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We consider the continuous-time version of our recently proposed quantum theory of optical temporal phase
and instantaneous frequency �M. Tsang et al., Phys. Rev. A 78, 053820 �2008��. Using a state-variable
approach to estimation, we design homodyne phase-locked loops that can measure the temporal phase with
quantum-limited accuracy. We show that postprocessing can further improve the estimation performance if
delay is allowed in the estimation. We also investigate the fundamental uncertainties in the simultaneous
estimation of harmonic-oscillator position and momentum via continuous optical phase measurements from the
classical estimation theory perspective. In the case of delayed estimation, we find that the inferred uncertainty
product can drop below that allowed by the Heisenberg uncertainty relation. Although this result seems
counterintuitive, we argue that it does not violate any basic principle of quantum mechanics.
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I. INTRODUCTION

Optical phase measurements at the fundamental quantum
limit of accuracy are an important goal in science and engi-
neering and crucial for future metrology, sensing, and com-
munication applications. While the single-mode case has
been extensively studied, less attention has been given to the
quantum measurements of a temporally varying phase. Theo-
retically, the temporal-phase positive operator-valued mea-
sure �POVM� describes the optimal quantum measurements
�1�, but it is difficult to perform such measurements in prac-
tice. Adaptive homodyne detection �2,3� is a much more fea-
sible approach, and Berry and Wiseman �4� proposed the use
of a homodyne phase-locked loop to estimate the phase when
the mean phase is a classical Wiener random process �5�. On
the other hand, we have recently shown in Ref. �1� how
homodyne phase-locked loops can be designed using classi-
cal estimation theory to perform quantum-limited temporal-
phase measurements when the mean phase is any stationary
Gaussian random process.

The main purpose of this paper is to unify and generalize
the two distinct approaches undertaken by Berry and Wise-
man �4� and ourselves under the common framework of clas-
sical estimation theory. In Sec. II, we first extend our
discrete-time theory proposed in Ref. �1� to the continuous-
time domain. In Sec. III A, we generalize the results of Berry
and Wiseman �4� to a much wider class of random processes
using the Kalman-Bucy filtering theory �6,7�. The Kalman-
Bucy approach guarantees the real-time estimation efficiency
provided that the phase-locked loop operates in the linear
regime. Our approach also significantly simplifies the design
of phase-locked loops, compared to the more computation-
ally expensive Bayesian state estimation approach suggested
by Pope et al. �5�. In Sec. III B, we show that the Wiener
filtering technique used in our previous paper �1� is equiva-
lent to Kalman-Bucy filtering at steady state. In Sec. IV, we

point out that results of Berry and Wiseman are not optimal
if delay is permitted in the phase estimation process, and
postprocessing can further improve the phase estimation per-
formance beyond that offered by Kalman-Bucy or Wiener
filtering. We illustrate these concepts by considering the spe-
cific cases of the mean phase being an Ornstein-Uhlenbeck
random process as well as the Wiener process studied by
Berry and Wiseman �4�. Apart from the theoretical impor-
tance of our results in the context of quantum estimation and
control theory, they should also be of immediate interest to
experimentalists and engineers who wish to achieve
quantum-limited temporal-phase measurements, as we ex-
pect our proposals to be realizable using current technology.

In Sec. V, we investigate the fundamental problem of si-
multaneous harmonic-oscillator position and momentum es-
timation at the quantum limit by continuous optical phase
measurements. The problem can be cast directly in the
framework of classical estimation theory for Gaussian states.
The use of Kalman-Bucy filtering for real-time position and
momentum estimation has been proposed by Belavkin and
Staszewski �8� and Doherty et al. �9�, who have shown that
the quantum state of the harmonic-oscillator conditioned
upon the real-time measurement record is a pure-Gaussian
state. Here we show that the inferred position and momen-
tum estimation errors according to classical estimation
theory can be further reduced below the Heisenberg uncer-
tainty product if delay is allowed in the estimation. While
counterintuitive, we explain in Sec. V C why this result does
not violate the basic principles of quantum mechanics.

II. PHASE IN THE CONTINUOUS TIME DOMAIN

For completeness, we first review the continuous-time
limit of our discrete-time theory of temporal phase �1�, as
previously described in Ref. �10�. Consider the optical enve-

lope annihilation and creation operators Â�t� and Â†�t�, re-
spectively, in the slowly varying envelope regime, with the
time-domain commutation relation*mankei@mit.edu
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�Â�t�,Â†�t��� = ��t − t�� . �2.1�

Let dn�t� be a continuous-time discrete-photon-number ran-
dom process, a realization of which is depicted in Fig. 1, and
� j be the times at which dn�� j� is nonzero.

A Fock state with a definite dn�t� can be defined as

�dn�t�� � �	
j

1

dn�� j�!

