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The major assumption of the Lorentz-Lorenz theory about uniformity of local fields and atomic polarization
in dense material does not hold in finite groups of atoms, as we reported earlier �A. E. Kaplan and S. N.
Volkov, Phys. Rev. Lett. 101, 133902 �2008��. The uniformity is broken at subwavelength scale, where the
system may exhibit strong stratification of local field and dipole polarization, with the strata period being much
shorter than the incident wavelength. In this paper, we further develop and advance that theory for the most
fundamental case of one-dimensional arrays, and study nanoscale excitation of so-called “locsitons” �local field
excitations� and their standing waves �strata� that result in size-related resonances and related large field
enhancement in finite arrays of atoms. The locsitons may have a whole spectrum of spatial frequencies, ranging
from long waves, to an extent reminiscent of ferromagnetic domains, to supershort waves, with neighboring
atoms alternating their polarizations, which are reminiscent of antiferromagnetic spin patterns. Of great interest
is the different kind of “hybrid” mode of excitation, greatly departing from any magnetic analogies. We also
study differences between Ising-type near-neighbor approximation and the case where each atom interacts with
all other atoms in the array. We find an infinite number of “exponential eigenmodes” in the lossless system in
the latter case. At certain “magic” numbers of atoms in the array, the system may exhibit self-induced �but
linear in the field� cancellation of resonant local-field suppression. We also studied nonlinear modes of locsi-
tons and found optical bistability and hysteresis in an infinite array for the simplest modes.
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I. INTRODUCTION

This paper is a theoretical extension of our recent letter
�1� on nanoscale stratification of local field �LF� and atomic
dipole excitation in low-dimensional lattices driven by a la-
ser at the frequency of the resonant atomic transition. We
focus here on the most fundamental case of a one-
dimensional �1D� array of resonant atoms, and construct a
detailed theory of both linear and nonlinear interactions in
the system, resulting in such phenomena as subwavelength
spatial modulation �stratification� of polarization and local
field, long-wave �LW� and short-wave �SW� stratifications,
size-related resonances and large field enhancement, “magic”
numbers, ferromagnetic- and antiferromagneticlike atomic
polarizations, optical bistability and hystereses. In addition to
the results �1� and their derivations, we also present here
results �i� on the size-related resonances using a many-body
approximation involving interactions of each atom with all
other atoms in the array, beyond the Ising-type approxima-
tion whereby atoms only interact with their nearest neigh-
bors; �ii� on traveling local field excitation �“locsiton”�
waves and their dissipation, as well as an estimate of the
maximum size of the 1D array to support most of the effects
discussed here; �iii� on hystereses and optical bistability in
arbitrarily long arrays; and �iv� on general mathematical con-
sideration of dispersion relation in the self-interacting arrays
for dipole approximation and beyond it.

It is well known that optical properties of sufficiently
dense materials are substantially affected by the near-field
interactions between neighboring particles at the frequency
of the incident field, in particular, quasistatic �nonradiative�

dipole interactions. The best-known manifestation of this fact
is the local vs incident field phenomenon and related
Lorentz-Lorenz or Clausius-Mossotti relations �2� for dielec-
tric constant as a nonlinear function of the number density.
The microscopic field �or LF� EL acting upon atoms or mol-
ecules becomes then different from both the applied and av-
erage macroscopic fields because of interparticle interaction.
In the most basic case, that relation between EL and the
average field E is EL= ��+2�E /3, where � is the dielectric
constant of the material at the laser frequency �. It is worth
noting that we are not interested here in the relation between
� and the number density of the material, since in the case of
small 1D or two-dimensional �2D� arrays the issue is moot.
For the same reason, it also makes sense to deal directly with
the incident field Ein instead of the averaged field. In most
theories of those interactions a traditional standard �and at
that often implicit� assumption, reflected also in the above
formula, is that the local field and polarization are uniform in
the near neighborhood of each particle at least at the dis-
tances shorter than the wavelength of light, �. This essen-
tially amounts to the so-called mean-field approximation.

It was shown by us �1�, however, that if the local unifor-
mity is not presumed, then, under certain conditions on the
particle density and their dipole strengths, the system of in-
teracting particles is bound to exhibit periodic spatial varia-
tions of polarization and local-field amplitude. These varia-
tions result in subwavelength strata with a nanoscale period
much shorter than �. Under certain conditions, the system
may exhibit an ultimate nonuniformity, whereby each pair of
neighboring atoms in 1D arrays has their dipoles count-
eroscillating with respect to each other; i.e., their excitations
and thus local fields have opposite signs.

To a certain extent this is reminiscent of the situation in
magnetic materials with ferromagnetic vs antiferromagnetic
effects. Indeed, the mean-field approximation, which is at the*alexander.kaplan@jhu.edu
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root of the Curie-Weiss theory of ferromagnetism �3�, is
based on the assumption of uniform polarization of all the
neighboring magnetic dipoles even without external mag-
netic field, when taking into account their interaction with
each other. Contrary to that, the Ising theory �3�, which does
not make the assumption of uniformity, showed that even in
the near-neighbor approximation �NNA� for that interaction,
the excitation may result in counterpolarization of neighbor-
ing atoms in 1D arrays, and thus in a new phenomenon of
antiferromagnetism. Note here that in these effects there is
no notion of “local” vs “external” field phenomenon: in a
“pure” case of either of the magnetic effects, no external
field is applied. The effects here are the result of self-
organization of permanent, “hard,” atomic dipoles with pre-
existing dc dipole fields, without any “help from outside.”

In this lies a profound difference between dc magnetic
material phenomena �ferro- and antiferromagnetism� on one
hand and the effects considered by us here and in �1� on the
other hand, all of which are based on the optical �or, in
general, any other quantum or classical resonance� excitation
of atoms �or other small particles, e.g., quantum dots, clus-
ters, and small-particle plasmons�. While magnetic dipoles in
ferromagnetics are nonzero even in the absence of an exter-
nal field �we may call them hard dipoles�, the oscillating
dipoles �in the linear case� can be induced only by the driv-
ing field at the near-resonant frequency, so they can be called
“soft” dipoles; without such a driving their polarization van-
ishes. Because in dense material the atoms actually are acted
upon by local field, the response of each one of them may
differ from the others by phase and amplitude �or even di-
rection�, with some of the dipoles fully suppressed, while
others fully excited. Thus the effects considered here are in-
duced by the interplay of external and local fields, which
puts the entire phenomenon squarely into the domain of re-
lations between the local and incident fields. Because of that,
since the phenomenon depends strongly on the characteris-
tics of the incident field �polarization, frequency, and, in the
nonlinear case, intensity�, the spatial modulation of the di-
pole excitation and local field can vary substantially. This
results in a wealth of different patterns, some of them remi-
niscent of the ferromagnetic pattern, others of the antiferro-
magnetic pattern, but most of them forming all kinds of hy-
brid patterns. The complete crossover from
ferromagneticlike to antiferromagneticlike state of the sys-
tem with all the intermediate states can be attained then by
simply tuning laser frequency.

Another significant difference here is that the system size
is small. Provided there is sufficiently strong interparticle
interaction, the new phenomenon can occur in the vicinity of
boundaries, lattice defects, impurities or in sufficiently small
group of atoms. Recent advances in technology allow fabri-
cation of nanoscale structures with small numbers of atoms.
Thus, our theory emphasizes phenomena in relatively small
ordered arrays of interacting atoms, in contrast to, e.g., mi-
croscopic models of ferromagnetism that mostly focus on
averaged, “thermodynamic” perspective on sufficiently large
systems. This brings forward an unusual set of nanoscale
phenomena. Harking back to ferromagnetic systems, this
new emphasis may reveal similar phenomena for nanoscale
magnetic systems, which could be an exciting topic for a
separate study.

Our choice of 1D and 2D dielectric systems based on the
arrays or lattices of atoms, quantum dots, clusters, mol-
ecules, etc., allows to control anisotropy of near-field inter-
action. It also eliminates the issues of electromagnetic �EM�
propagation being modified by the effects as the EM wave
propagates through the structure �especially if it propagates
normally to the lattice�.

If local uniformity is broken by any perturbation, the sys-
tem may exhibit near-periodic spatial sub-� patterns �strata�
of polarization. In general, two major modes of the strata
transpire: SW strata, with the period of up to four interatomic
spacings la, and LW strata. The strata are standing waves of
elementary LF excitations �called locsitons in �1�� having a
near-field, electrostatic nature and low group velocity.

In the first approximation, the phenomenon is linear in the
driving field, and the locsitons may be excited within a spec-
tral band much broader than the atomic linewidth. It can be
viewed as a Rabi broadening of an atomic line by inter-
atomic interactions. The strata are controlled by laser polar-
ization and the strength of atom coupling, Q, via atomic
density, dipole moments, relaxation, and detuning. Once
�Q��Qcr=O�1�, the LF uniformity can be broken by bound-
aries, impurities, vacancies in the lattice, etc. A striking
manifestation of the effect is large field resonances due to
locsiton eigenmodes in finite lattices, and—at certain magic
numbers of atoms in the lattice—almost complete cancella-
tion of field suppression at the atomic resonance. Saturation
nonlinearity results in hystereses and optical bistability.

