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The Tavis-Cummings model �the Dicke model treated in the rotating-wave approximation�, describing many
two-level systems coupled to a single bosonic mode, has been long known to show collective semiclassical
oscillations when prepared in an inverted state, with all two-level systems excited and the bosonic mode is
empty. This paper discusses how the quantum dynamics approaches this semiclassical result for large numbers
of two-level systems, focusing on how the eigenvalues approach their semiclassical limit. The approach to the
semiclassical result is found to be slow, scaling like a power of the logarithm of the system size. Considering
also the effect of weak detuning between the two-level system and the bosonic field, quantum corrections are
again found to decay slowly with system size, such that for a fixed detuning, the quantum effects of detuning
are greater than the classical effect.
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I. INTRODUCTION

The Dicke model �1�, describing interaction between a
number of two-level systems and a single bosonic mode, has
long been studied as a simple model of cavity quantum elec-
trodynamics, which despite its simplicity can show quite in-
tricate behavior. When the coupling between the two-level
system and the bosonic mode is treated in the rotating-wave
approximation, the Dicke model reduces to the Tavis-
Cummings model �2,3�. One long studied feature of this
model is collective oscillations that arise when the initial
state is inverted; the simplest such case concerns an initial
state with an empty bosonic mode and all two-level systems
in their excited state. In a semiclassical approximation �4�
the number of bosons describes a train of hyperbolic secant
pulses. Interest in these collective oscillations has recently
been revived both by the connection to atom-molecule inter-
conversion in cold atomic gases �5–8�, as well as potential
experiments studying coupling between quantum dots and
cavity photon modes �9,10�. The possibility of coupling be-
tween a radiation mode and multiple two-level systems is
also being pursued in circuit-QED experiments �11�, in
which the two-level systems are superconducting qubits.
Both these latter examples are closely related to the original
context of this problem �4�: two-level atoms coupled to a
photon mode in a cavity. This problem is also closely related
to collective superfluorescence �12� for initially inverted at-
oms but without a cavity. Without the cavity there is only a
single hyberbolic secant pulse since the dense spectrum of
photon modes prevents recurrence.

The aim of this paper is to study the quantum dynamics of
the Tavis-Cummings model with a finite number of two-level
systems N, starting from a fully inverted state, in order to see
how the quantum dynamics differ from the semiclassical dy-
namics. In particular, considering the case of a completely
symmetric Tavis-Cummings model �where all two-level sys-
tems are identical�, one finds that the semiclassical results are
recovered in the limit of an infinite number of two-level

systems but that the approach to this semiclassical limit is
slow, scaling as a power of the logarithm of the number of
two-level systems. In addition to the sequence of hyberbolic
secant pulses that exist in the semiclassical dynamics, the
quantum dynamics is found to have an additional slow enve-
lope. As the number of two-level systems increases, the pe-
riod of this envelope increases compared to the period of the
train of hyberbolic secant pulses and so its effects become
negligible; however this trend is very slow, with
Tenvelope /Tpulse��ln��N��3.

A closely related question has been addressed in �13� for
the case of the Richardson model rather than the Tavis-
Cummings model. Their work focused on how the integra-
bility of the quantum model allows one to calculate overlaps
between the initial state and the eigenstates, as well as matrix
elements of the physical observables. The current work ad-
dresses a complementary question on how the eigenvalues
approach the semiclassical results for large system sizes.

Aspects of the behavior of the Dicke model in the absence
of the rotating-wave approximation have also been studied;
in particular, features of the finite size system associated with
the quantum phase transition in the infinite size system have
been considered. These include the following: changes in
statistics of excited state energies �14,15�; perturbative ap-
proaches in the limit of large coupling strengths �16�; en-
tanglement between the bosonic mode and the two-level sys-
tems �17�, including how that entanglement scales with the
system size; and the scaling of other quantities, such as
ground state energies or excitation gap with system size
�18,19�. The results of these previous studies differ from the
question addressed in the current work for two reasons. First,
without the rotating-wave approximation, the number of ex-
citations in the system is no longer conserved and so the
classical problem is no longer integrable. Second, the results
in this paper relate to the collection of eigenstates near �Eq�
=0, while the ground state, or the thermodynamics at low
temperatures �20�, involves eigenstates with much lower en-
ergy.

