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To search for the temporal variation in the fundamental constants, one needs to know dependence of atomic
transition frequencies on these constants. We study the dependence of the hyperfine structure of atomic s levels
on nuclear radius and, via radius, on quark masses. An analytical formula has been derived and tested by the
numerical relativistic Hartree-Fock calculations for Rb, Cd+, Cs, Yb+, and Hg+. The results of this work allow
the use of the results of past and future atomic clock experiments and quasar spectra measurements to put
constraints on time variation in the quark masses.
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I. INTRODUCTION

Interest in the variation in the fundamental constants is
motivated by theories unifying gravity and other interactions.
Indications that the fundamental constants might have varied
slightly from those of the distant past have been found in Big
Bang nucleosynthesis and quasar absorption spectra �see,
e.g., reviews in �1–3��. Most publications report only con-
straints on possible variations in fundamental constants �see,
e.g., reviews in �3–6��. Very stringent limits on the present
time variation in the fundamental constants have been ob-
tained in the atomic clock experiments �see, e.g., Refs.
�7–19��. The majority of recent works have been devoted to
the variation in the fine-structure constant �. However, the
hypothetical unification of all interactions implies that the
variation in the dimensionless strong-interaction parameter
Xq=mq /�QCD �where mq= �mu+md� /2 is the average current-
quark mass and �QCD is the quantum chromodynamics
�QCD� scale� may be larger than the variation in � �see, for
example, �20,21� and the references therein�. In all interme-
diate calculations it is convenient to assume that the strong-
interaction scale �QCD does not vary, so we will speak of the
variation in masses. �This means that we measure masses in
units of �QCD.� We will restore the explicit appearance of
�QCD in the final answers.

In a previous paper �22� calculations of the sensitivity of
the nuclear radii to quark mass variation were performed. In
the present Brief Report we calculate the dependence of hy-
perfine transition frequency on nuclear radius �a preliminary
approximate analytical result of this work was presented in
Ref. �22��. Combining the results of the present work and
Ref. �22�, we calculate the dependence of the hyperfine
structure �hfs� on the quark masses and the dimensionless
strong-interaction parameter Xq=mq /�QCD. These calcula-
tions are needed to use the results of very accurate atomic
clock experiments to obtain constraints on the variation in
the fundamental constants.

The result of the present work is presented as a simple
analytical formula. To test this formula and improve the ac-
curacy, we have performed numerical relativistic Hartree-
Fock calculations for all atoms of experimental interest Rb,
Cd+, Cs, Yb+, and Hg+ �and Tl in excited 7s state�. They
happened to be atoms and ions with one s-wave electron

above closed shells. One can use our analytical formula for
other atoms where the hyperfine structure is dominated by
s-wave electrons. For other electrons the effect of the nuclear
radius variation is small and may be neglected.

II. DEPENDENCE OF HYPERFINE TRANSITION
FREQUENCY ON NUCLEAR RADIUS AND QUARK MASS

It was found in Ref. �22� that the variation in a nuclear
radius rn can be related to variation in quark mass by

�rn

rn
� 0.3

�mq

mq
. �1�

Numerical factor of 0.3 in Eq. �1� is approximately the same
for all nuclei. Then the variation in the frequency of a hyper-
fine transition �h may be presented as

��h

�h
� 0.3khr

�mq

mq
, �2�

where

khr =
��h/�h

�rn/rn
. �3�

In this section we calculate khr using analytical and numeri-
cal approaches.

To take into account finite nuclear size in the magnetic
dipole hfs Hamiltonian, we approximate the nucleus by a
uniformly magnetized sphere. Then the Hamiltonian has the
form

Ĥhfs = −
e

c
� · �n � ��U�r� ,

U�r� = �
r

rn
3 , r � rn

1

r2 , r � rn.� �4�

Here n=r /r, � is Dirac matrix, � is nuclear magnetic mo-
ment, and rn is nuclear radius.

For the analytical consideration we use a model of the
nucleus where the nuclear charge is considered to be uni-
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formly distributed about a sphere of radius rn. Such a charge
distribution corresponds to the potential

V�r� = �−
Ze2

rn
�3

2
−

r2

2rn
2	 , r � rn

−
Ze2

r
, r � rn.� �5�

It is convenient to present the hyperfine frequency as
�h=�0�1−�h�, where �0 is the frequency at rn=0 and �h
describes the change in the hfs frequency due to finite
nuclear radius rn. For potential �5� the electron wave func-
tions in the vicinity of the nucleus can be found analytically
and we obtain the following approximate expression for �h
�see the Appendix for details�:

�h �
72

35
�Zrn

aB
	2�−1

, �6�

where �=
1−Z2�2 and aB is the Bohr radius. Then we ob-
tain

khr =
��h/�h

�rn/rn
= −

�2� − 1��h

1 − �h
. �7�

To check these results with a more accurate approach, we
calculate atomic hfs constants using the relativistic Hartree-
Fock method �see, e.g., �23��. Relativistic Hartree-Fock
Hamiltonian for atoms with one external electron above
closed shells can be written as

ĤHF = c� · p + �	 − 1�mc2 + Vnuc�r� + VN−1. �8�

Here Vnuc�r� is nuclear potential and VN−1 is the self-
consistent Hartree-Fock potential of the closed-shell atomic
core containing N−1 atomic electrons. Nuclear potential
Vnuc�r� is found by numerical integration of the Fermi-type
distribution of the nuclear charge. We assume the same elec-
tric and magnetic radius. The same Hamiltonian �8� is used
for core and valence states. The hfs frequencies are ex-
pressed via expectation values of hfs Hamiltonian �4� over
wave functions of the valence electron calculated with
Hamiltonian �8�. Note that neither core polarization nor cor-
relation effects are important for the relative change in the
hfs frequency for s-wave energy levels since the polarization
and correlation corrections are dominated by the matrix ele-
ments of the hyperfine interaction between the s-wave orbit-
als. �The hyperfine matrix elements between the p ,d , . . .
orbitals are significantly smaller.� We have tested this

conclusion using the full-scale many-body calculations for
the Cs hyperfine structure using approach developed in our
previous work �24�. With the accuracy of �1% the polariza-
tion and correlation corrections do not change the relative
value of the effect of the variation. �To avoid misunderstand-
ing we should note that the polarization and correlation cor-
rections change the hyperfine-structure constant by �40%.�

To find the change in the hyperfine frequency due to the
change in nuclear radius, we perform calculations for at least
two different nuclear radii and then calculate the following
derivative numerically:

��h

�rn
=

�h�rn + �rn� − �h�rn − �rn�
2�rn

. �9�

The values of khr-cal found from the Hartree-Fock calcula-
tions are presented in Table I. Using Eq. �7� we can express
�h in a form similar to Eq. �6�,

�h � C�Zrn/aB�2�−1, �10�

where C is a fitting factor found from a comparison of the
results of calculations with formula �10�. The values of C for
some atoms are presented in Table I. Its variation from atom
to atom is small and its average value is 1.995. Using
rn=1.1A1/3 fm and the total number of nucleons A�2.5Z
leads to the formula

�h = 1.995 � �2.8 � 10−5Z4/3�2�−1, �11�

which can be used for any medium or heavy atom. Note that
this result agrees with the purely analytical result �Eq. �6�� to
the accuracy of few percent.

Now we can use expression �2� to calculate the sensitivity
of �h to the quark mass due to the variation in nuclear radius
�parameter: khq=0.3khr�. All results are displayed in Table II.

TABLE I. The sensitivity of the hyperfine transition frequency to variation in the nuclear radius, analyti-
cal �khr� from Eqs. �7� and �11�, and numerical �khr-cal� results.

Atom or ion

37
87Rb 48

111Cd+
55
133Cs 70

171Yb+
80
199Hg+

81
205Tl�7s� 87

233Fr

khr −0.010 −0.017 −0.024 −0.048 −0.077 −0.081 −0.111

khr-cal −0.0096 −0.0171 −0.0242 −0.0492 −0.0778 −0.0798 −0.1082

C 1.9514 2.0034 2.0338 2.0500 2.0050 1.9623 1.9563

TABLE II. The sensitivity of the hyperfine structure to variation
in � �parameter Krel� and to the quark mass to strong-interaction
scale ratio mq /�QCD �parameter k=k
+khq�.

Atom or ion

37
87Rb 48

111Cd+
55
133Cs 70

171Yb+
80
199Hg+

Krel 0.34 0.6 0.83 1.5 2.28

k
 −0.016 0.125 0.009 −0.085 −0.088

khq −0.003 −0.005 −0.007 −0.014 −0.023

k −0.019 0.120 0.002 −0.099 −0.111
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Also presented in Table II are the parameters Krel, k
, and
k=k
+khq. Krel is the sensitivity of the hyperfine structure to
variation in � derived from the results of the atomic many-
body calculations �25�. Parameter k
 is the sensitivity of the
nuclear magnetic moment to quark mass calculated in Ref.
�26�.