The paper is structured as follows. In Sec. II we derive the
main equations for self-interacting atomic lattices of arbi-
trary dimensions using two-level �nonlinear in general�
model for atomic resonances and dipole-dipole interaction
between atoms, while Sec. III is on specific equations for
linear infinite and finite 1D arrays. In Sec. IV we develop the
general theory of locsitons and derive the dispersion relation.
In Sec. V we study locsiton band formation, size-related
resonances due to standing waves of locsitons �strata�, and
local-field enhancement. In Sec. VI we concentrate on de-
tailed theory of resonances beyond the near-neighbor ap-
proximation, including evanescent solutions �see also Sec.
IV�. Magic numbers are considered in Sec. VII. In Sec. VIII,
we study the effects of losses on locsiton excitation, depth of
penetration, and traveling locsiton waves. Sec. IX is on non-
linear locsiton modes, in particular, optical bistability and
hysteresis. Section X addresses potential applications of loc-
sitons and their analogies in other physical systems. In Con-
clusions, Sec. XI, we summarize our results. The Appendix
is on general mathematical aspects of dispersion relations for
1D arrays.

II. MAIN EQUATIONS

Our model is based on the near-field dipole atomic inter-
actions, with the incident frequency � being nearly resonant
to an atomic transition with a dipole moment da at the fre-
quency �0. In the linear case, i.e., when the laser intensity is
significantly lower than that for the quantum transition satu-
ration �see below�, the result of this model coincides with
that of a classical harmonic oscillator formed by an electron
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in a harmonic potential with the same resonant frequency �0
and with the dipole moment

�da� =
e

2�
��C�

2
, �2.1�

where �C=2�� /mc is the Compton wavelength of electron.
In a standard LF situation, �	 la, where �=2�c /�, the

field of an elementary dipole with the polarization p is domi-
nated in its near vicinity by a nonradiative, quasistatic �and
only electric� component, which is strongly anisotropic in
space. This dominant term in the near-field area, �r�−r�=r0

�, attenuates as 1 /r0

3 �see, e.g., �4�, Sec. 72�. At �da�
r0

� the amplitude of the field of an oscillating dipole located
at r� induces a field at the point of observation r with the
amplitude coinciding with that of an elementary static dipole
with the same polarization p�:

Edp�r�,r� =
3u�p� · u� − p�

��r� − r�3
, �2.2�

where u= �r−r�� /r0 is a unit vector in the direction of obser-
vation, and � is a background dielectric constant.

We will model a resonant atomic transition by a basic
two-level atom in a steady-state mode under the action of a
field, E exp�−i�t� /2+c.c., with the amplitude E and fre-
quency �, and assume that la	 �da� /e, so that the wave func-
tions of neighboring atoms do not overlap. Using a semiclas-
sical approach standard in LF theory of resonant atoms �5,6�,
we can now find the atomic polarization as

p = −
2�da�2

��

E�N

 + i
, �2.3�

where p is the polarization amplitude �the full polarization is
then p exp�−i�t� /2+c.c.�; �N=N1−N2 is the population dif-
ference, with N1 and N2 being atomic populations at respec-
tive ground and excited levels �N1+N2=1�; =T��
=T��−�0� is a dimensionless detuning from the resonant
frequency �0 of the two-level atom; T=2 /� is a transverse
relaxation time �the time of polarization relaxation�; and � is
the �homogeneous� linewidth of the linear resonance �7�. In
turn, the steady-state population difference is �5�

�N = Neq�1 + T�
�daE/��2

1 + 2 �−1

, �2.4�

where � is a longitudinal relaxation time �lifetime of the
excited atom�, and Neq is an equilibrium population differ-
ence at the system temperature due to Boltzmann’s distribu-
tion. In optics one can usually assume Neq	1, so that

�N 	 
1 +
�E�2/Esat

2

1 + 2 �−1

� fNL��E�2� ,

Esat
2 =

�2

�da�2
1

�T
, �2.5�

where Esat
2 is the saturation intensity, and fNL��E�2� is nonlin-

earity due to saturation. Substituting Eq. �2.5� into Eq. �2.3�,
one obtains a closed-form expression for the polarization,

p = − E
2�da�2

��� + i�
fNL��E�2� . �2.6�

For a classical harmonic �linear� oscillator we have

p = −
Ee2

�0�m� + i�
, �2.7�

where m is the mass of electron.
The local field EL�r� at each atom is the incident laser

field Ein plus the sum of the near fields Edp�r� ,r� �Eq. �2.2��
induced by all the surrounding dipoles at r� acted upon by
the respective local fields EL�r��; i.e.,

EL�r� = Ein�r� + 
latt

r��r

Edp�r�,r� = Ein�r�

+
1

�

latt

r��r
3u�p� · u� − p�

�r� − r�3
, �2.8�

where latt denotes summation over the entire lattice or array.
To obtain a closed-form master equation, e.g., for EL�r�
alone, we use Eq. �2.6� to write

EL�r� = Ein�r� −
Q

4 
latt

r��r � la

r� − r
�3

� �3u�EL�r�� · u� − EL�r���fNL��EL�r���2� ,

�2.9�

where EL�r� are local fields only at the locations of atoms in
the lattice and not at any other points inside or outside it.
Q=Qa / �+ i� is a tuning-dependent strength of dipole-dipole
interaction, and the maximum absolute strength Qa is

Qa =
8�da�2

���la
3 =

4�

��

�0��da�/e�2

la
3

�0

�
, �2.10�

where �=e2 /�c	1 /137 is the fine-structure constant, and
nonlinear factor fNL is as in Eq. �2.5�. For a classical har-
monic oscillator �Eq. �2.1��, we have

�Qa�class =
4e2

�m�0�la
3 =

1

��2

re�0
2

la
3

�0

�
, �2.11�

where re�e2 /mec
2	2.8�10−6 nm is the classical radius of

electron.
Equations �2.8� and �2.9� reflect many-body nature of the

interaction. A conventional approach to local fields within
the Lorentz-Lorenz theory is to look for a self-consistent
solution for the fields in this interaction, with an assumption,
however, that they are uniform �the mean-field theory�, i.e.,
to set EL�r�=EL�r�� and also use an encapsulating sphere
around the observation point. These assumptions effectively
shut out any strong spatial variations in the atomic excita-
tions and local field that may exist at the interatomic scale.
That is where we depart from the Lorentz-Lorenz theory;
none of those assumptions is used here, and our approach is
to use general expression �2.8� or �2.9� and seek straightfor-
ward solution for them.
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We will see below that the major critical condition for the
phenomenon to exist and be observable at least at other op-
timal conditions is that Qa exceeds some critical value, Qa
�O�1�. Three parameters are critical in this respect: atomic
dipole moment da, the spacing la between atoms, and the
atomic linewidth �, since Qa� �da�2 /�la

3. To get an idea of
whether the above critical condition is realistic, let us look
first at the case of a gaslike collection of atoms, with the
relaxed requirement on the spacing la. Large dipole moments
and narrow resonances in, e.g., alkali vapors �6� or CO2 gas
�5�, solids �8�, quantum wells, and clusters may greatly en-
hance the phenomenon and allow for la from subnanometer
to a few tens of nanometers. Considering an example with
la�100 Å, corresponding to the volume density of
�1018 cm−3, �da� /e�1 Å, �0�1 �m, �=1, and � /�0
�10−6, all of which are reasonable data, we obtain Qa
�102, which provides a margin large enough to see all the
effects discussed here. It is also of interest to roughly esti-
mate what is the upper limit for Qa. To that end, consider the
extreme situation of la��da� /e �solid-state-like or liquidlike
packing of participating atoms�, in which case we have the
ceiling for Qa as

Qceil =
8e3

����da�
=

4�

��

�0

��da�/e�
�0

�
. �2.12�

Even taking into consideration significant line broadening �,
Qceil may exceed unity by many orders of magnitude, thus
providing huge margin for the existence and observation of
locsitons and related effects.

III. 1D ARRAY OF ATOMS: LINEAR CASE

We consider here the most basic model of a 1D array of N
atoms lined up along the z axis, spaced by la, and driven by
a laser propagating normally to the array and having an ar-
bitrary polarization �Fig. 1�. In the linear case, �EL�2
Esat

2 ,
when in Eq. �2.9� fNL=1, it is sufficient to consider effects
caused by linearly polarized light with either one of the two
mutually orthogonal polarizations. Any other polarization
�e.g., a circular one� can be treated as a linear combination of
those two. In the case of a 1D array, natural choices for these
two basic configurations are

�a� the incident field Ein is parallel to the z axis, Ein� êz
�and the dipoles line up “head to tail;” we will call it � con-
figuration�; and

�b� Ein is normal to the z axis, Ein� êz �“side-by-side”
lineup; � configuration�.

The general solution will be a linear vectorial superposi-
tion of these two. This choice of the basic configurations is
dictated by the simplicity of the resulting polarization of the
local field. Indeed, in both cases, it follows that the polariza-
tion of local field is parallel to that of the incident field,
EL �Ein, so we can use scalar equations for all fields. Using
the dimensionless notation En= �EL�rn� /Ein��p�, where �p� de-
notes polarization, �p�= � or �p�=�, and recalling that now
u � êz, we write Eq. �2.9� for both configurations as

En + QF�p� 
1�j�N

j�n E j/2
�j − n�3

= 1 if n = 1, . . . ,N ,

En = 0 otherwise, �3.1�

where F�p� is a form factor due to polarization configuration:
F� =1 and F�=−1 /2.