�Â†�� j�
dt�dn��j���0� , �2.2�

which is an eigenstate of the photon-number flux operator

Â†�t�Â�t�,

Â†�t�Â�t��dn�t�� = I�t��dn�t�� , �2.3�

I�t� �
dn�t�

dt
= �

j

dn�� j���t − � j� . �2.4�

The Fock states form a complete orthogonal basis of the
continuous-time Hilbert space,

�
dn�t�

�dn�t��
dn�t�� = 1̂, �2.5�

where the sum is over all realizations of dn�t�. For a quantum
state �̂, the photon-number probability distribution is

P�dn�t�� = Tr��̂�dn�t��
dn�t���, �
dn�t�

P�dn�t�� = 1.

�2.6�

For example, a coherent state is defined as

�A�t�� = exp�−
N̄

2
+ �

−�

�

dtA�t�Â†�t���0� ,

N̄ � �
−�

�

dt�A�t��2, Â�t��A�t�� = A�t��A�t�� , �2.7�

where A�t� is the mean field. The photon-number probability
density is then

P�dn�t�� = lim
�t→dt

e−N̄	
j

��A�tj��2�t�dn�tj�

dn�tj�!
,

tj � t0 + j�t , �2.8�

which describes a Poisson process, as is well known �11�.
A temporal-phase state can be defined as the functional

Fourier transform of the Fock states,

���t�� � �
dn�t�

exp�i�
j

dn�� j���� j���dn�t��

= �
dn�t�

exp�i�
−�

�

dtI�t���t���dn�t�� . �2.9�

In terms of the temporal-phase states, a temporal-phase
POVM can be defined as

�̂���t�� � ���t��
��t�� , �2.10�

which is the continuous limit of the one defined in Ref. �1�
and can be normalized using a path integral with the paths
restricted to a range of 2�,

� D��t��̂���t�� = 1̂, D��t� � lim
�t→dt

	
j

d��tj�
2�

,

�0�t� � ��t� 	 �0�t� + 2� . �2.11�

The temporal-phase probability density is thus given by

p���t�� = Tr��̂�̂���t���, � D��t�p���t�� = 1.

�2.12�

It is difficult to analytically calculate p���t�� for most quan-
tum states of interest, so perturbative or numerical methods
should be sought.

For the design of homodyne phase-locked loops, the
Wigner distribution is of more interest. For a Gaussian state
with uncorrelated quadratures, it can be written as

W�
1�t�,
2�t�� � exp�−
1

2 �
j=1,2

� dtd�
 j�t�Kj
−1�t,��
 j���� ,

�2.13�

where 
 j�t� are quadrature processes,


1�t� � A�t�e−i��t� + A��t�ei��t� − 
A�t�e−i��t� + A��t�ei��t�� ,

�2.14�


2�t� � − i�A�t�e−i��t� − A��t�ei��t��

− 
− i�A�t�e−i��t� − A��t�ei��t��� , �2.15�

A�t� is the complex field variable in phase space, � is an
arbitrary phase, and Kj

−1�t ,�� is defined in terms of the cova-
riance functions Kj�t ,�� as

� duKj�t,u�Kj
−1�u,�� = ��t − �� , �2.16�

Kj�t,�� � 

 j�t�
 j���� . �2.17�

The covariance functions must satisfy the uncertainty
relation

� duK1�t,u�K2�u,�� 
 ��t − �� , �2.18�

which becomes an equality if and only if the state is pure. In
particular, the covariance functions for a coherent state are

FIG. 1. �Color online� A realization of the continuous-time
discrete-photon-number random process.
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K1�t,�� = K2�t,�� = ��t − �� . �2.19�

III. PHASE-LOCKED LOOP DESIGN

A. Kalman-Bucy filtering

Consider the homodyne phase-locked loop illustrated in
Fig. 2. The output of the homodyne detection can be written
as

��t� = sin��̄�t� − ���t�� + z�t� , �3.1�

where �̄�t� is the mean phase of the optical field, which
contains the message to be estimated, ���t� is the local-
oscillator phase, and z�t� is the quantum noise. For a phase-
squeezed state with squeezed quadrature 
2�t� and anti-
squeezed quadrature 
1�t�, z�t� can be written as

z�t� �
1

2�A�
�
1�t�sin��̄�t� − ���t�� + 
2�t�cos��̄�t� − ���t��� ,

�3.2�

where A�
Â�= �A�exp�i�̄� is the mean field. For generality,
we let the message be a vector of n random processes,

x�t� � �
x1�t�
x2�t�
]

xn�t�
� , �3.3�

with the mean phase proportional to the first one,

�̄�t� = C�t�x�t�, C�t� � ��,0, . . . ,0� . �3.4�

In the Kalman-Bucy formalism, x�t� is modeled as zero-
mean random processes that satisfy a set of linear differential
equations,