It is convenient to present the final results using the ratio
of the hyperfine energy Eh=��h to the atomic unit of energy
Ea=mee

4 /�2. Atomic experiments always measure the ratio
of two atomic frequencies. The atomic unit of energy Ea
cancels out in such ratios. Following Ref. �26� we define the
parameter V through the relation

�V

V
=

��Eh/Ea�
Eh/Ea

. �12�

Then one can use Table II to find the dependence of the
hyperfine transition frequencies on the variation in the fun-
damental constants using the following formula from Ref.
�26�:

V = �2+Krel� mq

�QCD
	k me

mp
. �13�

A number of limits on variation in V from different experi-
ments are presented in Ref �26�. These results give the best
present time limits on the variation in mq /�QCD. For ex-
ample, for �h�87Rb� /�h�133Cs�, we have

X�Rb/Cs� =
V�87Rb�
V�133Cs�

= �−0.49� mq

�QCD
	−0.021

, �14�

and the result of measurements in �9� can be presented as a
limit on the variation in X:

1

X�Rb/Cs�
dX�Rb/Cs�

dt
= �− 0.5 � 5.3� � 10−16/yr. �15�

Using a very stringent limit on the variation in � obtained
using our calculations �25,27� and measurements in Ref.
�19�,

1

�

d�

dt
= �− 1.6 � 2.3� � 10−17/yr, �16�

we may find the variation in Xq=mq /�QCD from Eqs. �14�
and �15�:

1

Xq

dXq

dt
= �0.3 � 2.5� � 10−14/yr. �17�

Note that the effect of the variation may be enhanced by 2–3
orders of magnitude in a number of molecules where the
hyperfine splitting is approximately equal to an interval be-
tween the rotational levels �28�.
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APPENDIX

The analytical approach presented here is very similar to
those used in Ref. �29�. To simplify all expressions we use
atomic units �=e=me=1 and c=1 /� in this appendix.

We use an electron wave function in the form


�
mj�r� =

1

r
� f��r���

mj�r̂�

ig��r��−�
mj�r̂�

	 , �A1�

where ��
mj are spherical spinors. For an s-orbital the initial

terms of a power-series solution of the radial wave functions
inside the nucleus are

fn = ax�1 − �3

8

Z2

c2 +
1

2
Zrn	x2 + ¯
 , �A2�

gn = −
aZ

2c
x2�1 − �1

5
+

9

40

Z2

c2 +
3

10
Zrn	x2 + ¯
 , �A3�

where x=r /rn. Only those terms explicit in Eqs. �A2� and
�A3� will be retained for further calculation. The external
radial wave functions take the form of Bessel functions

fe = �� + ���J2��y� + bY2��y�� −
y

2
�J2�−1�y� + bY2�−1�y�� ,

�A4�

ge =
Z

c
�J2��y� + bY2��y�� , �A5�

where �= �−1� j−l+1/2�j+1 /2�,

� = 
�2 − �2Z2, y = 
8Zr . �A6�

As the binding energy of the electron is small in comparison
to the potential energy, it has been neglected in the calcula-
tion of Eqs. �A2�–�A5�. The constants a and b are found such
that the wave functions remain continuous at r=rn. For small
rn they may be approximated by

a =
�2Zrn��

��2��
�−

1

5
�2� + 3� +

3

80

Z2

c2 �3� + 7�

+
1

20
Zrn�3� + 7�	−1

, �A7�

b = −
a��2Zrn��

��1 + 2��
�−

1

5
�2� − 3� +

3

80

Z2

c2 �3� − 7�

+
1

20
Zrn�3� − 7�	 . �A8�

As we shall only consider relative changes in the hyperfine
interaction, normalization of the wave functions is not nec-
essary. The first-order correction to the energy is simply the
s-wave expectation value of the hyperfine interaction, which
may be shown to be
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�h = �s�Ĥhfs�s� = k� U�r�fgdr , �A9�

where k is a constant �30�. In the limit of zero nuclear radius
this becomes

�0 = k�
0

� 1

r2 f0g0dr =
kZ2�1 − 2��
c�� − 4�3�

, �A10�

where f0= fe and g0=ge�rn=0�. We define a relative change
in the hyperfine interaction �h by �h=�0�1−�h�,

�h = −
k

�0
�

0

rn � r

rn
3 fngn −

1

r2 f0g0	dr

−
k

�0
�

rn

� 1

r2 �f0�ge + g0�fe�dr , �A11�

where �g=ge−g0 and �f = fe− f0. For small rn these integrals
result in

�h = −
a2��4�2 − 1�

Zrn
� 1

35
−

13

1008

Z2

c2 −
13

756
Zrn +

1

640

Z4

c4

+
1

240

Z3rn

c2 +
1

360
Z2rn

2	 +
�2Zrn�2�−12��1 + ���1 + 2��

3��1 + 2��2

+
b�4�2 − 1�

3�Zrn
. �A12�

Keeping only leading in Zrn terms reduces this to

�h � 72
35�Zrn�2�−1. �A13�

Differentiation of �h with respect to rn and rearranging
yields

��h

�h
= −

�2� − 1��h

1 − �h

�rn

rn
. �A14�
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