If the 1D array is infinite, N→�, or sufficiently long, N
	1, it is instructive to rewrite Eq. �3.1� in the form

En + SQF�p� 
−��j��

j�n E j/2S

�j − n�3
= 1, �3.2�

where S= j=1
� j−3	1.202 057. The sums over �j−n�−3 in Eqs.

�3.1� and �3.2� converge rather fast; hence S−1 is not too
large �see also the Appendix�. Equations �3.1� and �3.2�, the
same as master equation �2.9�, represent the case of fully
interacting arrays �FIAs�, whereby each atom “talks” to all
the other atoms in the array, which presents a challenge to an
analytical treatment. Of course, a linear Eq. �3.1� for En is
solved analytically using a standard linear algebra approach
with matrices. However, analyzing the results for large-size
arrays, N	1, in particular analytically finding all the reso-
nances in �En�max��, can only be done by using numerical
matrix solver, even if we neglect the dissipation.

Thus, there is a need for a simple approximation that
would preserve most of the qualitative features of the phe-
nomenon, yet could be easily analyzed analytically. This can
be done by using the NNA, similar to that of the Ising model
of �anti�ferromagnetism, in which the full sum in Eq. �3.1�
and �3.2� is replaced by the sum over the nearest neighbors,

En +
QF�p�

2
�En−1 + En+1� = 1,

E0 = EN+1 = 0. �3.3�

In the ultimate two-atom case, N=2 �1�, the two approaches
merge. The further two-near-neighbors approximation
�2-NNA� and even three-near-neighbors approximation
�3-NNA� are considered in Sec. VI. We found, however, that
in general, a full summation �FIA� in Eq. �3.1�, on one hand,
and NNA �3.3� as well as 2-NNA, on the other hand, produce
qualitatively similar results that differ by a factor of O�1�.

Since effects discussed here are most pronounced in rela-
tively small systems or in the small vicinity of perturbations
in large lattices, it is natural to stipulate that the incident field
within the array is uniform, unless stated otherwise. How-
ever, this condition can readily be arranged even for an array
larger than �. One of the solutions for the local field �and

N−1 N1 2 ... n ...

E⊥ E||

la
... ...

FIG. 1. 1D array of atoms and laser light with different polar-
izations; light is incident normally to the plane of the graph.
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atomic excitation� in the infinite 1D array �or a sufficiently
long one, whereby we can neglect edge effects� is also uni-
form. We will call it the “Lorentz” solution E, to be found
from Eq. �3.2� by setting En=E j =E as

E�p� =
1

1 + QSF�p�
=

1

1 − ��LL��p�/� + i��
,

�LL��p� = − SQaF�p�, �3.4�

where we introduced polarization-dependent parameter LL,
which determines Lorentz-Lorenz shift at =LL �see be-
low�; �LL� is a measure of the polarization-related strength of
interaction. Equation �3.4� may be viewed as a 1D counter-
part of the Lorentz-Lorenz relation for local field. Notice,
however, that the field E is strongly anisotropic with respect
to the polarization. The spectral behavior of �E� is depicted in
Fig. 2 with thicker dashed curves in all the graphs.

If Qa	1, it shows, as one may expect, a deep dip at the
atomic resonance frequency, i.e., at =0,

�E�p��min
2 =

1

1 + LL
2 �3.5�

�so that at the atomic resonance the local field is suppressed,
as if it is pushed out of the array�, and a strong new resonant

peak appears at the shifted frequency =LL due to the
Lorentz-Lorenz effect:

�E�p��max
2 = 1 + LL

2 =
1

�E�p��min
2 , �3.6�

whose nature is essentially similar to, e.g., Lorentz-Lorenz
resonance observed experimentally in alkali vapors �6�.
However, in the 1D case considered here, the Lorentz-
Lorenz shift and even its sign are polarization dependent. In
particular,

�LL�� = − QaS, �LL�� = QaS/2, �3.7�

i.e., the Lorentz-Lorenz resonance is redshifted for � polar-
ization of laser, and blueshifted for � polarization. The Lor-
entz field E and Lorentz-Lorenz shift in the near-neighbor
approximation �Eq. �3.3�� are determined by the same Eqs.
�3.4�–�3.7�, where one has to set S=1.

IV. SPATIALLY PERIODIC AND WAVE SOLUTIONS
(LOCSITONS)

We look now for solution of Eq. �3.2� as the sum of uni-
form LF, E �Eq. �3.4�� and oscillating ansatz �E
�exp��iqn�, where q is an �unknown� wave number, simi-
larly as in, e.g., the phonon theory �9�, with the difference
being that we have here an excitation of bound electrons, and
not atomic vibrations. Essentially, the locsitons may be clas-
sified as Frenkel excitons �9� because of their no-electron-
exchange nature.

The wave numbers q are found via the dispersion relation

D�q� �
1

S

n=1

�
cos�nq�

n3 =
 + i

LL
. �4.1�

The behavior of D�q� in the lossless case, LL
2 �2	1, is

depicted in Fig. 3 by the solid curve.
Within NNA, we have to set S=1 and replace the sum in

Eq. �4.1� by its first term:
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FIG. 2. Spectra of absolute maximum local-field amplitudes
near an atomic resonance �=0� in the near-neighbor approximation
with LL=200: �a� locsiton resonances with 12 atoms in the array;
�b� the same with 13 �magic number� atoms in the array; and �c�
merging and damping of locsiton resonances for a large number of
atoms, N=100. The curves show the amplitudes of local fields for
size-related resonances, local fields due to Lorentz-Lorenz theory,
and lower and upper amplitude envelopes of the resonances.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

D
(q

)/
D

(0
)

q /π

NNA
2-NNA

FIA

FIG. 3. Dispersion relations for an infinite array and negligible
losses, i.e., normalized laser detuning  /LL vs the normalized
wave number q /�. Curves show the dispersions for NNA �4.2�,
2-NNA �6.6�, and FIA, whereby each atom interacts with all the
other atoms �Eq. �4.1��, which coincides with the analytical fit �Eq.
�A10��.
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DNNA�q� � cos q =
 + i

LL
�4.2�

�see Fig. 3, fine-dashed curve�. Distinct oscillations emerge
in the area between the two edges of the locsiton band. Their
wave numbers are determined from Eq. �4.1� and �4.2� by
neglecting the dissipation, i.e., by assuming real q and
2 ,LL

2 	1. One of the band edges corresponds to the maxi-
mum �and positive� �D�q��max=1 �same as for NNA,
�DNNA�q��max=D�0�=1�, and thus to the Lorentz-Lorenz
shift, =LL. The other, “anti-Lorentz,” edge is at the oppo-
site side of the atomic resonance, and is determined by the
minimum �and negative� Dmin=D���. Thus we have

anti

LL
=

D���
D�0�

, �4.3�

which can be evaluated using an amazingly simple relation
for sum �4.1�, which is actually valid for a more general sum
and an arbitrary exponent ��1:

D��,��
D�0,��

�

n=1

�

�− 1�nn−�


n=1

�

n−�

= − 1 +
1

2�−1 . �4.4�

This can be readily proven by an appropriate rearrangement
of the terms in the sums in Eq. �4.4�; see Eq. �A11�. In the
case of �=3 and infinite array �Eq. �4.1��, we have
anti /LL=−3 /4. Hence, the locsiton band is determined as

1 �


LL
� −

3

4
�or � 

LL
� � 1 within NNA� ,

�4.5�

with well-developed locsitons at LL
2 	1. Indeed, if the dis-

sipation is neglected and the wave numbers q are real, there
are an infinite number of solutions for them within limits
�4.5�. In this case the meaningful positive solutions, within
the first Brillouin zone, are −��q��. The plots of the
functions in the left-hand side of Eqs. �4.1� and �4.2� are
shown as  /LL vs q in Fig. 3. Based on Eq. �4.5�, the total
width of the locsiton band in terms of  is thus �7 /4��LL�, if
one accounts for the interactions of each atom with all the
rest of atoms in the infinite array, whereas it is 2�LL� in the
near-neighbor approximation.

To gauge the dipole-dipole interaction in the lattice, one
can also introduce its Rabi energy as

��R =
�Qa

T
=

4�F�p���da�2

�la
3 
 ��0. �4.6�

It brings about a locsiton energy band of �2��R	�� �if
LL

2 	1�, akin to those in solid-state crystals �9�, photonic
crystals �10�, and electronic bandpass filters.

