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We numerically investigate the formation of soliton pairs �bound states� in mode-locked fiber ring lasers. In
the distributed model �complex cubic-quintic Ginzburg-Landau equation� we observe a discrete family of
soliton pairs with equidistantly increasing peak separation. This family was identified by two alternative
numerical schemes and the bound state instability was disclosed by a linear stability analysis. Moreover,
similar families of unstable bound state solutions have been found in a more realistic lumped laser model with
an idealized saturable absorber �instantaneous response�. We show that a stabilization of these bound states can
be achieved when the finite relaxation time of the saturable absorber is taken into account. The domain of
stability can be controlled by varying this relaxation time.
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I. INTRODUCTION

Since the experimental observation of stable solitary
pulses �SPs� in optical fibers �1� their interactions attracted a
great deal of interest. In the early stages the propagation of
light pulses was described using the nonlinear Schrödinger
equation �NLSE�. Relying on a perturbation approach it was
shown that SP interactions depend on the relative phase be-
tween them: in-phase solitons attract each other, while out-
of-phase solitons repel �2–5�, and for an arbitrary phase the
interaction appears more involved �5�.

For a more realistic description of real systems different
perturbations were added to the NLSE, accounting for losses
�6�, intrapulse Raman scattering �7–9�, third-order dispersion
�7,10�, or spectral filtering. For the description of a complete
communication line with a periodic arrangement of signal
regeneration �semiconductor amplifier, saturable absorber�
and propagation in the fiber �effects as nonlinearity and ab-
sorption� a distributed description with the so-called complex
cubic-quintic Ginzburg-Landau equation �CQGLE� was es-
tablished �11�. Another optical system of primary impor-
tance, which is commonly modeled by this equation, is the
mode-locked fiber ring laser because it essentially consists of
the same optical components in a closed loop �12�. Despite
its success in the description of mode-locked lasers, the as-
sumptions used to derive the CQGLE are not always fulfilled
in reality.

In this contribution we investigate the formation of bound
states in fiber lasers exploiting the CQGLE and a more real-
istic lumped model. From exact numerical simulations of the
CQGLE we obtain a discrete family of bound state �BS�
stationary solutions with different �equidistant� peak separa-
tions. Moreover, we show that a lumped laser model which
accounts additionally for finite temporal effects of the ab-
sorber can have profound consequences for the BS stability.

The CQGLE can be considered as a perturbed NLSE
where the complex coefficients of dispersion and nonlinear-
ity account for spectral filtering and saturation, respectively,

and a linear loss or gain is added. For certain parameter sets
this equation was shown to support solitary wave solutions,
called dissipative solitons, as well as BSs of pairs of SPs
�13–21�. Careful numerical investigations �16� have demon-
strated BS formation from a pair of initially resting SPs.
Depending on the dispersion regime and the initial phase
difference the BS profile can vary. Furthermore it was shown
�17,18� that out-of-phase and in-phase SPs can form unstable
stationary BS solutions because they represent saddle points
in the phase plane. In the framework of the CQGLE stable
BSs were discovered by Akhmediev et al. �21� as stable two-
soliton solutions with a � /2 phase difference of the peaks.
They were observed for anomalous dispersion only.

In an early work �14� it was analytically shown that these
dissipative equations exhibit a discrete family of two-soliton
solutions with different �equidistant� peak separations. This
analysis was based on both a perturbation approach for the
NLS equation with small pumping and dissipative terms and
the CQGLE with weak anomalous dispersion. To the best of
our knowledge, however, such discrete families of BSs have
not yet been found numerically or experimentally.

In Sec. II of this paper we briefly present the equations
used for modeling the fiber ring laser for different approxi-
mations. We depart from the more general lumped descrip-
tion, where all individual elements in the cavity are modeled
by separate equations and the pulse is sequentially propa-
gated through these elements in the ring cavity. Then, we
derive the CQGLE from the lumped model by averaging
over the full cavity. We obtain definite relations between the
coefficients of both models which are essential for the com-
parison with experiments.

Section III is devoted to the discrete family of stationary
BS solutions derived from the CQGLE. In the numerical
simulations we observe a discrete family of stationary two-
soliton solutions with different peak-to-peak separations
which we identify as different BS levels. These results are
obtained by means of two numerical schemes, viz., the solu-
tion of either the evolution or the stationary problem. Based
on the results of the stationary analysis, a linear stability
analysis is carried out where the instability growth rates per-
fectly coincide with the results of the propagation model.*aleksandr.zavyalov@uni-jena.de
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For a more realistic description we take advantage of the
lumped laser model in Sec. IV, where the individual elements
of the cavity are treated separately, and show that the differ-
ent BS levels can be stabilized by accounting for a nonin-
stantaneous, but very fast, response of the saturable absorber
�SA�, whereas for an instantaneous absorber response the
BSs remain unstable. In the latter case the SA is described by
the commonly used instantaneous response approximation
�ideal SA�.