dx�t�
dt

= A�t�x�t� + B�t�u�t� , �3.5�

where A�t� and B�t� are n�n and n�m matrices, respec-
tively, and u�t� is a vector of m zero-mean white Gaussian
inputs with autocorrelation


u�t� � u���� = U��t − �� . �3.6�

We focus on coherent states, so that z�t� can be modeled as
an independent white Gaussian noise according to its Wigner
distribution,


z�t�z���� = Z�t���t − ��, Z�t� �
1

4�A�2
=

��0

4P
, �3.7�

where �0 is the optical carrier frequency and P is the aver-
age optical power. The additive white Gaussian noise allows
us to apply classical estimation techniques directly. Coherent
states should also be of more immediate interest to experi-
mentalists and engineers, as they are easier to generate and
more robust to loss compared to nonclassical states. For a
phase-squeezed state, the statistics of z�t� depend on �̄�t�
−���t�, but one may still wish to approximate z�t� as an
independent Gaussian noise by neglecting the antisqueezed
quadrature 
1�t� in order to take advantage of classical esti-
mation techniques �1�.

The purpose of the phase-locked loop is to make ���t� the
optimal estimate of �̄�t�, using the measurement record of
���� in the period t0��� t, such that we can linearize Eq.
�3.1�,

��t� � �̄�t� − ���t� + z�t� , �3.8�

when the following condition, called the threshold constraint
in classical estimation theory �1,6�, is satisfied:


��̄�t� − ���t��2� � 1. �3.9�

The threshold constraint ensures that the phase-locked loop
is phase locked.

If the canonical measurements characterized by the
temporal-phase POVM can be performed, we can instead
modulate the phase of the incoming field by −���t� and per-
form the canonical measurements, producing an output

�c�t� = f„�̄�t� − ���t� + z�t�… , �3.10�

where f��� must be a periodic function, such as a sawtooth
function,

f��� = ��� − ��mod 2�� − � , �3.11�

and z�t� is the quantum phase noise and independent of �̄�t�
and ���t� for any quantum state. Because �̄�t� may exceed
the 2� range, it is still necessary to use the phase-locked
loop to perform phase unwrapping. The following analysis
can be applied to canonical temporal-phase measurements
and arbitrary quantum states if �c�t� is linearized as

�c�t� � �̄�t� − ���t� + z�t� �3.12�

and z�t� is approximated as a white Gaussian noise. The
same threshold constraint given by Eq. �3.9� ensures that the
periodic nature of �c�t� can be neglected and the lineariza-
tion is valid.

The linearization allows us to use Kalman-Bucy filtering
to produce the real-time minimum-mean-square-error esti-
mates of x�t� �6,7�, which we denote as x��t�,

dx�

dt
= Ax� + �� . �3.13�

This is called the Kalman-Bucy estimator equation. � is
called the innovation, defined in terms of a general vectoral
observation process y�t� as

FIG. 2. �Color online� A homodyne phase-locked loop. LO
denotes local oscillator.
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y�t� � C�t�x�t� + z�t�, ��t� � y�t� − C�t�x��t� ,

�3.14�

where z�t� is a vectoral Gaussian white noise with mean

z�t��=0 and covariance 
z�t� � z�����Z�t���t−��. For
phase-locked loops, the homodyne output ��t� can be used
directly as the innovation, so z�t�=z�t� and Z�t�=Z�t�. � is
called the gain, given by

� = �CTZ−1 =
4�P
��0 �

�11

�21

]

�n1

� , �3.15�

and � is the estimation covariance matrix, defined as

��t� � 
�x�t� − x��t�� � �x�t� − x��t��� , �3.16�

which satisfies the variance equation,

d�

dt
= A� + �AT − �CTZ−1C� + BUBT. �3.17�

Equations �3.13�–�3.17� are much simpler to solve than the
conditional probability density equation suggested by Pope
et al. �5� for phase estimation. The threshold constraint be-
comes

�2�11 � 1, �3.18�

and the initial conditions are

x��t0� = 
x�t0�� = 0, ��t0� = 
x�t0� � x�t0�� . �3.19�

Apart from phase estimation, Kalman-Bucy filtering can also
be used to simultaneously estimate other parameters that de-
pend linearly on the phase. The instantaneous frequency, for
instance, can be estimated by defining x2�dx1 /dt. The
phase-locked-loop implementation of Kalman-Bucy filtering
for general angle demodulation is depicted in Fig. 3.