One of the most interesting effects due to locsitons is a
wide spectrum of the standing waves, strata, formed by
them; see Fig. 4. As we already noted, they can range from
the very long ones, LW strata, with the maximum spatial
period being double of the whole length of a 1D array, simi-
larly to the main mode of oscillation in a violin string, to SW
strata whereby each dipole oscillates in counterphase to each

FIG. 4. Strata patterns of excitation and local field in finite arrays, and their relations to the resonance tuning in the case of 64 atoms and
LL=200. Curves and patterns show long-wave ferromagneticlike excitation near the Lorentz-Lorenz resonance �top curve in the left plot and
top pattern in the center�, counterphase antiferromagneticlike excitation near the anti-Lorentz edge of the band �middle curve and pattern�,
and hybrid excitation near the point of atomic resonance �bottom curve and pattern�. Note that all the curves in the left plot show absolute
normalized amplitudes of the local field. Since the fields are in general complex, their absolute amplitudes are positive, so the near-zero
points in the schematic depiction of the “hybrid” mode actually correspond to the lowest points of the bottom curve in the left plot.
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of its nearest neighbors. The latter mode is the strongest
manifestation of the fact that the array of N atoms is a
discrete-element resonator, akin to a string of beads con-
nected to each other, with the beads capable of the same kind
of motion, when each individual bead is oscillating in coun-
terphase with its neighbor. Because in both cases the excita-
tion is of dynamic nature and is due to external driving, the
mechanical analogy of SW locsiton modes is more adequate
than that of a static ferromagnetic configuration vs antiferro-
magnetic one; see also the Appendix.

It can be immediately found, e.g., from consideration of
the plots in Fig. 4, upper curve, that the LW strata emerge at
the laser tuning very near to the Lorentz-Lorenz resonance,
i.e., in the limit 1− /LL
1. In this case, in both FIA �4.1�
and NNA �4.2�, the wave number qLW and the respective
spatial wavelength �LW are

qLW 	�1 − � 

LL
�2

, �LW =
2�la

qLW
. �4.7�

In the infinite array, the longest � is up to 2�laLL, when
LL

2 −2�1; the locsitons with longer wavelength get signifi-
cantly suppressed.

The opposite limit, or the anti-Lorentz side of the locsiton
band,

3

4
+



LL

 1 �for NNA it is 1 +



LL

 1� , �4.8�

defines SW locsitons, with

qSW � �, �SW/2 � la, �4.9�

i.e., �SW /2 is the finest grain of locsiton structure, as one
would expect from the “bead-string” analogy. However, an
incommensurability, i.e., mismatch between �SW /2 and the
lattice spacing la, whose ratio is in general an irrational
number, results in a strong spatial modulation of the SW,
giving rise to a coarse LW-like structure.

In the NNA, this coarse structure of SW mode has the half
period roughly the same as for a pure LW mode, ��LW. This
can be readily understood in terms of “beating” between the
locsiton wavelength, 2� /q, and the spatial scale of the dis-
crete structure of the system, which is the normalized spac-
ing between atoms, 1. Indeed, near the anti-Lorentz edge, 
+LL
LL, we can write for a SW wave number that qSW
=�−�q, with ��q�	�1− � /LL�2=qLW, and find the spatial
oscillations as

En � cos�nqSW� = cos�n� − n�q� = �− 1�ncos�n�q� ,

�4.10�

with �q	qLW, which shows alternating, counterphase mo-
tion of the neighboring atoms, �−1�n, modulated by a slow
envelope, cos�nqLW�. Both the fine grain and the coarse
modulation may be well pronounced �Fig. 4, middle curve�.
At q=�, the LW and SW periods converge to the same scale,
4la; see Eq. �4.12� below. Using the phonon analogy, the LW
locsitons may be viewed to a certain extent as counterparts of
acoustic phonons and SW locsitons as those of optical
phonons.

Between those limiting points—LW locsitons at the Lor-
entz end of the locsiton spectrum, �LL, and SW locsitons
at the anti-Lorentz end, �−LL—there are all kinds of loc-
sitons making chaotic looking strata �due to the above men-
tioned incommensurability, i.e., irrational ratio between a
locsiton wavelength � and the array spacing la�. However,
same as in the chaotic motion, there are small islands of
well-ordered wave patterns, located at the spectral points
where the ratio � / la �or q /�� is a rational number, provided
that the system is at a resonance; see Eqs. �5.2� and �5.3�
below. One can think of them as sort of hybrids of ferromag-
neticlike and antiferromagneticlike behaviors. Indeed, the
purely antiferromagneticlike SW locsiton at q=� is formed
by the atoms with alternating polarizations,

¯↑↓↑↓↑↓ ¯ for � polarization,

¯ → ← → ← → ← ¯ for � polarization.

�4.11�

This happens at �−LL within NNA and �−�3 /4�LL for
FIA. The simplest hybrid pattern is formed at q=� /2 �which
is at =0 within NNA, and  /LL=−3 /32 for a fully inter-
acting array �Eq. �4.1���, whereby each second atom is non-
excited, while the other atoms alternate their polarization:

¯↑ � ↓ � ↑ � ↓ � ↑ � ↓ ¯ for � polarization,

¯ → � ← � → � ← � → � ← ¯ for � polarization.

�4.12�

Examples of other simplest hybrid states within NNA are q
=� /3, q=� /4, etc. In general, periodic patterns exist if q /�
is a rational number, i.e., for all the eigenresonances in finite
1D arrays within NNA; see Eq. �5.3� below.

Finally, it is worth noting that the strata, albeit fast decay-
ing, exist even beyond the locsiton band �Eq. �4.5��. They are
not, however, propagating waves or locsitons, and their am-
plitudes exponentially decay with the distance. Consider the
simplest case, NNA, with the losses negligibly small, 2

�LL
2 	1 in Eq. �4.2�. In this case, cos2 q�1 in Eq. �4.2�,

which indicates that the wave number q must be complex.
Indeed, writing q=−i� for the Lorentz end of the band,
 /L�1, and q=−i�+� for the anti-Lorentz end,  /L�
−1 �see also Sec. VI�, we have the solution for � as

� = ln��/LL� � ��/LL�2 − 1� �4.13�

and for the local fields as

�En�LL � e�n and �En�antiLL � e�n�− 1�n �4.14�

for the Lorentz and anti-Lorentz ends of the band, respec-
tively. Here, in the case of a semi-infinite array, the sign in
Eq. �4.13� has to be chosen such that the amplitude of the
field vanishes at �n�→�. These modes can be viewed as
evanescent locsitons; see also Sec. VI. One can note though
that they still bear the signature of the respective locsitons on
either side of the band: long-wave, almost synchronous os-
cillations on the Lorentz end, and short-wave, phase-
alternating oscillations on the anti-Lorentz end. In general,
the same patterns hold in the FIA case.
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V. QUANTIZATION OF LOCSITONS AND FIELD
RESONANCES IN FINITE 1D ARRAYS

Due to boundary conditions in Eq. �3.1� �or Eq. �3.3�
within NNA�, the array of N atoms is a discrete-element
resonator. This should result in locsiton quantization within
the locsiton band �Eq. �4.5�� and corresponding size-related
resonances of the local field. In a 1D array with N atoms, we
have N coupled oscillators with the same individual atomic
resonance frequency and, therefore, one should expect the
original atomic line to be split into N lines at most, with the
collective broadened band �Eq. �4.5�� being replaced with
those lines. Of course, when the dissipation �or finite line-
width of each individual line� is taken into account, those
split lines will merge into one continuous locsiton band �Eq.
�4.5�� if the array is sufficiently large,

N �
7
4 �LL� �or � 2�LL� within NNA� . �5.1�

The simplest result for the resonant line positions is ob-
tained within NNA. Using boundary condition �3.3�, i.e.,
E0=EN+1=0, we find that the longest locsiton half wave, cor-
responding to the fundamental mode, is

�1/2 = �N + 1�la, q1 = �/�N + 1� . �5.2�

Thus, �1 /2 is the distance between nodes where LF zeros
out, whereas the wavelengths �k of eigenlocsitons and their
eigenfrequencies k, with the quantum number 1�k�N,
are, respectively,

�k = �1/k, k = LL cos�qk� ,

qk = �k/�N + 1� . �5.3�

�Note that the first Eq. �7� in Ref. �1�, which corresponds to
the second Eq. �5.3� here, contained a typo �an extraneous
“�” in the cos argument� which we corrected here�. From
these, only the resonances with odd k will be realized for a
symmetric driving laser profile, in particular, the uniform
one, Ein=const �which is the most common case here�, and
with even k—for an antisymmetric one, say, Ein=const
��N+1−2n� / �N−1�, where n is the sequence number of an
atom in the array. In all other cases, a full set of N resonances
will be realized.

In essence, the size-related locsiton resonances in discrete
arrays are, to a limited extent, similar to any eigenresonances
in regular continuous �i.e., nondiscrete� 1D system. Ex-
amples can be found both in classical setting, e.g., a violin
string, a Fabry-Pérot resonator �such as, e.g., in a laser�, and
in quantum mechanics �QM�, from the resonances in a quan-
tum well with infinitely high walls, to electron gas in a finite
layer �11�, electrons in long molecules �12�, etc. The major
difference here is that the number of eigenmodes, or reso-
nances, in an array with N elements is limited to N, in con-
trast to the theoretically infinite number of eigenmodes in
continuous finite 1D systems.