Interestingly, by varying the SA response time and satu-
ration level the BS solutions can be forced to change from
stable to unstable behavior. Moreover, all these stable two-
pulse solutions exhibit a multilevel nature and are located on
a certain side of the phase plane depending on the level.

In what follows we are restricting ourselves to the normal
dispersion regime because this is the realm of the so-called
all-normal-dispersion lasers, which attract a considerable
deal of interest presently. Compared to other fiber lasers they
have a simpler setup and allow for achieving higher pulse
energies. Energies as high as 256 nJ per pulse were achieved
in a large-mode-area photonic crystal fiber laser �22� and
more than 20 nJ for a usual single-mode fiber laser �23�.
Pulses generated in all-normal-dispersion lasers depend non-
trivially on the interplay of spectral filtering and self-phase
modulation �24�.

II. MODELS

For the numerical modeling we use a simple scheme of a
ring fiber laser, which consists of a doped fiber, a saturable
absorber, and an output coupler. This laser model allows for
including the dominant effects into the simulations and is
still close to reality. In the lumped model the propagation
through each element is treated separately.

The propagation along the doped fiber is described by the
modified nonlinear Schrödinger equation which is given by
�7,25,26� �when the carrier optical frequency equals the
dopant’s atomic resonance frequency�

�U�z,t�
�z

+
i

2
��2 + ig�z�T1

2�
�2U�z,t�

�2t

=
g�z�U�z,t�

2
+ i��U�z,t��2U�z,t� , �1�

where U�z , t� is the envelope of the pulse, z is the propaga-
tion coordinate, t is the retarded time, �2 is the second-order
dispersion coefficient, and � represents the fiber nonlinearity.
g�z� is the saturable gain of the doped fiber and T1 is the
dipole relaxation time �inverse linewidth of the parabolic
gain�. Assuming that the conditions are close to stationarity,
the gain can be approximated by �27�

g�z� =
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1 + �
pulse

�U�z,t��2dt/Esat
gain

, �2�

where g0 is the small-signal gain, which is defined by the
pumping level, and Esat

gain is the saturation energy.
To describe the time-dependent semiconductor SA re-

sponse we use the Agrawal-Olsson model �28�, which we

term noninstantaneous SA response and is given by
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where ��z , t� is the loss introduced by the absorber, �0 is the
small-signal loss, Trelax is the recovery time, and Esat

SA is the
saturation energy. For Trelax�Tpulse and taking into account
that standard absorbers are thin, we obtain the well-known
transmission equation for the SA in the instantaneous re-
sponse approximation �ideal SA� from system �3�,

Uout�t� = Uin�t�exp�−
1

2

�0�z

1 + �Uin�t��2/Psat
� , �4�

where �z is the length of the SA, �0�z defines the modula-
tion depth of the absorber, and the saturation power is de-
fined as Psat=Esat

SA /Trelax.
This lumped model describes the experimental setup ap-

propriately but it is too involved for analytical studies, in-
cluding the linear stability analysis. In order to obtain a
single equation with constant coefficients the periodic system
is approximated by averaging over the full cavity length us-
ing the guiding-center soliton technique �29,30�, which relies
on the field decomposition into a product containing a peri-
odic part and an average amplitude. This model is justified if
physically relevant changes appear upon several round trips.
For the sake of simplicity of the resulting equation the in-
stantaneous response approximation for SA �4� is used and
the saturation of the fiber gain is neglected, i.e., we simplify
Eq. �2� to g�z�	g0 in the limit 
pulse�U�z , t��2dt�Esat

gain. Even-
tually we obtain a single evolution equation, which is a
modified-complex Ginzburg-Landau equation �MGLE� given
by

i
�V
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V
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where V is the normalized envelope of the pulse, Z=z /LD is
the normalized averaged propagation coordinate, LD
=T0

2 / ��2� is the dispersion length, �= t /T0 is the time normal-
ized by the pulse duration T0, and the other parameters are
defined as