For example, consider the message as an Ornstein-
Uhlenbeck process,

dx

dt
= − kx + Bu . �3.20�

The variance equation becomes

d�

dt
= − 2k� −

4�2P
��0

�2 + �, � � B2U �3.21�

and the gain is

��t� =
4�P
��0

��t� . �3.22�

The variance equation can be solved analytically,

��t� = �ss

� −
�/k + 1

�/k − 1
exp�− 2��t − t0��

� + exp�− 2��t − t0��
, �3.23�

� �
�/k + 1 + ���t0�
�/k − 1 − ���t0�

, � � k���

k
+ 1�1/2

,

� �
4�2P
��0k

, �3.24�

where the subscript ss denotes the steady state,

��t� → �ss �
1

�
����

k
+ 1�1/2

− 1�, t − t0 �
1

�
,

�3.25�

�ss � � �

k�
�1/2

,
��

k
� 1, �3.26�

and the threshold constraint is

� �
�

k
�4. �3.27�

When the message is a Wiener random process,

dx

dt
= Bu , �3.28�

we can either follow the same procedure as before to derive
the Kalman-Bucy filter or take the results for the Ornstein-
Uhlenbeck process to the limit k→0. Either way, assuming
�=1 for simplicity, we find

��t� = �ss
� − exp�− 2��t − t0��
� + exp�− 2��t − t0��

, ��t� =
4P
��0

��t� ,

�3.29�

�ss =
1

2
N
, � �

1 + 2
N��t0�

1 − 2
N��t0�
,

� � 2�
N, N �
P

��0�
. �3.30�

At steady state,

��t� → �ss =
1

2
N
, ��t� → 2�
N, t − t0 �

1

�
.

�3.31�

The threshold constraint is

FIG. 3. �Color online� A phase-locked loop that implements
Kalman-Bucy filtering for angle demodulation.
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4N =
4P

��0�
� 1. �3.32�

These results for the Wiener process agree with the result of
Berry and Wiseman �4�.

B. Wiener filtering

In addition to the Kalman-Bucy state-variable approach,
Wiener’s frequency-domain approach can also be used to
design the phase-locked loop �1,6,12�. Defining

y�t� � �̄�t� + z�t� , �3.33�

it can be shown that Kalman-Bucy filtering is equivalent to
the integral equation �6,7�

x��t� = �
t0

t

d�H�t,��y��� , �3.34�

where H�t ,�� is called the optimum realizable filter and sat-
isfies the integral equation

Kxy�t,�� = �
t0

t

d�H�t,��Ky��,�� , �3.35�

Kxy�t,�� � 
x�t�y����, Ky��,�� = 
y���y���� .

�3.36�

If x�t� and y�t� are stationary and we let t0→−�, Eq. �3.35�
becomes the Wiener-Hopf equation,

Kxy�t − �� = �
−�

t

d�H�t − ��Ky�� − �� , �3.37�

which can be solved by a well-known frequency-domain
technique �1,6,12�. For example, if x�t� is an Ornstein-
Uhlenbeck process, its power spectral density in the limit of
t0→−� is

Kx�t,�� � 
x�t�x���� = Kx�t − �� , �3.38�

Sx��� � �
−�

�

dtKx�t�exp�− i�t� =
�

�2 + k2 . �3.39�

The power spectral density for y�t� is then

Sy��� � �
−�

�

dtKy�t�exp�− i�t� =
�2�

�2 + k2 +
��0

4P
.

�3.40�

To solve for H�t−��, we rewrite Sy��� as

Sy��� = H+���H+
����, H+��� = ���0

4P �1/2 i� + �

i� + k
,

�3.41�

where � is given in Eq. �3.24� and H+��� and 1 /H+��� are
causal filters. Defining

Sxy��� � �
−�

�

dtKxy�t�exp�− i�t� =
��

�2 + k2 , �3.42�

the Wiener filter in the frequency domain is

H��� =
1

H+����Sxy���
H+

�����+

, �3.43�

where the subscript + denotes the realizable part. To calcu-
late the realizable part, first perform the inverse Fourier
transform,

� d�

2�

Sxy���
H+

����
exp�i�t� = � 4P

��0
�1/2 ��

� + k
�U�− t�e�t + U�t�e−kt� ,

�3.44�

where U�t� is the Heaviside step function. The realizable part
is then obtained by multiplying Eq. �3.44� by U�t� and per-
forming the Fourier transform. After some algebra, we obtain

H��� =
�ss

i� + �
, �ss �

� − k

�
. �3.45�

To implement the Wiener filter in the phase-locked loop
shown in Fig. 4, the loop filter that relates the homodyne
output ��t� to the estimate x��t� is

x��t� = �
−�

t

d�L�t − ������ �3.46�

��
−�

t

d�L�t − ���y��� − �x����� ,

�3.47�

L���
1 + �L���

= H���, L��� =
H���

1 − �H���
=

�ss

i� + k
.