The resonances for uniform driving within NNA are
shown in Fig. 2 for LL=200 in the cases of N=12 �Fig.
2�a��, N=13 �Fig. 2�b��, and N=100 �Fig. 2�c��. One can
readily find out that the lower amplitude envelope is

Emin�� 	 2�E� , �5.4�

while the upper envelope of the resonant peaks within NNA
for a uniform driving is

Emax�	�E��n + n
−1� if n � 1

=2�E� otherwise,
� �5.5�

where n= �N+1� / �2�LL
2 −2�. As N increases, the reso-

nances merge and are suppressed at N= �LL�O�1�; see, e.g.,
Fig. 2�c�. However, even then Emin still exceeds the uniform
field �E� �Eq. �3.4�� by a factor of 2. For N=3k−1 �k is a
natural number�, LF amplitude dips below the lower enve-
lope �Emax�low at =−LL /2. At that frequency, within NNA,
cos q�=−0.5, q�=2� /3, and the SW period �=3la is an in-
teger of the atomic spacing, so only fine SW structure re-
mains, resulting in an antiresonance and in the strongest in-
hibition of the locsiton.

VI. 1D ARRAYS BEYOND THE NEAR-NEIGHBOR
APPROXIMATION

As we mentioned above, while the quantization of locsi-
tons in finite arrays can be readily analyzed analytically
within NNA �see the previous Secs. III and V� the situation
with FIAs presents a challenge for an analytical treatment.

Let us briefly outline general analytical and numerical re-
sults obtained so far:

�a� A FIA locsiton band is not symmetric with respect to
the atomic resonance, =0. It is shorter by the factor of 3/4
on the anti-Lorentz side �see Eq. �4.5��, in contrast to the
NNA.

�b� Respectively, FIA resonances are grouped tighter on
the anti-Lorentz side of the band, albeit their number is the
same as for NNA. Near the Lorentz side of the band, the
NNA-predicted resonances coincide more closely with those
obtained by FIA numerical calculations.

The major source of these effects is the first factor, i.e., a
strongly asymmetric �with respect to the detuning frequency
� shape of the dispersion relation �Fig. 3�. A more detailed
mathematical consideration of this problem, including a very
good analytical fit for the dispersion relation, is found in the
Appendix. Less significant, although interesting as far as the
eigenmodes of 1D arrays are concerned, is the fact that
simple NNA eigen-wave-numbers �Eq. �5.3��, qk=�k /
�N+1�, obtained based on the NNA boundary conditions E0
=EN+1=0 �Eq. �3.3�� are not exact anymore. One has to use
now more extended, “beyond-the-boundary” conditions �Eq.
�3.1��, which are the signature of FIA, whereby

En = 0 for all n � 1 and n � N , �6.1�

instead of just two end points in NNA. To explore the prob-
lem, let us simplify it first by considering only nondissipat-
ing atoms, LL

2 �2	1, and rewrite full-interaction disper-
sion relation �4.1� for this case as
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1

S

n=1

�
cos�nq�

n3 = D�q� �


LL
, �6.2�

assuming D�q� to be real. The equation for the field is writ-
ten then as

En −
1

D


−��j��

j�n E j/2S

�j − n�3
= 1, �6.3�

with boundary conditions �6.1�.
The plot D�q� for real q’s due to dispersion relation �6.2�

is shown in Fig. 3 with the solid curve. The new qualitative
difference now between FIA �Eq. �6.2�� and the NNA case
�Eq. �4.2�� without dissipation, i.e., cos q=D, is as follows.
With D2�1, the NNA equation has only real solutions for q,
whereas Eq. �6.2�, even within the locsiton band, −3 /4�D
�1, aside from real solution for q� q̃, has, as one can show,
an infinite number of complex solutions q for each single real
solution q̃ �i.e., for the same D�. All of them, in addition to
fast spatial oscillation terms, have a rapidly rising or falling
exponential factor. These exponential modes are negligibly
small almost over the entire array length if N	1, and they
need to be accounted for only very near the end points of the
array, where they are instrumental in zeroing out the field
and excitation at the points n�1 and n�N.

Let us illustrate the formation of those exponential �or
evanescent� modes and their role in boundary conditions for
the 2-NNA, whereby field equation �6.3� becomes

En −
9

4D

�En−1 + En+1� +

1

8
�En−2 + En+2�� = 1, �6.4�

with the boundary conditions for two pairs of end points:

En = 0 at n = 0,− 1 and n = N + 1,N + 2. �6.5�

The dispersion relations approximating Eq. �6.2� will read
now as

8

9

cos q +

cos�2q�
8

� = D�q� �6.6�

�see Fig. 3, long-dashed curve�, and the locsiton band is de-
termined by

− 7/9 � D�q� � 1. �6.7�

The real solutions q̃ of Eq. �6.6� are those for which cos2 q̃
�1; they give rise to strata modes of Eq. �6.4�,

En � exp��iq̃n� . �6.8�

However, having in mind that cos�2q�=2 cos2q−1, one can
readily see that Eq. �6.6� has also solutions with cos2 q�1,
i.e., those that correspond to exponential modes, with com-
plex q=qevn2. Introducing for those modes

qevn2 = − i� + � �6.9�

with real �, we obtain from Eq. �6.6� that for each given real
q̃ the exponent � is determined by

cosh � = 4 + cos q̃ , �6.10�

and the respective exponential mode is

�En�2 = e���+i��n = e��n�− 1�n. �6.11�

Thus, these 2-NNA modes are antiferromagneticlike strata,
modulated by fast exponents. Indeed, since 3�cosh ��5,
we have 1.76���2.3.

Since the exponential, or evanescent, modes have so short
“tails,” they produce relatively small correction for the re-
spective eigenwavelengths �n and for qn, compared to the
NNA oscillatory modes, Eqs. �5.2� and �5.3�, so that we can
look for the �n corrected for 2-NNA at the points of reso-
nances as

�k

2la
=

N + 1 + �k

k
, �k = O�1� ,

q̃k = �
2la

�k
, �6.12�

with the correction �k�0, similarly to, e.g., oscillations in a
violin string with a “soft” suspension at its ends. To find �k
of the kth resonance, we seek a solution for En as a sum of
two modes: oscillatory and exponential ones. Then, for sym-
metric modes, i.e., with odd k, we have a full solution written
as

�En�odd = cos�q̃kn̄� + C cosh���q̃k�n̄��− 1�n,

n̄ = n −
N + 1

2
, �6.13�

where C is a constant. For antisymmetric modes, with even
k, we have

�En�even = sin�q̃kn̄� + C sinh���q̃k�n̄��− 1�n. �6.14�

Using now conditions �6.5�, we can write for the points
n=−1 and n=0, respectively, the following equations for
symmetric modes �6.13�:

�E−1�odd = cos��k

2

N + 3

N + 1 + �k
� − C cosh��

N + 3

2
� = 0,

�6.15�

�E0�odd = cos��k

2

N + 1

N + 1 + �k
� + C cosh��

N + 1

2
� = 0.

�6.16�

For antisymmetric modes �6.14�, one has to replace cosine
and hyperbolic cosine functions in Eqs. �6.15� and �6.16�
with sine and hyperbolic sine functions, respectively. From
these two equations we can compute �k and C. Indeed, ap-
proximating cosh���	sinh���	e� /2 in Eqs. �6.15� and
�6.16� or in the respective equations for antisymmetric
modes, since ��N+1�	1, we obtain two equations for �k
and C, which are readily solved for �k and C for both sym-
metric and antisymmetric modes as

�k =
2

qNNA
tan−1
 sin�qNNA�

e� + cos�qNNA�� ,
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qNNA =
�k

N + 1
�6.17�

and

C = qNNA�k�− 1�k̄/2e−��N+1�, �6.18�

where from Eq. �6.10�, �	cosh−1�4+cos�qNNA��, while k̄

=k+1 for symmetric modes, and k̄=k for the antisymmetric
ones. It is worth noting that boundary conditions �6.5� at n
=N+1,N+2 are now satisfied automatically because of our
choice of the coordinate n̄ in Eqs. �6.13� and �6.14�. For LW
resonances, k
N, Eq. �6.17� reduces to

�k 	
2

e� + 1
	 �max 	

2

11
, �6.19�

which is the maximum magnitude of �k, whereas for SW
resonances, N+1−k
N+1, Eq. �6.17� reduces to

�k 	
2

e� − 1
�N + 1

k
− 1� 	

2

5
�N + 1

k
− 1� , �6.20�

which is substantially smaller than LW correction �6.19�.
One can readily see that �k is a monotonically decreasing
function of k. In the middle of the locsiton band, k��N
+1� /2, we have

�k 	
4

�e� 	
1

2�
. �6.21�

Interestingly, a fairly good fit to Eq. �6.17� is provided by a
much simpler formula:

�k 	 �max
1 − � k

N + 1
�3� . �6.22�

Now, once the correction �k is found, one can substitute q
= q̃k=�k / �N+1+�k� �Eq. �6.12�� into dispersion relation
�6.6� and calculate the respective frequency detuning for the
kth resonance, Dk=k /L, with k=1 being the closest to the
Lorentz-Lorenz resonance, i.e., a LW mode, and k=N closest
to the anti-Lorentz edge of the locsiton band, a SW mode.