D = − sgn��2� ,

� =
g0T2

2

2
��2� ,


 =
LD�0�z

2Lf
,

	 = LD
g0 − k/Lf

2
,

Psat
aver = PsatLD�

1 − exp�− g0Lf�
g0Lf

,

ZAVYALOV et al. PHYSICAL REVIEW A 79, 053841 �2009�

053841-2



V = U�LD�
exp�g0Lf� − 1

g0Lf
�1/2

, �6�

where Lf is the fiber length, which is assumed to be equal to
the cavity length, and k is the output loss. A further simpli-
fication can be achieved by a Taylor expansion of the last
term of Eq. �4� up to second order in �V�2 / Psat

aver. Ultimately
we obtain the established CQGLE given by

i
�V

�Z
+
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2

�2V
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�2

��2 + i��V�2V − i��V�4V ,

�7�

where the linear and nonlinear gain or loss coefficients are
defined as

� = 	 − 
, � =



Psat
aver , � =




�Psat
aver�2 . �8�

Hence, we can unambiguously relate the coefficients of
the CQGLE and MGLE to the coefficients of the lumped
model which reflect the experimental laser parameters.

III. CQGLE MODEL

A. Bound state solutions

To get a general picture of the two-SP interactions in the
fiber laser we start our considerations from the distributed
laser model, CQGLE �7�. The reason is twofold: first most
previous papers rely on this model and second it is more
appropriate for identifying the stationary solutions and ap-
plying the linear stability analysis.

From previous investigations �13–21� it is known that BS
formation is caused by linear and nonlinear dissipative ef-
fects �right-hand side of Eq. �7��. Thus to simplify the analy-
sis the number of system parameters was reduced from four
�� ,� ,� ,�� to two �� ,k� such as �16�

� = − k�/3, � = �/2 + k�, � = �5/8�k� , �9�

where the parameter k characterizes the deviation from the
particular point �k=0� where arbitrary-amplitude solutions
exist �31�.

We are working in the normal dispersion regime D=−1
with relatively strong spectral filtering �=1. To be suffi-
ciently far from the singularity we choose k=0.5 where
stable SPs exist. As initial conditions we use an in-phase
superposition of two resting pulses separated by a certain
distance. In the framework of the CGQLE the initial pulse
profile is a critical issue with respect to BS formation. Thus
for a better convergence we use as input two SPs, which are
numerically obtained stationary one-soliton solutions for the
respective parameter set �17�.

To get a more complete picture of two-pulse solutions we
consider the evolution for a wider range of initial separations
and longer propagation distance than in previous works �see
Fig. 1�. We observe stationary BS formation beyond a certain
distance �similar to �17�� and its succeeding destabilization,
i.e., fusion of the pulses �below we discuss this instability in
more detail�. For an initial separation exceeding a critical

value the SPs repel each other, which was also observed in
�16,17�. However, a more careful study discloses that this
separation is not ordinary repulsion but the formation of an-
other BS with a larger peak separation �see Fig. 1�. In previ-
ous works it was usually assumed that the interaction be-
comes too weak for such large peak separations and, hence,
this scenario was not thoroughly investigated. The evolution
to the second BS level has a much slower dynamics than that
for the first one and needs an approximately 50 times longer
propagation distance to form the stationary solution. This
difference arises from the weaker SP interaction. Except for
the larger formation distance and the slower formation dy-
namics there is no principal difference between these two BS
levels. Similarly, beyond another critical initial separation we
have observed the evolution toward a third BS level. Unfor-
tunately, these calculations are too time consuming, but in-
tuitively it is clear that even higher order BS levels should
occur. Evidently, it may be anticipated that the dynamics
becomes progressively slower for higher levels and that all
of them are unstable.

To double check these expectations and to identify arbi-
trary BS levels, we solve the stationary problem using the
relaxation and Newton’s methods in combination. Figure 1
�right� shows results obtained both from the propagation and
from the stationary analysis, which are in perfect agreement
in the intermediate section where the propagation is station-
ary. The solution of the stationary problem yielded six levels
of in-phase BSs with different peak separations. It is inter-
esting to see that the peak separation S changes from level to
level by a constant value �approximately �S=6 for the cur-
rent set of parameters� and obeys the simple equation
Sin-phase

n 	2.5+6n, where n=1,2 ,3 , . . . designates the BS
level.

Also the first six levels of the out-of-phase stationary BS
solutions were found. Similarly, the dependence of the peak
separation on the level �except the first one� can be approxi-
mated by Sout-of-phase

n 	5.5+6n, where n=2,3 ,4 , . . ., while
for the first level Sout-of-phase

1 =4.7. We guess that this peculiar-
ity of the first level is caused by the strong SP overlap re-
sulting in enhanced nonlinear effects.

We note that for a � /2 phase difference between the
pulses neither stable nor unstable BS solution has been found
in the normal dispersion regime.

