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Gerry, Ma, and Vrscay �Phys. Rev. A 39, 668 �1989�� studied the time evolution of SU�1,1� coherent states
for the damped harmonic oscillator by introducing the Kanai-Caldirola Hamiltonian. The purposes of this Brief
Report are to demonstrate that there are somewhat serious errors on their results and to correct them. Most of
the figures given in their work are reproduced with correction in order to facilitate our explanation of results.
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The dynamics of SU�1,1� coherent states for the damped
harmonic oscillator is investigated in Ref. �1� by Gerry et al.
about two decades ago. �Hereafter, we call Ref. �1� as paper
I for convenience.� When we study paper I, a somewhat non-
trivial error is found concerning the representation of Hamil-
tonian describing the system. As a matter of course, this led
to wrong consequences for their subsequent evaluations as-
sociated to SU�1,1� coherent states, such as coherent state
parameter, variances, and quantum energy expectation value.
Therefore, the relevant interpretations and figures of the pa-
per include inherent misleadings.

Nevertheless, paper I is cited by quite a few researchers
until now �2–10� without pointing out any errors of the pa-
per. Moreover, one of these researchers recently made simi-
lar mistakes in his/her research paper �4� which employed
the same method of paper I for a somewhat different system.
For these reasons, it may worth revisiting the same subject of
paper I. The corrected results will be presented in this Brief
Report. Figures 1–3 of paper I will be reproduced on the
basis of exact development.

The Caldirola-Kanai Hamiltonian which describes the
damped harmonic oscillator is given by

Ĥ = e−�t p̂2

2m
+ e�t1

2
m�2q̂2. �1�

Although we follow the method of paper I in this investiga-
tion, the relevant evaluations will be made with correction of
their mistakes. The conventional type of annihilation opera-
tor which is associated to simple harmonic oscillator is

â =�m�

2�
q̂ + i

p̂
�2m��

. �2�

Of course, the Hermitian adjoint of the above equation is
creation operator, â†. Using these operators, the SU�1,1� gen-

erators K̂0, K̂+, and K̂− are represented as

K̂0 = 1
2 �â†â + 1

2 � , �3�

K̂+ = 1
2 �â†�2, �4�

K̂− = 1
2 â2. �5�

Then, the canonical variables can be written in terms of these
generators to be

q̂2 =
�

m�
�2K̂0 + K̂+ + K̂−� , �6�

p̂2 = m���2K̂0 − K̂+ − K̂−� . �7�

After a straightforward calculation, the Hamiltonian given in
Eq. �1� is expressed in terms of SU�1,1� generators,

Ĥ = ���e�t + e−�t�K̂0 + 1
2���e�t − e−�t��K̂+ + K̂−� . �8�

This is somewhat different from Eq. �3.7� of paper I, even
when one neglect ��t� in their equation. In fact, their overall
mistakes stem from the miscalculation of the Hamiltonian.

Among well-defined classes of SU�1,1� coherent states,
paper I is concerned with Perelomov coherent state. If we let
the eigenvalue of â as �, the Perelomov coherent state is
constructed from �11�

��;k� = D̂����0�k, �9�

where D̂��� is a displacement operator of the form

D̂��� = exp� 1
2 ��2K̂+ − ��2K̂−�� = e�K̂+ exp�− �K̂0�e−��K̂−,

�10�

with

� =
�2

���2
tanh����2/2� , �11�

� = 2 ln�cosh����2/2�� . �12�

The classical equation of motion for the parameter � is
determined from �12,13�*choiardor@hanmail.net
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�̇ =
1

i�
��,Hk� , �13�

where �X1 ,X2� is a generalized Poisson bracket defined as

�X1,X2� =
�1 − ���2�2

2k
� �X1

��

�X2

��� −
�X1

���

�X2

��
	 . �14�

Thus, from the Hamiltonian dynamics, the classical equation
of motion for the damped harmonic oscillator yields

�̇ = − i��2� cosh �t + �1 + �2�sinh �t� . �15�

The real and imaginary parts of the above equation are given
by

ẋ = 2��y cosh �t + xy sinh �t� , �16�

ẏ = − ��2x cosh �t + �1 + x2 − y2�sinh �t� . �17�

Apparently, these equations are different from those of paper
I, the two equations in Eq. �3.12� of Ref. �1�. This difference
is taken place from misevaluation of the Hamiltonian in their
work. Figure 1 of paper I shows that all trajectories starting
inside the unit circle asymptotically approaches to �x ,y�
= �1.0� as t increases. However, our counterpart results dis-
played in Fig. 1 follow quite different trajectories and end up

�x,y� = �− 1.0� for large t . �18�

It is also possible to prove the asymptotic behavior of Eq.
�18� analytically. For sufficiently large t, Eq. �15� reduces to

�̇ 
 − i
�

2
�1 + ��2e�t. �19�

Through the method of separation of variables, we can easily
solve the above equation to be

� 
 − �1 + i
2�

�
e−�t	 . �20�

Since the case �t�1 is considered, this actually approaches
to �→−1, restoring relation �18�.