�3.48�

The resulting phase-locked-loop structure is equivalent to
that obtained by Kalman-Bucy filtering at steady state, as
both approaches implement the optimum realizable filter.

The mean-square error of Wiener filtering is given by the
well-known expression �1,6,12�

FIG. 4. �Color online� A phase-locked loop implementation of
Wiener filtering when the mean phase is an Ornstein-Uhlenbeck
process.
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� =
��0

4�2P�−�

� d�

2�
ln�1 +

4�2PSx���
��0

�
=

1

�
����

k
+ 1�1/2

− 1� , �3.49�

which obviously must be the same as the steady-state error
�ss obtained by Kalman-Bucy filtering. The interested reader
is referred to Ref. �6� for an excellent treatment of Wiener
filters.

The advantage of Kalman-Bucy filtering over Wiener fil-
tering is that the former can also deal with a wide class of
nonstationary random processes that can be described by a
system of linear equations �Eq. �3.5�� whereas Wiener filter-
ing works only for stationary processes. In the special case of
a Wiener process, however, we can first design a Wiener
filter for an Ornstein-Uhlenbeck process and take the limit
k→0. The result for �=1 is

L��� →
�ss

i�
, �ss → 2�
N, � →

1

2
N
, �3.50�

which is again the same as the steady-state Kalman-Bucy
filter.

IV. SMOOTHING

Both Kalman-Bucy filtering and Wiener filtering provide
real-time estimates of x�t� based on the measurement record
up to time �= t. If we allow delay in the estimation, we can
use the additional information from more advanced measure-
ments to improve upon the estimation. In the following we
consider the optimal estimation of x�t� given the full mea-
surement record in the interval t0� t�T, also called smooth-
ing in classical estimation theory �6,7�.

A. State-variable approach

Given the output x� of the homodyne phase-locked loop
designed by Kalman-Bucy filtering and the associated cova-
riance matrix �, the optimal smoothing estimates of x�t�,
which we define as x̃�t�, can be calculated using a state-
variable approach, first suggested by Bryson and Frazier
�7,13�. x̃�t� and the smoothing covariance matrix,

��t� � 
�x�t� − x̃�t�� � �x�t� − x̃�t��� , �4.1�

can be obtained by solving the following equations backward
in time:

dx̃

dt
= Ax̃ + BUBT�−1�x̃ − x�� , �4.2�

d�

dt
= �A + BUBT�−1�� + ��A + BUBT�−1�T − BUBT,

�4.3�

with the final conditions

x̃�T� = x��T�, ��T� = ��T� . �4.4�

In the t0� t�T limit, we can calculate the steady-state
smoothing covariance matrix �ss by setting the right-hand

side of Eq. �4.3� to zero and using the steady-state �ss as �.
Again using the Ornstein-Uhlenbeck process as an ex-

ample, the steady-state smoothing error, also called the
“irreducible” error �6,12�, is given by

�ss =
�

2k���/k + 1�1/2 . �4.5�

This result is identical to that derived in �1� using a
frequency-domain approach. In the limit of ��k /�,

�ss →
1

2
� �

k�
�1/2

�
1

2
�ss, �4.6�

which is smaller than the error from Kalman-Bucy or Wiener
filtering by approximately a factor of 2. For the Wiener pro-
cess, the smoothing error is

�ss =
1

4
N
=

1

2
�ss, �4.7�

which is smaller than the filtering error by exactly a factor of
2.

B. Two-filter smoothing

An equivalent but more intuitive form of the optimal
smoother was discovered by Mayne �14� and Fraser and Pot-
ter �15�, who treated the smoother as a combination of two
filters, one running forward in time to produce a prediction
x��t� via Kalman-Bucy filtering using the past measurement
record, as specified in Eqs. �3.13�–�3.17�, and one running
backward in time to produce a retrodiction x��t� using the
advanced measurement record,

dx�

dt
= Ax� − �� , �4.8�

d�

dt
= A� + �AT + �CTZ−1C� − BUBT, �4.9�

� = �CTZ−1, �4.10�

with final conditions

�−1�T�x��T� = 0, �−1�T� = 0 . �4.11�

The smoothing estimates and covariance matrix, taking into
account both the prediction and the retrodiction, are given by

x̃ = ���−1x� + �−1x�� , �4.12�

� = ��−1 + �−1�−1. �4.13�

The steady-state smoothing covariance matrix �ss can be
calculated by combining the steady-state predictive and ret-
rodictive covariance matrices,

�ss = ��ss
−1 + �ss

−1�−1. �4.14�

C. Frequency-domain approach

For stationary Gaussian random processes and in the limit
of t0� t�T, a frequency-domain approach can also be used