FIG. 1. Evolution of the separation for initially in-phase pulses
with different initial separations. The levels of stationary in-phase
BS solutions are displayed on the right axis on the right side. The
peak separation is given in units of �; model: CQGLE �7�; param-
eters: k=0.5, �=1.
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To understand the multilevel nature we consider the BS
intensity and phase profiles for the first three levels, shown in
Fig. 2. From this figure we may draw two conclusions. First,
the intensity profile of in-phase �out-of-phase� BS looks al-
ways the same, independently of the level, and has a charac-
teristic small dip in the center. Second, there is a definite
phase relation between the BS constituents and between the
levels. For example, for in-phase BS levels the phase differ-
ence between the phase maximum and the phase minimum
�at the center� is a multiple of � and can be written as
�in-phase

n 	�n, where n=1,2 ,3 , . . . is the BS level. For out-
of-phase solutions this phase difference can be approximated
by �out-of-phase

n 	0.8+�n, where n=2,3 ,4 , . . ., while for the
first level �out-of-phase

1 =3.6.
Physically, the equidistant multilevel nature of the BSs

can be understood as constructive interference between SPs
and can be clearly seen from the almost linearly growing
phase of the tails �Fig. 2�. On the other side, our results are in
qualitative agreement with Malomed’s analysis �14,18�
where the oscillating tails of the SPs �linear phase change�
evoke a periodic interaction potential against the pulse sepa-
ration, in spite of the fact that this analysis �14,18� is based
on a NLSE perturbation approach and is valid just for the
anomalous dispersion regime. Moreover, we propose the
magnitude � as a convenient parameter for the definition of
the BS level in simulations or experiments.

We visualize the evolution of both pulses in a phase plane
(
�z� ,��z�), where 
�z� is the peak separation and ��z� is
their relative phase �difference of the phase between peaks�
�see Fig. 3�. In this plot we analyze the evolution trajectories
of two pulses for two relevant cases. In the first case we
consider two out-of-phase SPs with an initial separation of
S=7 which are evolving toward the first level out-of-phase
stationary BS solution. In the second case the evolution of a
pair of in-phase SPs with a larger initial separation of S
=16.1 �evolving toward the second level in-phase stationary
BS solution� is displayed. The evolution trajectory for the
first case, which may be partly described by a circle indi-
cated by “1” in Fig. 3, is well studied �17�. The radius of this
circle equals the distance between the peaks of the first level
out-of-phase BS.

To date, it was not shown that in the second case, where
the initial separation between the solitons is 16.1, the evolu-
tion trajectory partly consists of four circles. From the plot
�Fig. 3� we can recognize that each circle corresponds to a
certain BS. The radius of the biggest one equals the distance
between pulses of the second level in-phase BS, being in
agreement with the previous case. The other circles “3,” “2,”
and “1” correspond to the second level out-of-phase, first
level in-phase, and first level out-of-phase stationary BS so-
lutions, respectively.

It is interesting to note that the evolution trajectory of two
in-phase or out-of-phase SPs attains simple geometrical
forms. Moreover, during the evolution they pass through all
possible in-phase and out-of-phase stationary BS solutions
with ever smaller peak separation.

This can be explained by the earlier finding that the phase
difference between the pulses depends on their separation as
a consequence of interference phenomena between them.

B. Linear stability analysis

In previous papers �17,18,21� it was shown that in-phase
and out-of-phase first level BSs are unstable. From our
propagation simulations we anticipate that the corresponding
higher level BSs are unstable as well. In order to confirm this
hypothesis and to provide a more complete picture we carry
out a linear stability analysis of the higher BS levels. We
start with the first level in-phase stationary solution. Its for-
mation, the typical instability behavior and final fusion of the
two-pulse excitation are shown in Fig. 4. It is interesting to
note that the instability exhibits a temporal asymmetry in the
absolutely symmetric CQGLE.

To perform the linear stability analysis we perturb the
stationary solution V0�t�exp�ik0z� as V�z , t�=V0�t�exp�ik0z�
+�V�z , t�= �V0�t�+ f exp��z�+g exp���z��exp�ik0z�, where
V0�t� was numerically calculated and f and g are the small

FIG. 2. �Color online� Intensity and phase profiles for the first
three levels of the �a� in-phase and �b� out-of-phase stationary BS
solutions; model: CQGLE �7�; parameters: k=0.5, �=1.

FIG. 3. �Color online� Soliton trajectories in the phase plane for
two initially out-of-phase solitons with separation 7 �line A� and
two initially in-phase solitons with separation 16.1 �line B�. 1L—
first level stationary in-phase �red, right� and out-of-phase �blue,
left� bound state solutions and 2L—second level stationary in-phase
�red, right� and out-of-phase �blue, left� bound state solutions;
model: CQGLE �7�; parameters: k=0.5, �=1.
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amplitudes of the perturbation. The substitution of this ansatz
into CQGLE �7� and its respective linearization in f and g
leads to a system of linear homogeneous equations. The solv-
ability condition provides the eigenvalues �. Eigenvalues
with positive real part indicate that the perturbation grows
upon propagation and the stationary solution destabilizes. In
Fig. 5 the calculated eigenvalues for the unstable first level
in-phase BS are displayed and compared with the eigenval-
ues of the stable SP solution.