An alternate method to include quantum corrections to the
semiclassical dynamics is by accounting for the dynamics of
higher cumulants �as well as expectations� of the collective*jmjk2@cam.ac.uk
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operators, which has been discussed by Vardi et al. �21,22� in
related but different models. A similar idea has also been
discussed in the context of the BCS model �8,23� but in cases
where the semiclassical dynamics is more complicated. An-
other related problem concerns quantum dynamics in the
central spin model, where a large nuclear spin �analogous to
the bosonic field here� is coupled to a sea of electronic spins
�analogous to two-level systems�; Tsyplyatyev and Loss �24�
considered the quantum dynamics of this model with initial
conditions such that there is only a single excitation in the
system. Other related work concerns the dynamics of the
Tavis-Cummings model in the opposite limit of a small num-
ber of two-level systems, starting from an initial coherent
boson state, studied in Refs. �25–27�, in connection to the
collapse and revival of Rabi oscillations in the case of a
single two-level system.

The results presented in this paper refer mainly to the
completely symmetric Tavis-Cummings model, for which all
two-level systems are identical. This restriction allows one to
extract simple analytical formulas for the scaling of quantum
corrections with system size. In addition, this symmetric case
can be expected to be the “most classical” limit of the Tavis-
Cummings model, as one may derive the semiclassical dy-
namics in such a case by replacing large quantum spins by
classical spins. The fact that quantum corrections exist in this
most classical case suggests that important corrections may
exist in the nonsymmetric Tavis-Cummings model. One spe-
cialized limit of this is discussed in Sec. IV, supporting this
idea.

The rest of the paper is organized as follows: Sec. II in-
troduces the Hamiltonian and discusses the previously
known results of the semiclassical approximation; these are
compared to the results of exact diagonalization in Fig. 1.
Section III then shows how the quantum corrections can be
extracted from a WKB approach to the problem, focusing on
the case where the two-level system and boson energies
match; the effect of detuning is discussed in Sec. IV, and
concluding remarks are given in Sec. V.

II. MODEL AND COMPARISON OF SEMICLASSICAL
AND NUMERICAL RESULTS

The model studied in this paper can be written as

H = �
i=1

N

��isi
z + si

+a + si
−a†� , �1�

where the spin operators obey �si
z ,si

��= �si
� and �si

+ ,si
−�

=2si
z, and a, a† are bosonic operators. The coupling between

the two-level systems and the bosonic mode has been scaled
to 1, hence all other energies and times are measured in units
of this coupling. The initial state of the system is taken to be
�n=0, ↑ ↑ ↑¯	, where all the two-level systems are excited,
and the bosonic mode is empty. In the subsequent dynamics
there are collective oscillations, transferring excitations be-
tween the two-level systems and the bosonic mode.

For comparison to the exact dynamics, the following
briefly summarizes the semiclassical solution, described in
Refs. �5,6�. The semiclassical equations correspond to writ-
ing the Heisenberg equations of motion for the operators si

−,
si

z, and a and then replacing these operators by commuting
classical variables. After transforming to a frame rotating at a
rate �, the resultant equations can be solved by the ansatz

si
− =

��i − ��a + iȧ

��i − ��2 + �
, si

z =
1

2
−

a2

��i − ��2 + �
�2�

along with the equation of motion for a, ȧ2=a2��−a2�, and
the self consistency conditions for � and �,

1 = �
i

1

��i − ��2 + �
, � = �

i

�i − �

��i − ��2 + �
. �3�

These equations are analogous to the BCS gap equation, with
� acting as a generalized chemical potential �i.e., common
oscillation frequency� and � acting as the square of the gap
�i.e., pairing field�. The solution of the equation for a gives a
train of hyperbolic secant pulses with a period Tpulse
=2 ln���� /��; such pulses can be seen in the time depen-
dence of physical observables such as the occupation of the
bosonic mode 
nphot	=a2. For the special case of �i=0, Eq.
�3� has the solution �=0 and �=N.

The problem this paper addresses can be seen most
clearly in Fig. 1, which shows the dynamics of the popula-
tion of the bosonic mode nphot according to Eq. �1� with �i
=0. The semiclassical train of hyperbolic pulses is seen in
Fig. 1, but there is in addition a slow envelope not predicted
by the semiclassical equations, and it is this slow envelope
which is discussed below.