TSANG, SHAPIRO, AND LLOYD PHYSICAL REVIEW A 79, 053843 �2009�

053843-6



to obtain the optimal smoother �1,6,12�. The optimal smooth-
ing estimates can be written in terms of y�t� as �6,7,12�

x̃�t� = �
t0

T

d�G�t,��y��� , �4.15�

where G�t ,�� obeys

Kxy�t,�� = �
t0

T

d�G�t,��Ky��,�� . �4.16�

For Kxy�t ,��=Kxy�t−��, G�t ,��=G�t−��, and Ky�� ,��
=Ky��−�� and in the limit of t0→−� and T→�, we can
solve Eq. �4.16� by Fourier transform,

G��� =
Sxy���
Sy���

. �4.17�

G��� is called the optimum unrealizable filter �6�. For an
Ornstein-Uhlenbeck process, G��� is

G��� =
4�P
��0

�

�2 + �2 . �4.18�

To implement this filter, one can use the homodyne phase-
locked loop designed by Wiener filtering and a postloop filter
given by

F��� =
G���
H���

=
k + �

− i� + �
. �4.19�

The postloop filter impulse response is

f�t� � �
−�

� d�

2�
F���exp�i�t� �4.20�

=��k + ��exp��t� , t � 0

0, t � 0,
� �4.21�

which is anticausal, so one must introduce a time delay td
�1 /� for F to be approximated by a causal filter. The opti-
mal smoother designed by the frequency-domain approach is
depicted in Fig. 5.

The variance of the optimal frequency-domain smoother
is �1,6,12�

� = �
−�

� d�

2�
�Sx��� −

�Sxy����2

Sy��� � =
�

2k���/k + 1�1/2 ,

�4.22�

which is the same as the smoothing error derived by the
state-variable approach in Eq. �4.5� as expected. The inter-
ested reader is again referred to Ref. �6� for an excellent
treatment of optimal frequency-domain filters and smoothers.

V. QUANTUM POSITION AND MOMENTUM
ESTIMATION BY OPTICAL PHASE MEASUREMENTS

A. Quantum Kalman-Bucy filtering

So far we have assumed that the mean phase of the optical
field contains classical random processes to be estimated in
the presence of quantum optical noise. In this section we
investigate the estimation of inherently quantum processes
carried by the optical phase. Specifically, we revisit the clas-
sic problem of quantum-limited mirror position and momen-
tum estimation by optical phase measurements. First we re-
view the problem of optimal real-time estimation by
Kalman-Bucy filtering, previously studied by Belavkin and
Staszewski �8� and Doherty et al. �9�.

We model the mirror as a harmonic oscillator, as depicted
in Fig. 6,

dx̂

dt
=

p̂

m
, �5.1�

dp̂

dt
= − m�m

2 x̂ +
2M��0 cos �

c
Î , �5.2�

where x̂�t� and p̂�t� are quantum position and momentum
operators, m is the harmonic-oscillator mass, �m is the me-
chanical harmonic-oscillator frequency, the last term of Eq.
�5.2� is the radiation pressure term, M is the number of times
the optical beam hits the mirror, � is the angle at which the

optical beam hits the mirror, and Î�t� is the optical flux op-
erator, consisting of a mean and a quantum noise term,

Î�t� =
P

��0
+ �Î�t� . �5.3�

The constant force term can be eliminated by redefining the
position of the harmonic oscillator, so we shall neglect the

constant radiation pressure term from now on. �Î�t� is ap-

FIG. 5. �Color online� A homodyne phase-locked loop with a
postloop filter F��� that realizes optimal smoothing. FIG. 6. �Color online� Position and momentum estimation by

optical phase measurements.
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proximately a white Gaussian noise term for a high-power
optical coherent state,


�Î�t��Î���� �
P

��0
��t − �� . �5.4�

The Gaussian approximation neglects the discreteness of
photon number and is valid if the number of photons within
the relaxation time of the filter impulse response is much
larger than 1. We can then write the quantum system model
as

d

dt
� x̂

p̂
� = � 0 1/m

− m�m
2 0

�� x̂

p̂
� + �0

1
�û , �5.5�

with initial conditions,


x̂�t0�� = 0, 
p̂�t0�� = 0, �5.6�

and radiation pressure acting as the quantum Langevin noise,


û�t�û���� = U��t − �� , �5.7�

U �
��2P

�0
, � � 2Mk0 cos � . �5.8�

The mirror position is observed via optical phase measure-
ments using a phase-locked loop. In the linearized regime,
we can define the quantum observation process as

ŷ = �� 0 �� x̂

p̂
� + ẑ , �5.9�


ẑ�t�ẑ���� = Z��t − ��, Z �
��0

4P
. �5.10�

Our linearized model is consistent with the general model of
continuous quantum nondemolition �QND� measurements
�8,9,16�.