Evidently, in the limit of two infinitely separated SPs the
eigenvalues coincide with those of the stable single SP solu-
tion. In this case the zero eigenvalue exhibits a fourth-order
degeneracy corresponding to the two phase and two transla-
tion modes. If the peak separation decreases the pulses start
to perturb each other affecting the eigenvalues. Because of
interaction two eigenvalues branch off from the zero eigen-
value and move in opposite directions on the real axis for
decreasing separation. Thus, the eigenvalue with the positive
real part is responsible for the instability of the BS solution
�see Fig. 5�. The two eigenmodes corresponding to these
eigenvalues are shown in Fig. 6. They are formed as linear
combinations of the four individual eigenmodes of the origi-

nal SP �two phase modes, two translation modes� shifted by
the distance S. The peaks of both modes are shifted toward
the center and do not coincide with the peaks of the BS. Also
because of SP interaction another four eigenvalues are sym-
metrically split off the spectral continuum and move away
from it for decreasing BS level. However, all of them have a
negative real part and do not affect the stability of the bound
state solution.

From the results presented in Figs. 5 and 6 we may con-
clude that the antisymmetric mode is responsible for the BS
instability. In the propagation simulations this mode is ex-
cited by noise and then grows with Re����0. To confirm the
results of the linear stability analysis we add white noise to
the stationary BS solution and plot the evolution trajectories
of two points �fixed on the time coordinate, calculated in the
propagation scheme�. The points are chosen to be close to
the amplitude maxima of the unstable mode �see Fig. 6
�left��. The growing antisymmetric eigenmode evokes an in-
crease in the amplitude in one point and a decay in the other
point upon propagation. Figure 6 �right� shows that the re-
sults of the linear stability analysis and the exact numerical
propagation simulations perfectly coincide up to the distance
where the linear stability analysis ceases to be valid.

As expected, Re��� calculated for other BS levels is
smaller for higher levels �see Table I�. This dependency cor-
relates well with the slower dynamics �evolution to the BS
solution and instability dynamics� discussed in Fig. 1. From
a mathematical and practical point of view the growth rate
Re��� for higher BS levels can be very close to zero, but
physically it remains an unstable BS.

We varied the CQGLE parameters �, k, and � to find
in-phase or out-of-phase stable BSs but failed.

IV. LUMPED MODEL

In this section we study BS formation in fiber ring lasers
using the more realistic lumped model and experimentally
accessible laser parameters. The aim of this study is mani-
fold. First of all, this model reflects better the experimental

FIG. 4. �Color online� Bound state instability. Two in-phase
solitons form a quasistationary bound state but fuse asymmetrically
eventually; model: CQGLE �7�; parameters: k=0.5, �=1.

FIG. 5. �Color online� Complex eigenvalues for both the first
level unstable stationary in-phase BS and stable SP solutions. The
arrows denote the directions where the eigenvalues are shifted for
higher level BSs with decreasing interaction; model: CQGLE �7�;
parameters: k=0.5, �=1.

FIG. 6. �Color online� Left: perturbation modes �dashed blue
line and dash-dotted red line� of the first level in-phase BS �solid
black line�. Right: evolution trajectories of points A and B of the
stationary BS solution. The amplitude of the perturbation modes is
given in arbitrary units; model: CQGLE �7�; parameters: k=0.5, �
=1.
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situation. So, it is interesting to compare the results with
those of the distributed model which is easier to handle but
contains severe approximations. Moreover, we will study the
effect of the finite SA response time �noninstantaneous
model� on the BS stability. A stabilization has been proven in
the spatial domain by taking advantage of nonlocality �see
�32� and references therein�. Here, the noninstantaneous re-
sponse plays the role of nonlocality in the spatial domain.
Eventually we will summarize the differences between the
results provided by the lumped and the distributed model in
order to derive the limits of validity of the latter.

For the simulation we use parameters closely related to
previous experiments at a carrier wavelength of 1030 nm
�22,23,27�. The length of the absorber and the small-signal
loss were adjusted to a modulation depth of 30%, the relax-
ation time of the fast, but noninstantaneous, SA is 500 fs, its
saturation energy amounts to 16.7 pJ, and the respective
saturation power to Psat=33.4 W. The output loss is equal to
30%. For the doped fiber we assume Lf=1 m, �2
=0.024 ps2 m−1, �=0.005 W−1 m−1, and Esat

gain=1 nJ. Am-
plitude and phase profiles were always recorded after the
output coupler.

