre-
lation of the Bell states because the further verification about
�P��= �P� could not hold without the correct MA. But note
that if Bob knows the key KA, such forgery will not be
avoided.

B. Impossibility of disavowal by the signatory and the receiver

If the signatory Alice and the receiver Bob disagree with
each other, the arbitrated trusted by both of them should be
required to make a judgment.

Assume Alice disavows her signature. Then the arbitrator
can confirm that Alice has signed the message since the in-
formation of Alice’s secret key KA is involved in the signa-
ture �S�=EKA

�MA , �RA��. Hence Alice cannot deny having
signed the message.

Similarly, suppose Bob repudiates the receipt of the sig-
nature. Then the arbitrator also can confirm that Bob has
received the signature �S� and the message �P� since he needs
the assistance of the arbitrator to verify the signature. For
instance, the information of his key KB is included in �YB�
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=EKB
��S� , �P��. So Bob cannot disavow that he has received

�S� and �P�.

C. Comparisons between the two schemes

The proposed arbitrated quantum signature scheme using
two-particle entangled Bell states maintains the merits of the
scheme using three-particle entangled GHZ states in Ref. �3�.
The scheme can be adapted to both known and unknown
quantum states and still provides unconditional security by
employing the correlation of Bell states and quantum one-
time pads. Furthermore, the proposed scheme is more effi-
cient in two aspects: one is that the total number of the trans-
mitted qubits when N-qubit message is signed is decreased as

described in Table I and the other is that the complexity of
implementing the scheme is reduced as depicted in Table II,
for example, in the proposed scheme, preparing Bell states is
less difficult than preparing GHZ states and performing von
Neumann measurements is unnecessary. Thus we conclude
that the scheme using Bell states achieves a higher efficiency
in transmission and is simpler.

IV. CONCLUSION

We observe that the arbitrator has nothing to do with the
correlation caused by the three-particle entangled GHZ states
in the scheme of Ref. �3� and thus propose a similar arbi-
trated quantum signature scheme employing two-particle en-
tangled Bell states, which not only maintains the advantages
of the original scheme but also offers a higher efficiency in
transmission and is much easier to implement.
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