A way to extend the 2-NNA approximation to a full-array
interaction is to apply result �6.17� for the correction of the
eigen-wave-number q̃k, but use it now in the full-blown dis-
persion relation �6.2�, instead of 2-NNA relation �6.6�, to
calculate the resonance detuning k. The other avenue, of
course, is to seek for higher-order approximations. For ex-
ample, one can take into account two edge sets of three
points each, i.e., similarly as for Eq. �6.5�, stipulate 3-NNA:

En = 0 at n = 0,− 1,− 2

and

n = N + 1, N + 2,N + 3. �6.23�

Following the same route as for 2-NNA case, we obtain now,
similarly as for Eq. �6.10�, a second-order equation for the
exponential eigenmode complex wave number q=qevn3 for
any given oscillation wave number q̃ as

16 cos2 q + cos q�16 cos q̃ + 27�

+ �104 + 16 cos2 q̃ + 27 cos q̃� = 0 �6.24�

�we leave it untransformed to cosh �, unlike Eqs. �6.9� and
�6.10�, since in 3-NNA case the solution becomes more com-
plicated than Eq. �6.11�, and that transformation does not
simplify the problem.� The higher-order equation for the ex-
ponential eigenmodes ensue the choice of a higher number of
end points in the boundary conditions.

It has to be noted, however, that for specifying parameters
of oscillating eigenmodes, the increase in the precision by
accounting for higher-order exponential modes is of very
limited, if purely academic, significance. Essentially, for
large arrays, N	1, the combination of the NNA for predict-
ing the wave numbers q̃ �Eq. �6.12� and �5.3��, with these q̃’s
used then in Eq. �6.2� to calculate the resonance eigenfre-
quencies , does already a good job. A further step in in-
creasing the precision provided by the 2-NNA corrections to
eigen-wave-numbers is to again use the corrected q̃’s in Eq.
�6.2� for the same purpose, and it is more than sufficient. A
special case is a small array, e.g., N=2,3 ,4, whereby it is
actually preferable to simply solve the general 1D-array
equations analytically, similarly as in �1� in the case of N
=2.

VII. MAGIC NUMBERS

A fundamental effect of self-induced cancellation of local-
field suppression emerges near the atomic resonance, =0, at
certain magic numbers N. If LL

2 	1, the uniform �Lorentz-
Lorenz� LF �3.4� at =0 is very small, �E���LL�−1 �Eq.
�3.5��. However, in the near-neighbor approximation, if

N = kmmag + 1, m = 1,2,3, . . . , �7.1�

where mmag=4 is a magic number within NNA, locsitons at
=0 show canceled LF suppression at some atoms. The
highest cancellation is attained at =0 and N=5, with the
atomic dipoles lining up as in Eq. �4.12�, whereby the LF
amplitude at odd-numbered atoms is at maximum, �Emax�
	1 /3, and the enhancement �Emax /E�enh

2 	LL
2 /9 could be a

few orders of magnitude. The LF at the two other atoms
almost zeros out.

The self-induced cancellation effect is produced by a
standing wave with the nodes at atoms with even numbers.
This results in a “virtual” size-related resonance at →0
�i e., at the exact atomic resonance�, which manifests itself in
the enhancement �the resonant peak transpires in �Emax /E� vs
�. Thus, the nature of magic numbers is the coincidence of
the atomic resonance with one of the size-related locsiton
resonances.

The effect holds also for the interaction of each atom with
all other atoms �Eq. �3.1��. The magic number in Eq. �7.1�
takes on a “devilish” likeness here: mmag=13. It is due to the
fact that for =0 and LL	1, the first root q� of Eq. �4.1�
with zero right-hand side �rhs�,
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n=1

�
cos�nq��

n3 = 0, �7.2�

has its property of q� /� almost coinciding with a rational
number, q� /�	6 /13 �13q� /6�=1.000 26¯�; see the Ap-
pendix. The locsiton wavelength is �=2� /q�= �13 /3�la, and
the lowest integer of � /2 to exactly match an integer of la is
13la, which requires 14 atoms. We have now �Emax�	2 /15,
with enhancement of �4LL

2 /225.
As we showed in �1�, 2D lattices can also exhibit “magic

shapes” with similar properties. The simplest one within
NNA is a six-point star with an atom at its center, thus mak-
ing the total number of atoms again N=13. More details on
magic shapes for 2D lattices will be discussed by us else-
where.

VIII. TRAVELING LOCSITON WAVES: VELOCITY AND
PENETRATION DEPTH

If the locsitons are waves, can they be excited outside the
driving field area, and thus travel away from the Lorentz-
Lorenz uniform local-field area? How far can they travel
before being extinguished? How fast do they propagate?
Having in mind their dissipation, what is the size of a finite
array to have well-pronounced standing waves and size-
related resonances?

Of course, the locsitons can propagate in an array even in
the areas inaccessible for the external �laser� field. If the
spatial profile gradient of the driving wave is large enough, a
LF excitation can be found beyond the driving field area. The
terminological irony here is that the local-field phenomenon
is due to a nonlocal interaction, and the locsitons can propa-
gate away from their origination point. This may happen
when the external laser field is nonuniform and has a large
gradient, e.g., when one entirely screens out a part of the
array by imposing a “sharp knife” over the array.

Even simpler and more transparent case is when only an
end point of a semi-infinite 1D array �say, with n=1 in Eq.
�3.1�� is illuminated by a laser field via a pinhole. Equation
�3.1� has then nonzero �unity� rhs for n=1 only, and the rhs
zeroes out at all the other points. In this case, no Lorentz-
Lorenz local field exists for any atom at n�1, and the only
field and atomic excitation passed along the array of atoms
will be locsitons. This may be the best way to excite and
observe “pure” locsitons, with them not being masked by
any external, averaged, mean, etc., fields. With such an ar-
rangement, the 1D array �or a sufficiently thin atomic “cyl-
inder” or carbon nanotube� becomes a true and effective
waveguide for locsitons, capable of transmitting nondiffract-
ing radiation and atomic excitation from one location �e.g.,
in optoelectronic circuits� to another.

The main issue here is how far the locsiton can propagate.
One can investigate it by studying dispersion relation �4.1�
and �4.2�, which predicts not only the locsiton wave num-
bers, q��Re�q�, for any given frequency detuning , but
also their dissipation depth or distance �in terms of numbers
of atoms� for each wave number as Ndis=1 /q�, where q�
� Im�q�. Using only the NNA dispersion relation �4.2�, suf-
ficient here, since the calculation of the dissipation distance

does not require the same precision as for the real wave
numbers, we find out that the exact solutions for q� and q�
are determined by

cos2�q�� =
1

2
�1 +

2 + 1

LL
2 � −�1

4
�1 +

2 + 1

LL
2 �2

−
1

LL
2

�8.1�

and

sinh2�q�� = −
1

2
�1 −

2 + 1

LL
2 � +�1

4
�1 −

2 + 1

LL
2 �2

+
1

LL
2 .

�8.2�

From Eq. �8.1�, for very small dissipation, i.e., when LL
2

�2	1, we have, as expected,

cos�q�� 	


LL
. �8.3�

The dissipation length in terms of the numbers of atoms,
Ndis=1 /q�, is readily found from Eq. �8.2�. At the exact
atomic resonance, =0, if LL

2 	1, we have

q� 	
1

�LL�
, Ndis 	 �LL� . �8.4�

In general, in the most part of the locsiton band �except for
the edge areas, LL

2 −2�1�, we find that

q� 	
1

�LL
2 − 2

, Ndis 	 �LL
2 − 2. �8.5�

Finally, at the locsiton band edges, defined as LL
2 −2=1, Eq.

�8.2� results in

q� 	
1

�LL

, Ndis 	 �LL, �8.6�

and it remains roughly the same as 2 reaches LL
2 .

Thus, in the most of the locsiton band, the dissipation
length, in terms of the numbers of atoms, is Ndis=O�LL�,
which also determines the maximum size of array to still
enable the size-related resonances, in agreement with Sec. V.

Let us address now the characteristic velocities of the loc-
sitons. Neglecting decay in Eq. �4.2� �LL

2 �2	1�, the
group velocity of locsitons, vgr= la�d� /dq�, is found as

vgr =
la

T

d

dq
, cos q =



LL
. �8.7�

Hence

dq

d
= −

1

�LL
2 − 2

,

vgr = la
��R

2 − ��2 = vR
�LL

2 − 2, �8.8�

where �R is the Rabi frequency of the self-interacting array
�Eq. �4.6��, and vR=�Rla is a characteristic Rabi speed,
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vR

c
= �� da

ela
�2

O�1� 
 1, �8.9�

which could be even slower than the typical speed of sound
in condensed matter. This effect can be used, e.g., for devel-
oping nanosize delay lines in molecular computers and in
optical gyroscopes. The LW-locsiton phase velocity is

vph 	
vR

2

vgr
. �8.10�

IX. NONLINEAR EXCITATION OF A 1D ARRAY:
OPTICAL BISTABILITY AND HYSTERESIS

So far we studied linear �in field� excitations of atomic 1D
arrays. The nonlinear interactions open a door to a huge
landscape of effects. The simplest and very generic nonlin-
earity in a two-level system is the saturation of its absorption
�Eqs. �2.4� and �2.5��, which translates into a nonlinear re-
sponse of the atom polarization to the local field �Eq. �2.6��.
This, in turn, nonlinearly affects the strength of interaction
between atoms �Eq. �2.9��. This represents a rare case
whereby the nonlinear change �decrease� in absorption di-
rectly affects the eigenfrequencies of the system �1D array�,
by directly reducing the interaction. Many nonlinear effects
are brought up in short pulse modes, e.g., discrete solitons, to
be considered by us elsewhere. However, spectacular effects,
such as hysteresis and optical bistability, emerge even in cw
mode.