In order to trigger BS formation we varied the filter
strength, corresponding to the inverse gain bandwidth T1 of
the laser material, and the small-signal gain.

A. Instantaneous SA approximation

In a first step we aim at reproducing the BS levels ob-
tained in the CQGLE model. For this purpose we start with
the instantaneous SA approximation �Eq. �4��. As initial con-
dition we use two in-phase or out-of-phase resting small am-
plitude Gaussian pulses which converge to the BS. Because
of the additional stabilization effect of the saturated gain the
current model is less critical with respect to the initial pulse
profiles than the CQGLE. We observe BS formation for T1
=300 fs and g0=0.75 m−1.

The first and second stationary in-phase BS levels are
displayed in Fig. 7. In-phase BSs exhibit a small character-
istic central peak in the intensity profile and the difference
between phase maximum and minimum �at the center� is a
multiple of ��. In agreement with our previous results the
formation of the second level in-phase BS needs approxi-
mately 80 times more �40 000� round trips than the first level

�500�. However, also these stationary BS solutions are un-
stable with an asymmetric instability behavior which is simi-
lar to the CQGLE BSs �see Fig. 8�.

For out-of-phase initial conditions we have also observed
first and second level stationary out-of-phase BSs �see Fig.
7�. They exhibit a similar formation dynamics and instability
behavior as in-phase solutions. In particular, the formation of
a level 2 out-of-phase BS needs approximately 30 times
more �3000� round trips than that for a level 1 out-of-phase
BS �100�.

To visualize the interactions between both pulses we
again take advantage of the phase plane. We consider the
evolution trajectories for initially in-phase and out-of-phase
pulses �see Fig. 9�. For in-phase pulses the trajectory is
partly described by four circles. As we already know, each
circle �R1 ,R2 ,R3 ,R4� corresponds to a certain level of out-
of-phase or in-phase stationary BS solutions, shown in Fig.
9. There is essentially no difference between the evolution
trajectories provided by the lumped and the distributed
model.

TABLE I. Re��� for different levels of stationary BS solutions;
model: CQGLE �7�; parameters: k=0.5, �=1.

Level

In-phase Out-of-phase

Peak separation Re��� Peak separation Re���

1 8.5 1.57�10−1 4.7 5.95�10−1

2 14.5 4.21�10−3 11.7 3.11�10−2

3 20.3 6.09�10−5 17.3 5.11�10−4

4 25.9 8.60�10−7 23.1 7.23�10−6

5 31.7 1.17�10−8 28.7 1.02�10−7

6 37.7 1.13�10−10 34.7 6.10�10−10

FIG. 7. �Color online� Intensity and phase profiles for first �line
1� and second �line 2� levels of the stationary BS solutions; �a�
in-phase, �b� out-of-phase; lumped model �parameters, see text�,
instantaneous SA approximation �4�.

FIG. 8. �Color online� Bound state instability. The two in-phase
pulses form the stationary bound state and fuse asymmetrically
eventually; lumped model �parameters, see text�, instantaneous SA
approximation �4�.
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B. Differences between models

For the sake of comparison between the different models
and of evaluating their validity we use the instantaneous SA
approximation and compare results provided by the lumped
model, which serves as a benchmark, with both distributed
models, MGLE �5�, which accounts for the full SA satura-
tion, and CQGLE �7�, which relies on the Taylor expansion
of the SA saturation.

Figure 10 shows stable SP solutions obtained by both the
lumped and the MGLE model. For the lumped modeling the
saturation energy of the gain was reduced by a factor of 2
because we consider just a single pulse. The MGLE param-
eters were calculated from those of the lumped model, except
that for the distributed model a proper magnitude of small-
signal gain �6� was adjusted as g0=0.6388 m−1, correspond-
ing to the gain in the lumped model for stationary conditions.
It is interesting to note that for the relevant parameter set
stable SP solutions exist in the MGLE but not in the CQGLE
model. This is a clear indication that the saturation behavior
plays a pivotal role. Usually mode-locked lasers are working
in a regime where the absorber is saturated, i.e., �V�2 / Psat

aver

�1 is not satisfied and the CQGLE is incorrect. Hence, one
must not expect solutions for similar parameters in the
CQGLE model on the one side and the lumped �or MGLE�

model on the other side. Nevertheless, the MGLE and the
lumped model with an ideal SA show quite a good agree-
ment regarding the stable SP solutions �see Fig. 10�.