To apply Kalman-Bucy filtering to the estimation of mir-
ror position and momentum, let us define

�x̂ � x̂ − x�, �p̂ � p̂ − p�, �5.11�

� = � 
�x̂2�
1

2

�x̂�p̂ + �p̂�x̂�

1

2

�x̂�p̂ + �p̂�x̂� 
�p̂2� � .

�5.12�

In the linearized model, the Wigner distribution remains
Gaussian and non-negative provided that the initial Wigner
distribution is Gaussian, so it can be regarded as a classical

phase-space probability distribution, x̂�t�, p̂�t�, �Î�t�, and
ŷ�t�, can be regarded as classical random processes with sta-
tistics governed by the Wigner distribution, and we can apply
classical estimation theory directly. The off-diagonal compo-
nents of the variance matrix are written in terms of symme-
trized operators to ensure that they are Hermitian and also
obey Wigner-distribution statistics.

The Kalman-Bucy variance equations hence become

d�11

dt
=

1

m
��21 + �12� − V�11

2 , �5.13�

d�12

dt
=

1

m
�22 − m�m

2 �11 − V�11�12, �5.14�

d�22

dt
= − m�m

2 ��12 + �21� − V�12�21 + U , �5.15�

V �
4�2P
��0

. �5.16�

The steady state is given by the condition d� /dt=0. After
some algebra,

��11�ss =
�

2m�m


2

Q
��1 + Q2�1/2 − 1�1/2, �5.17�

��12�ss = ��21�ss =
�

2

1

Q
��1 + Q2�1/2 − 1� , �5.18�

��22�ss =
�m�m

2


2

Q
��1 + Q2�1/2 − 1�1/2�1 + Q2�1/2,

�5.19�

where

Q �

UV

m�m
2 =

2�2P
m�0�m

2 �5.20�

is a dimensionless parameter that characterizes the strength
of the measurements. The position uncertainty 
�x̂2�ss
= ��11�ss is squeezed due to the continuous QND measure-
ments, while the momentum uncertainty 
�p̂2�ss= ��22�ss is
antisqueezed due to the radiation pressure. These results
have also been derived by various groups of people �8,9�,
although here we have shown how one can realistically
implement the optical measurements of a mechanical oscil-
lator.

The Kalman-Bucy gain is

� =
4�P
��0

��11

�21
� . �5.21�

The estimator equation becomes

d

dt
�x�

p�
� = � − V�11 1/m

− V�21 − m�m
2 0

��x�

p�
� +

V

�
��11

�21
�y ,

�5.22�

where y is the measurement record of ŷ. The filter relaxation
time is on the order of

tf �
1

V��11�ss
=

1

2�m��1 + Q2�1/2 − 1�1/2 , �5.23�

which decreases for increasing Q, so the steady state can be
reached faster for a larger Q. For Q→0, tf →�, and a steady
state does not exist. The photon number within the filter

TSANG, SHAPIRO, AND LLOYD PHYSICAL REVIEW A 79, 053843 �2009�

053843-8



relaxation time is much larger than 1, and the assumption of
white Gaussian radiation pressure noise is valid when

Ptf

��0
�

m�m

2
2�2�

Q

��1 + Q2�1/2 − 1�1/2 � 1. �5.24�

On the other hand, the threshold constraint, which ensures
that the linearized analysis of the phase-locked loop is valid,
is

�2��11�ss =
�2�


2m�m

��1 + Q2�1/2 − 1�1/2

Q
� 1. �5.25�

This condition, apart from a factor of 4, is the same as the
large-photon-number assumption given by Eq. �5.24� and en-
sures that the linearized system and measurement model is
self-consistent.

The mirror position-momentum uncertainty product at
steady state is


�x̂2�ss
�p̂2�ss = ��11�22�ss =
�2

4

2

Q2 �1 + Q2 − �1 + Q2�1/2�

�5.26�

and satisfies the Heisenberg uncertainty principle for all Q,
as one would expect. Furthermore, the covariances satisfy
the following relation for pure-Gaussian states �8,9�:

det��ss� = ��11�22 − �12
2 �ss =

�2

4
, �5.27�

indicating that the harmonic oscillator conditioned upon the
real-time measurement record becomes a pure-Gaussian state
at steady state.