To write a set of nonlinear equations for an infinite 1D
array, we first scale all fields to the characteristic saturation
field Esat �Eq. �2.5��, instead of scaling to the incident field
Ein, so that the dimensionless local fields at the nth atom, Yn,
and the incident field X are

X = Ein/Esat, Yn = En/Esat, �9.1�

and the nonlinear counterpart of Eqs. �3.1� and �3.2� for the
array is written now as

Yn − LL� − i�
latt

j�n
Y j/2S

�j − n�3�1 + 2 + �Y j�2�
= X , �9.2�

where LL is defined by Eq. �3.4�, so it covers either incident
polarization. The nonlinear counterpart of NNA-based Eq.
�3.3� is now

Yn −
LL� − i�

2
� Yn−1

1 + 2 + �Yn−1�2
+

Yn+1

1 + 2 + �Yn+1�2� = X ,

E0 = EN+1 = 0. �9.3�

None of this is an easy object even for numerical solution, let
alone analytical one. We have, however, derived in �1� a
closed analytical solution for the nonlinear mode in the most
fundamental system—an array of just two atoms—and found
bistability and hystereses in such a mode. In this paper, more
as a matter of illustration, we find an analytical multistable
solution and hysteresis for the simplest case of Lorentz-
Lorenz uniform field. However, our computer simulations

showed that multistability and hystereses exist in the vicinity
of each size-related resonance in the system.

For the sake of simplicity, we consider here the case of
Lorentz-Lorenz uniform mode. In near-neighbor approxima-
tion �9.3� �the FIA results will essentially differ only by a
factor of O�1��, we have Yn=Yn−1=Yn+1�Y. Thus the non-
linear equation for the uniform local field Y is

Y
1 −
LL� − i�

1 + 2 + �Y�2� = X , �9.4�

or for the field intensity �Y�2�y,

y
�1 − �LL − � + y�2 + LL

2

�1 + 2 + y�2 = X2. �9.5�

It can be readily seen that the strongest nonlinear effect
emerges near the Lorentz-Lorenz resonance, 	LL. Assum-
ing small losses,  ,LL	1, we can analyze the threshold of
the multistability and hysteresis mode by stipulating that y

LL

2 and ��LL−
LL. Thus Eq. �9.5� can be further
simplified as

y��y − LL��2 + LL
2 �/LL

4 	 X2. �9.6�

The threshold for the multistable solution y�X� of this equa-
tion is determined by the condition dX /dy=d2X /dy2=0,
which results in the critical requirement that

� � LL −  � �cr = �3,

y � �Y�2 � ycr =
2

�3
LL,

X2 � Xcr
2 =

1

LL
2 � 2

�3
�3

. �9.7�

Amazingly, as one recalls that X=Ein /Esat and LL	1, the
critical �threshold� driving intensity Ein

2 to initiate multista-
bility and hysteresis could be orders of magnitude lower than
the saturation one, Esat

2 , which is mostly due to resonant na-
ture of the effect that emerge in the vicinity of the Lorentz-
Lorenz resonance. Thus, the required saturation nonlinearity
is indeed just a slight perturbation to the resonant linear
mode. This should be of no big surprise, since the nature of
the effect is the same as in many other so-called vibrational
hystereses �13� in resonant nonlinear systems, from pendu-
lum �13� to electronic circuits �14�, to optical bistability in a
Fabry-Pérot resonator �15�, to a cyclotron resonance of a
slightly relativistic electron �16�. In all these nonlinear reso-
nances, it is enough for a narrow resonant curve to be tilted
beyond its resonance width to reach multistability by becom-
ing “Pisa-type tower.”

The formation of bistability and hysteresis is depicted in
Fig. 5, where the resonant curve Y�� is shown for different
driving X’s for the full Eq. �9.5�. The formation of a tristable
solution results in the so-called bistability, whereby only the
states with the maximum and minimum intensities are stable,
whereas the middle branch of the solution is absolutely un-
stable. To an extent, it is similar to one of the hysteretic
patterns for the local field found for the case of the local field
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�1� and scattered light �17� of just two atoms. The hysteretic
resonance here is produced by a Lorentz-type, or ferromag-
neticlike, excitation of atoms with LW locsitons. This effect
is also reminiscent of optical intrinsic bistability for uniform
LF in dense materials predicted earlier in �18� and observed
experimentally in �19�.

The above result for hysteresis and bistability was found
for the uniform, Lorentz, field, i.e., near the Lorentz-Lorenz
resonance, using a simple field distribution. However, it is
clear from the above argument that with a Pisa-type tower, a
similar hysteretic effect can be expected in the close vicinity
of every size-related locsiton resonance within the locsiton
band. Some of the most interesting hystereses, though, are
excited for the SW locsitons, when the nearest atoms count-
eroscillate in an antiferromagneticlike fashion, as shown in
�1� for the anti-Lorentz band edge for two atoms. This hys-
teresis results in a “split-fork” bistability and will be dis-
cussed by us in application to long arrays elsewhere.

X. ANALOGIES TO LOCSITONS IN OTHER PHYSICAL
SYSTEMS AND GENERAL DISCUSSION

It is only natural to expect the effects studied here to
manifest themselves in other finite systems of discrete reso-
nant oscillators that are externally driven and interact with
each other. On one hand, this may help to demonstrate and
verify some major results reported here in much simpler and
easily handled settings. On the other hand, this may bring up
new features in these other systems that escaped attention in
seemingly well-developed and researched fields. We consider
here a few such systems.

Perhaps, the most classical example would be a mechani-
cal finite array of identical physical pendulums with the same
individual resonant frequencies, weakly coupled to each
other �say, by using weak strings between neighboring pen-
dulums�, with each pendulum driven independently by an
external feed �say, via EM solenoids� with the same phase
for all of them. By tuning the frequency of the driving feed
around the resonant frequency of the pendulums, one may
expect to observe stratified excitation of the pendulums, from

long-wave, ferromagneticlike strata to short-wave, antiferro-
magneticlike ones. One can also expect to observe magic
numbers and related effect of nonmoving pendulums sur-
rounded by strongly excited ones. �It is worth noting that we
are talking here about a cw motion, in contrast to the well-
known effect in two coupled nondriven pendulums, whereby
the pendulums periodically alternate periods of zero excita-
tion in one and strong excitation in the other one, with the
frequency of the alternation being inversely proportional to
the coupling.� The major effect here would be again due to
locsitons, and the major critical condition for their excitation
would be similar to the condition on the strength of interac-
tion, Qa �Eq. �2.10��, to exceed a critical one.

The driven pendulum array would be a great classroom-
demonstration tool. However, although purely mechanical, it
might take some effort to implement, due to the need of an
independent feed to each pendulum. From that point of view,
a much simpler, easily implementable, controllable, record-
able, and versatile system could be an electronic array of
individual resonant circuits, electronically coupled to each
other. A long while ago, similar systems have been used as
transmission lines, whereas a finite set of circuits has also
been of interest for such applications as bandpass filters.
However, the detailed picture of behavior of individual cir-
cuits inside such systems has apparently not attracted too
much attention, with a few reasons for that. The main differ-
ence between these systems and the ones proposed by us is
that we need an independent feed with the same phase for
each individual circuit, which may be arranged by, e.g., using
individual cable for each one of them. The coupling between
the individual circuits can be engineered in such a way that
one can arrange strictly near-neighbor interaction, two-near-
neighbors interaction, etc. Moreover, the contribution of each
neighboring circuit can be independently controlled, so the
term 1 /n3 can now be changed to any desirable function of
the neighbor spacing.

A close example, which might have important implica-
tions for large radio-frequency antenna arrays, for example,
radio-astronomy applications, as well as in multidish radar
systems, is the interaction of radiators in those arrays, if the
strength of this interaction exceeds some critical value.

Since in the case of electronic circuits the polarization of
the feed and the spatial anisotropy as in Eq. �2.2� is not a
factor anymore, the dipolelike interaction is simplified, as its
spatial polarization form factor F�p� �as in Sec. III� can be
now dropped, and equations of motion �3.1�–�3.4� can be
simplified. Furthermore, since now the direction of a “di-
pole” with respect to the “incident polarization” is not a fac-
tor, one can arrange a loop or ring of those circuits, instead
of a linear 1D array, which allows for periodic boundary
condition instead of zero boundary conditions such as, e.g.,
in Eq. �3.1�. This would greatly simplify the theory and com-
parison with the experiment, on one hand, and allow for
interesting effects in ring arrays �such as, e.g., greatly en-
hanced Sagnac effect and related gyroscope applications�, to
be discussed by us elsewhere, on the other hand.