Further on we consider the evolution of two SPs in the
phase plane �see Fig. 10� �in this case we use the original
value of the saturation energy Esat

gain=1 nJ�. Although minor
differences occur the evolution trajectories of the two pulses
behave quite similar for both the MGLE and the lumped
model.

C. Noninstantaneous SA response

In a next step, relying on the lumped model, we are at-
tempting to achieve BS stabilization by accounting for non-
instantaneous SA response �3�. This model reflects the ex-
perimental situation because typical SA response times vary
between 300 fs and 12 ps, which frequently compares to the
pulse length. We use the parameters from Sec. IV A in order
to keep the saturation power constant and account for the
variation in the relaxation time by a proper change in the
saturation energy Esat

SA.
In these simulations as initial condition we use two rest-

ing pulses with small amplitudes. At the beginning the pulses
propagate 100 round trips in the ideal SA approximation and
just then we switch on the noninstantaneous response. This
procedure is required to arrive at a definite initial condition
for large amplitude bound states.

Trivially, for a vanishing relaxation time the system ex-
hibits unstable stationary BS solutions identical to them of
the instantaneous SA approximation. With increasing relax-
ation time �about 150 fs� we observe a tendency toward BS
stabilization with moderate oscillations. Eventually the BSs
stabilize for a relaxation time �about 350 fs� close to the
experimental situation �see Figs. 11 and 12�. With a further
increase in the relaxation time the arising stable BSs exhibit
a fixed peak separation. The solutions move backward in the
reference frame due to the temporal effects in the absorber
�see Fig. 12�.

It is interesting to note that the resulting stationary and
oscillating stable BS solutions do not depend on the initial

FIG. 9. �Color online� Pulse trajectories in the phase plane for
two pulses �a� initially in-phase with separation 6.38 ps and �b�
initially out-of-phase with separation 5.25 ps. 1L—first level BS
and 2L—second level BS; lumped model �parameters, see text�,
instantaneous SA approximation �4�.

FIG. 10. �Color online� Comparison between the lumped and
the MGLE model at the same parameters set. �a� Intensity profile of
stable SP solutions and �b� evolution trajectories of two pulses in
the phase plane; instantaneous SA approximation �4�.

FIG. 11. �Color online� Bound state stabilization. Distance be-
tween two pulses as a function of round trips for initially �a� in–
phase and �b� out-of-phase pulses for different SA relaxation times.
In the limit Trelax=0, pulses build �a� the level 1 in-phase stationary
BS solution and �b� the level 2 out-of-phase stationary BS solution;
lumped model �parameters, see text�, noninstantaneous SA response
�3�.
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phase difference between the pulses �see Fig. 11�. This is in
stark contrast to the CQGLE model, where the initial phase
difference defines the nature of the stationary BS solution.
There, two in-phase or out-of-phase pulses with identical
separation evolve toward different levels �see the curve for
Trelax=0 in Fig. 11�. Moreover, we have observed stationary
and oscillating stable BS solutions of the next level with a
larger peak separation. To obtain them the initial distance
between pulses was increased and proper figures for the re-
laxation time were chosen. Higher level BSs need approxi-
mately 100 times more round trips for their formation, which
is in agreement with previous results.

The nature of stationary and oscillating stable BS solu-
tions can be understood by inspecting the trajectories in the
phase plane �see Fig. 13�. We evaluate the two-pulse dynam-
ics in phase space for four different cases. To generate the
first and second level BSs we use two pulses with initial
separations of 4.9 and 6 ps, respectively. Moreover, for each
case we adjust the proper relaxation time in order to obtain a
stationary or an oscillating stable BS solution. Figure 13
shows that stationary BS solutions are fixed points in the
phase plane which are located near �=� /2. Oscillating so-

lutions move either in the lower or upper half plane between
two adjacent circles.

The conclusion to be drawn is that stationary stable BS
solutions �Fig. 14� of the lumped model with noninstanta-
neous SA are neither in-phase nor out-of-phase but exhibit a
phase difference of about � /2 between the pulses. Immedi-
ately the question arises whether there are stable BS solu-
tions with � /2 phase difference between the pulses in the
instantaneous models �CQGLE or lumped model with instan-
taneous SA�. In the lumped model no stable or even station-
ary BS solutions with that phase difference could be identi-
fied. For the CQGLE model, but just for anomalous
dispersion, this case has been studied earlier �21�, and it was
shown that stable BS solutions can exist.

Nevertheless, stable BS solutions in the lumped model
with noninstantaneous SA differ considerably from those dis-
cussed in �21�. First, they exist for a completely different set
of parameters �even opposite dispersion� and second, their
behavior in phase space �Fig. 13� exhibits a large difference
to those studied in �21�. Because all SAs have a finite relax-
ation time the conclusion can be drawn that the parameter
range for the existence of BSs is much wider than assumed
in �21�.