B. Smoothing errors

From the classical estimation theory perspective, we
should be able to improve upon Kalman-Bucy filtering if we
allow delay in the estimation and apply smoothing. Here we
calculate the steady-state smoothing errors using the two-
filter approach described in Sec. IV B. The steady-state
smoothing covariance matrix is

�ss = ��ss
−1 + �ss

−1�−1, �5.28�

where �ss is the steady-state forward-filter covariance ma-
trix, already solved and given by Eqs. �5.17�–�5.19�. The
backward-filter covariances obey the following equations:

d�11

dt
=

1

m
��21 + �12� + V�11

2 , �5.29�

d�12

dt
=

1

m
�22 − m�m

2 �11 + V�11�12, �5.30�

d�22

dt
= − m�m

2 ��12 + �21� + V�12�21 − U . �5.31�

The steady-state values for the backward filter turn out to be
almost identical to the ones for the forward filter,

��11�ss = ��11�ss, ��12�ss = − ��12�ss,

��22�ss = ��22�ss, �5.32�

and also satisfy the pure-Gaussian-state relation

det��ss� = ��11�22 − �12
2 �ss =

�2

4
. �5.33�

After some algebra,

��11�ss =
�

8m�m
� 1

�1 + iQ�1/2 +
1

�1 − iQ�1/2� , �5.34�

��12�ss = 0, �5.35�

��22�ss =
�m�m

8
��1 + iQ�1/2 + �1 − iQ�1/2� . �5.36�

These results can be confirmed using the frequency-domain
approach outlined in Sec. IV C. The position-momentum un-
certainty product becomes

��11�ss��22�ss =
�2

32
�1 +

1

�1 + Q2�1/2� , �5.37�

which is smaller than the Heisenberg uncertainty product
�2 /4 by four to eight times.

C. Discussion

While counterintuitive, the sub-Heisenberg uncertainties
given by Eqs. �5.34�–�5.37� do not violate any basic law of
quantum mechanics. The reason is that we only estimate the
position and momentum of the mirror some time in the past
as if they were classical random processes with Wigner-
distribution statistics, but it is impossible to verify our esti-
mates by comparing them against the mirror in the past,
which has since been irreversibly perturbed by the unknown
radiation pressure noise. In classical estimation, x�t� and p�t�
are classical random processes unknown to the observer but
can in principle be perfectly measured or simply decided at
will by another party, so it is possible to compare one’s de-
layed estimates against the perfect versions and verify the
smoothing errors. In the quantum regime, however, one can-
not measure the mirror in the past more accurately without
disturbing it further, and the only way for us to obtain perfect
information about the mirror position or momentum is to
perform a strong projective measurement. Unlike the
Kalman-Bucy estimates, which predict the mirror position
and momentum at present and can be verified by performing
a projective measurement at present, it is obviously impos-
sible to go back to the past and perform a strong projective
measurement on the mirror to verify our delayed estimates
without changing our model of the problem.

It is also impossible to perfectly reverse the dynamics of
the mirror in time and recreate the past quantum state with-
out introducing additional noise because quantum-limited
optical phase measurements prevent us from obtaining any
information about the optical power fluctuations, and the dy-
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namics of the mirror subject to the unknown radiation pres-
sure noise is irreversible. Thus, even though classical estima-
tion theory indicates that we can achieve more accurate
estimates than the Heisenberg uncertainty principle would
allow, quantum mechanics seem to forbid one from experi-
mentally verifying the violation. In this sense the apparent
paradox is analogous to the Einstein-Podolsky-Rosen para-
dox �17� and may yet have implications for the interpretation
of quantum mechanics.

In practice, while one may argue from a frequentist point
of view that delayed estimation of quantum processes is
meaningless if it cannot be verified, smoothing should still
be able to improve the estimation of a classical random pro-
cess in a quantum system, such as a classical force acting on
a quantum harmonic oscillator �18�.

VI. CONCLUSION

In conclusion, we have used classical estimation theory to
design homodyne phase-locked loop for quantum optical
phase estimation and shown that the estimation performance
can be improved when delay is permitted and smoothing is
applied. We have focused on coherent states, as it can be
regarded as a classical field with additive phase-insensitive
noise upon homodyne detection, and classical estimation
techniques can be applied directly. The optimal adaptive ho-

modyne measurement scheme for nonclassical states remains
an open problem. Along this direction Berry and Wiseman
�4� recently suggested the use of Bayesian estimation for
narrow band squeezed states when the mean phase is a
Wiener process �19�. Generalization of their scheme to more
general random processes is challenging but may be facili-
tated by classical nonlinear estimation techniques �6,7�.

When we apply the same classical techniques to the
quantum-limited estimation of harmonic-oscillator position
and momentum, we find that the two conjugate variables can
be simultaneously estimated with inferred accuracies beyond
the Heisenberg uncertainty relation if smoothing is per-
formed. Although quantum mechanics seems to forbid one
from verifying the delayed estimates by destroying the evi-
dence, this result remains counterintuitive and may have im-
plications for the interpretation of quantum mechanics. In the
general context of quantum trajectory theory �20�, quantum
smoothing deserves further investigation and should be use-
ful for quantum sensing and communication applications
�18,21�.
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