An interesting and exotic opportunity with 1D arrays, and
especially ring arrays, is the possibility of developing a toy
model of “discrete-space quantum mechanics �QM�,”
whereby a wave function is replaced by a set of oscillating
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FIG. 5. Multistability of Lorentz-Lorenz mode in a long array:
local Lorentz field amplitude Y vs detuning  for different normal-
ized driving amplitudes X=Ein /Esat for the case of LL=100.
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fields at discrete spatial points, instead of a regular wave
distributed in space. This discrete-space QM could be of in-
terest for the theory of certain systems, as well as from fun-
damental point of view. For example, the ring arrays then
would allow building of a theory of a Bohr-type
“discrete-QM H atom,” with finite number of primary quan-
tum numbers, unlike an infinite numbers of quantum levels
as in a regular-QM H atom.

A very interesting analogy, especially from the application
point of view, is magnetic spin resonance, in particular
nuclear magnetic resonance �NMR� �20�, as well as mag-
netic resonances in finite spin systems, in particular so-called
molecular magnets �21�. They have some common points
with the interacting systems considered here, in particular,
two-level nature of resonances in both systems.

In optical domain, an observation of the effect discussed
here can be done in a few ways. Nanostrata and locsitons can
be observed either via size-related resonances in scattering of
laser radiation, or via x-ray or electron-energy-loss spectros-
copy of the strata.

The effect has promising potential for molecular comput-
ers �22� and nanodevices. The major advantage of locsitons
vs electrons in semiconductors is that they are not based on
electric current or charge transfer. This may allow for a dras-
tic reduction in the size limit for computer logic elements
currently based on metal-oxide-semiconductor technology,
which may suffer from many irreparable problems on a scale
below 10 nm. As such, locsiton-based devices could be an
interesting entry into the field, as complementary or alterna-
tive to emerging technologies such as plasmonics �23� or
spintronics �24�. They can offer both passive �e.g., transmis-
sion lines and delays� and active elements, e.g., for switching
and logics. A ring array may be used as a basis for a Sagnac-
locsiton-based gyroscope; low locsiton velocity may allow
for a high sensitivity in a small ring.

Another promising application of locsitons could be bio-
sensing devices, where target-specific receptor molecules ei-
ther form a locsiton-supporting lattice or are attached to its
sites. A localized locsiton occurs whenever a target biomol-
ecule attaches to a receptor.

Finally, exciting opportunities exist in atomic arrays and
lattices with inverse population created by an appropriate
�e.g., optical� pumping, which may lead to a laserlike locsi-
ton stimulated emitter, to be discussed elsewhere.

XI. CONCLUSIONS

In conclusion, in this study of strong stratification of local
field and dipole polarization in finite groups of atoms predi-
cated by us earlier �1�, we developed a detailed theory of the
phenomenon in one-dimensional arrays of atom or resonant
particles. In strong departure from Lorentz-Lorenz theory,
the spatial period of those strata may become much shorter
than the incident wavelength. By exploring nanoscale el-
ementary excitations, locsitons, and resulting size-related
resonances and large field enhancement in finite arrays of
atoms, we showed that their spatial spectrum has both long
waves, reminiscent of ferromagnetic domains, and super-
short waves corresponding to the counteroscillating neigh-

boring polarizations, reminiscent of antiferromagnetic spins.
The system also exhibits hybrid modes of excitation that
have no counterpart in magnetic ordering, and are more rep-
resentative of the effect. Our theory, which goes beyond
Ising-type near-neighbor approximation and describes the
excitation whereby each atom interacts with all the other
atoms in the array, reveals the existence of infinite spectrum
of exponential or “evanescent” eigenmodes in such arrays.
We explored the phenomenon of magic numbers of atoms in
an array, whereby resonant local-field suppression can be
canceled for certain atoms in an array. We also demonstrated
the existence of nonlinearly induced optical bistability and
hysteresis in the system. We discussed a stratification effect
similar to that in atomic arrays, which may exist in broad
variety of self-interacting systems, from mechanical �pendu-
lums� to electronic circuits, to radar arrays, and to the nuclear
magnetic resonance. We pointed out a few potential applica-
tions of the atomic and similar arrays in such diverse field as
low-loss nanoelements for optical computers, small-size
Sagnac-effect-based gyroscopes, and biosensors.
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APPENDIX: MATHEMATICAL ASPECTS OF DISPERSION
EQUATION (4.1)

In this appendix we consider mathematical properties of
the Fourier series in dispersion relation �4.1�, i.e., the
function

���q� � 
n=1

�
cos�nq�

n� , �A1�

which is a generalized form of Eq. �4.1� �in Eq. �4.1�, �=3
due to the chosen geometry of the problem—1D array of
point dipoles�, but we will restrict ourselves to natural num-
bers �. Note, for example, that in the case of infinite “dipole
strings,” parallel to each other and equidistantly arranged in
a 2D plane, �=2, whereas for “dipole planes” parallel to
each other and equidistantly arranged in the 3D space, �=1.

Our main purpose here is to find a closed finite analytical
form of the function ���q� that originated Fourier series
�A1�, and when it is impossible in terms of more or less
regular analytical functions, at least find a closed finite de-
rivative dm���q� /dqm with minimum derivative order m,
which will help us to analyze in great detail the behavior of
the function ���q� in its physically interesting points, e.g., at
q=0,�, the ratio between its minimum and maximum val-
ues, ����� /���0�, etc. Those derivatives are actually the
main tool in our search. Indeed, differentiating ���q� in Eq.
�A1� �−1 times, one obtains

d�−1���q�
dq�−1 = �− 1��/2

n=1

�
sin�nq�

n
if � = 2,4,6, . . .

�A2�

and
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d�−1���q�
dq�−1 = �− 1���−1�/2

n=1

�
cos�nq�

n

= �− 1���−1�/2�1�k� if � = 1,3,5, . . . . �A3�

Recalling that sin �= �ei�−c.c.� /2i and cos �= �ei�+c.c.� /2,
we recognize the sums n=1

� e�inq /n in Eqs. �A2� and �A3� as
Taylor expansions of −ln�1−e�iq�.

In the case of even numbers �, sum �A2� in the interval
0 ,2� �which is of the most interest� yields


n=1

�
sin�nq�

n
= �� sgn�q� − q

2
if �q� � �0,2��

0 if �q� = 0,2� .
� �A4�

It is discontinuous at q=0, �2�. Even numbers � are thus a
“lucky” case; result �A4� is easily integrated to restore func-
tion ���q�. In a physically interesting case, �=2, by integrat-
ing Eq. �A4� once we have

�2�q� � 
n=1

�
cos�nq�

n2 =
3�� − �q��2 − �2

12
if q � �− 2�,2�� ,

�A5�

which is a continuous �but not smooth� function with �2�0�
=�2 /6 and �2���=−�2 /12, so that ��2�min / ��2�max=−1 /2.

As to the closed integrability, one is not as lucky with odd
numbers �; the summation of Eq. �A3� yields

�1�q� � 
n=1

�
cos�nq�

n
= − ln�2�sin�q/2��� , �A6�

i.e.,

�1�q� → � at q = 2m� ,

which cannot be integrated in simple known analytical func-
tions, but it gives a good analytical tool for analysis of the
behavior of ���q�. In the case of most interest to us, �=3, we
have that near the maximum of �3 at small wave numbers

�3�q� 	 S +
q2

2
�ln�q� −

3

2
� at �q� 
 1, �A7�

where S= j=1
� j−3	1.202 057, whereas near the minimum of

�3, i.e., near q=�, we have

�3�q� 	 −
3S

4
+

�q − ��2

2
ln 2 if �q − �� 
 1. �A8�

Notice that here ��3�min / ��3�max=−3 /4, and d2�3 /dq2=0 at
q=2m��� /3.

For the magic numbers in the case of full interaction of
individual atoms with all the other atoms in the array, it is
important to know zeros of the function �3�q�. As it has been
mentioned before �see Eq. �7.2� and related text�, it turns out
that the value of the ratio q� /� for the first positive root of
the equation �3�q�=0 is very close to a small rational
number:

q�

�
= �1 + ���

6

13
, with �� 	 2.6 � 10−4. �A9�

For all practical purposes, a good approximation for �3�q� is
provided by

�3
�fit��q� = S�cos q +

ln��S + �S��sin�q/2���
ln�S + �S�

sin2�q/2�
4

� ,

�A10�

where �S=0.014 72. It coincides with the results provided
by numerical summation of Eq. �A1� with �=3 with the pre-
cision better than 0.6% of S, and their zeros coincide with
each other and with Eq. �A9� with precision better than 10−6.

Let us also prove the relation for ����min / ����max used in
Eq. �4.4�. Indeed,

D��,��
D�0,��

=
����min

����max

=


n=1

�

�− 1�nn−�


n=1

�

n−�

=

− 
n=1

�

n−� + 2
m=1

�

�2m�−�


n=1

�

n−�

=

− 
n=1

�

n−� + 2−�+1
n=1

�

n−�


n=1

�

n−�

= − 1 +
1

2�−1 . �A11�

Note that Eq. �A11� is valid for any number ��1.
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