As already mentioned BS stabilization is evoked by the
noninstantaneous SA response in analogy to the spatial case
where a nonlocality stabilizes localized solutions �32�. Here,
the retarded temporal SA response is asymmetric in time,
leading to the minor deviation of the fixed point from �
=� /2. By contrast, the stable BS solutions of the CQGLE
appear exactly for �=� /2 �21�.

The region of existence of stable BSs is displayed in Fig.
15. It can be recognized that the regions for two neighboring
BS levels differ, especially the bottom boundaries. This
means that oscillating solutions of the first and second levels
can be observed for different relaxation times and the same
small-signal gain. The open boundary indicates that the bot-
tom margin is very close to the zero axis.

A distinctive feature of stable BS solutions is their behav-
ior in the phase plane. The two initially resting pulses, for a

FIG. 12. �Color online� Oscillating BS solution for Trelax

=150 fs; lumped model �parameters, see text�, noninstantaneous
SA response �3�.

FIG. 13. �Color online� Trajectories showing the two-pulse evo-
lution; �a� first level stable BS solution Trelax=350 fs �blue line A�,
second level stable BS solution Trelax=75 fs �red line B� and �b�
first level oscillating BS solution Trelax=150 fs �blue line A�, sec-
ond level oscillating BS solution Trelax=5 fs �red line B�; lumped
model �parameters, see text�, noninstantaneous SA response �3�.

FIG. 14. �Color online� The intensity and phase profiles for first
and second level stable BS solutions calculated for Trelax=350 fs
�line 1�, Trelax=75 fs �line 2�. The phase differences are �1=5.1
and �2=6.6; lumped model �parameters, see text�, noninstanta-
neous SA response �3�.
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certain range of initial separation, always evolve toward a
single fixed point independently of the initial phase differ-
ence. This is in stark contrast to the stable BS solutions stud-
ied in Ref. �21� where two similar solutions are possible,
lying symmetrically on opposite sides of the phase plane.
Moreover, the neighboring levels of BSs are situated in dif-
ferent half spaces �see Fig. 13�. This is due to the lack of
invariance of the time scale if relaxation matters. Thus lead-
ing and trailing pulses are not equivalent.

Figure 13 shows that each fixed point on the phase plane
lies between two neighboring circles. Thus one might antici-
pate that there is a fixed point between circles 1 and 2 too.
But in our simulations we did not succeed in finding any
stable BS in that domain.

V. CONCLUSION

In conclusion, we have theoretically and numerically in-
vestigated the formation and stability of BSs in a mode-
locked fiber ring laser with SA in the normal dispersion re-
gime. We started our investigations with the distributed
description of the laser which is given by the commonly used
CQGLE. We have observed a discrete family of stationary
BS solutions with different peak separations. Moreover, the
observed BS levels exhibit an equidistantly increasing peak

separation with a well-defined phase relation. All levels of
in-phase and out-of-phase BSs turned out to be unstable for
the investigated system parameters. A linear stability analysis
has shown that this instability is caused by the antisymmetric
perturbation mode. We found that both the formation dynam-
ics of BSs and their succeeding decay is slower for higher
levels because of the weaker interaction. The evolution tra-
jectories in the phase plane of two SPs with relatively large
initial separation consist of simple geometrical forms.

All these findings could be confirmed by using a more
realistic lumped laser model but maintaining the instanta-
neous SA response.

Stabilization of the BSs was achieved in the lumped laser
model by taking the fast, nevertheless noninstantaneous, SA
response into account. Using the SA relaxation time as con-
trol parameter a continuous transition from unstable to stable
BS solutions may be achieved passing a domain of oscillat-
ing BS solutions. These stationary and oscillating stable BSs
have a discrete multilevel nature too. The distinctive feature
of these BS solutions is expressed in the phase plane. A
stable BS solution of a certain level represents a fixed point
in the phase plane, which lies in the preferred half space. For
oscillating BSs the evolution is described by circulations be-
tween two neighboring circles in either the lower or upper
half space depending on the level. The stabilization mecha-
nism identified shows that all lasers with semiconductor ab-
sorber have a wider region of stable BS solutions than pre-
viously assumed �21�. Moreover, we have shown that a
discrete family of stable or oscillating BS solutions with
equidistant peak separation can be obtained in such laser
systems.

The results presented can be used in optics communica-
tion lines for generating multipulse trains with well-defined
separation distances or in fiber lasers for an irregular or regu-
lar pulse array generation.
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