For any quantum variable X̂, the variance is defined as

V�X� = ��;k�X̂2��;k� − ��;k�X̂��;k�2. �21�

The variances of canonical variables q̂ and p̂ are therefore
obtainable using Eqs. �6� and �7� and with the help of Eq.
�9�. Thus we have

V�q� =
2�k

m��1 − ���2�
�1 + ���2 + 2 Re���� , �22�

V�p� =
2m��k

1 − ���2
�1 + ���2 − 2 Re���� . �23�

From Figs. 2�a�–2�c�, we can confirm that the uncertainty
product �UP� obeys

V�q�V�p� 	 �2/4. �24�

As you can see, this is always above the physically accept-
able minimum uncertainty relation for the harmonic oscilla-
tor, which is �2 /4. On the other hand, it is hard to know
whether the uncertainty principle equally holds for the case
of Fig. 2�d�. But, from the enlarged graph of the UP dis-
played in Fig. 2�d��, it is clear that the uncertainty principle

(a)

(b)

(c)

(d)

FIG. 1. Evolution of the SU�1,1� coherent state parameter ��t�
=x�t�+ iy�t� given in Eqs. �16� and �17�. The initial conditions
(x�0� ,y�0�) are �a� �0.1,0�, �b� �0.3,0�, �c� �0.5,0�, and �d� �0.99,0�.
We used �=1 and �=1.
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also holds even for the case of Fig. 2�d�. However, the coun-
terpart relation given in paper I is V�q�V�p�	�2 /16. Thus,
strictly speaking, Fig. 2 of paper I does not satisfy uncer-
tainty principle since their counterpart UP is allowed to be
lower below �2 /4.

For this nonstationary system, the energy expectation
value is somewhat different from that of the Hamiltonian.
The relation between Hamiltonian and energy is �14,15�

Ek = e−�t��;k�Ĥ��;k� . �25�

Hence, through a little calculation using the Hamiltonian of
Eq. �8�, we obtain the quantum energy such that

Ek =
2��k

1 − ���2
e−�t��1 + ���2�cosh �t + �� + ���sinh �t� .

�26�

Figure 3 is the evolution of several variables in the
SU�1,1� coherent state with no damping force ��=0�. The
parametric plot of ��t�=x�t�+ iy�t� displayed in Fig. 3�a� is
identical to that of paper I �see Fig. 3�a� of Ref. �1��. At a
glance, Fig. 3�b� looks similar to the counterpart plot pre-
sented in Fig. 3�b� of paper I. However, it is possible to find
their difference from a careful comparison of them. Though
the UP shown in Fig. 3�b� is always larger than �2 /4, the UP
associated to Fig. 3�b� of paper I does not satisfy uncertainty
principle in the strict sense.

FIG. 2. �Color online� Variances V�q� and V�p� given in Eqs. �22� and �23�, respectively, and UP. �a�–�d� are connected with the
numerical values of the SU�1,1� coherent state parameter ��t�=x�t�+ iy�t� depicted in Figs. 1�a�–1�d�. Thus, the initial conditions (x�0� ,y�0�)
of �a�–�d� are the same as those of Figs. 1�a�–1�d� in turn. The straight horizontal reference line is �2 /4 which is minimally allowed UP for
the harmonic oscillator. �d�� is a highly enlarged graph of the lower part of �d� �but only for UP�, displayed on the purpose of checking
distinctly whether the uncertainty principle also holds for the case of �d�. We used m=1, �=1, k=1 /4, �=1, and �=1.

FIG. 3. �Color online� Evolution of the SU�1,1� coherent state
when disappearing the damping force, i.e., �=0, with the initial
condition (x�0� ,y�0�)= �0.3,0�. �a� Plot of the SU�1,1� coherent
state parameter ��t�=x�t�+ iy�t�. �b� Variances V�q� and V�p�. �c�
Expectation value of the quantum energy Ek. The straight horizontal
reference line exhibited in �b� is �2 /4. We used m=1, �=1, k
=1 /4, and �=1.
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For �=0, the system becomes just a simple harmonic os-
cillator and Eq. �26� reduces to

Ek = 2��k
1 + ���2

1 − ���2
. �27�

Besides, for �=0, the solution of Eq. �15� is nothing but

� = �0e−2i��t+
�, �28�

where �0 and 
 are constants. In this case, Eq. �27� is con-
stant since ��� does not vary with time. However, paper I
shows that the time behavior of energy expectation value for

�=0 oscillates with time �see Fig. 3�c� of Ref. �1�� on the
contrary to our counterpart plot shown in Fig. 3�c�.

In summary, we made a rigorous study for the dynamical
feature of SU�1,1� coherent states with correction of the er-
rors of the previous work. The results are carefully compared
with those of paper I and the differences between them are
designated in detail.
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