By writing the photon number as a sum over eigenstates,

n�t� = �
pq


0�Xp	
Xp�n̂�Xq	
Xq�0	ei�Ep−Eq�t, �4�

one may note that the semiclassical result, with its perfectly
periodic train of pulses, corresponds �for �=0� to
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FIG. 1. �Color online� Quantum dynamics of the number of
photons for 2000 spins. Panel �a�: time dependence of photon am-
plitude. Panel �b�: principal Fourier components of the time depen-
dence. The lowest seven eigenvalues are sufficient to describe the
time dependence to better than visible resolution on this scale. All
energies and times are in units of the coupling between two-level
systems and the bosonic mode.

JONATHAN KEELING PHYSICAL REVIEW A 79, 053825 �2009�

053825-2



Eq = q�, � = �
�N

ln��N�
. �5�

The inset of Fig. 1 shows the Fourier transform of nphot�t�. In
contrast to Eq. �5�, the eigenvalues of the full quantum prob-
lem are not equally spaced, and so the sidebands seen in Fig.
1�b� arise. The period of the slow envelope is given by the
splitting of these sidebands. Hence, to describe the approach
to the semiclassical result, one must consider how the devia-
tion from regular spacing Eq=q� �i.e., the anharmonicity of
the exact eigenvalues� collapses as N→�.

Describing the quantum dynamics by finding the eigen-
states is considerably simplified since the initial state over-
laps with only a small number of eigenstates. As discussed in
Ref. �13�, the initial condition chosen here satisfies 
0�H�0	
=0, 
0�H2�0	=N, while the semiclassical eigenstates have
Eq=q��N / ln��N�, which implies that only O(ln��N�2)
eigenstates near �Eq�=0 can have any significant overlap with
the initial state. The validity of this is confirmed by noting
that the result of exact diagonalization and the result restrict-
ing the summation in Eq. �4� to the seven smallest values of
�Eq� are indistinguishable by eye on the scale of Fig. 1.

III. WKB APPROXIMATION AND SCALING OF
CORRECTION

To find the eigenvalues of the quantum problem, one may
approach the problem by a method closely related to that in
�4�. As discussed above, this paper considers the symmetric
case, �i=�, for which the Hamiltonian becomes H=�Sz

+S−a+S+a†, where S� =�is�i, and as a result, the quantum state
may be written as a wave function in the one-dimensional
space of occupation, as used in Ref. �4� to show how the
semiclassical limit can arise. To find not only the semiclas-
sical limit but also the corrections to it, one may solve this
one-dimensional problem using a discrete WKB approxima-

tion �28�. Using the basis �n	= �nphot=n , �S� �=N /2,Sz=N /2
−n	, the equation �E−�N /2��=H� becomes

�E + �n�	n = n�N + 1 − n	n−1 + �n + 1��N − n	n+1. �6�

The WKB approach consists of two parts: finding the WKB
form of the wave function for �n ,N−n�
1 and then match-
ing this wave function to appropriate forms for n�0 and n
�N. In the following, this matching is referred to as match-
ing the “boundary conditions” for the wave function at n
=0, n=N, but these boundary conditions are just the
Schrödinger equation in Eq. �6�, evaluated at n=0, n=N, for
which those approximations valid for �n ,N−n�
1 no longer
hold. This section will consider the case �=0; the effect of
nonzero � is discussed in Sec. IV.

The WKB form of the wave function can be derived by

considering a transformation 	n→ 	̃n�i�n which gives the
right-hand side of Eq. �6� as a discrete derivative with a

variable prefactor, i.e., E	̃=−iv�x��x	̃�x�. Written this way

suggests a WKB wave function of the form �28� 	̃
��1 /�v�x��exp�i
dzE /v�z�� or the discrete analog of this
wave function.

To write the wave function compactly, it is useful to in-
troduce the function defined in Ref. �4�,

gk �
�2��1 + k/2�
��1/2 + k/2�

� �
�2/� , k = 0

��/2, k = 1

�k + 1/2, k 
 1,
� �7�

which is chosen such that gkgk+1=k+1. With this notation,
the WKB wave function can be written as

	n
�WKB� =

cos�E�n + 
 + n�/2�
�gn

2gN−n

, �8�

where �N=�m=n
N 1 /2gm

2 gN−m and 
 is an arbitrary phase set
by boundary conditions. This wave function is valid while
the change in phase between two successive values of n is
much less than 1; this condition for the validity of the WKB
wave function can formally be written as gn

2gN−n
E. Under
the same conditions, one may approximate the summation in
the definition of �n by integration, and hence to leading
order one has

�n �
1

�N + 1
cosh−1�� N + 1

n + 1/2� . �9�

It is worth noting that for even N, the solution in Eq. �8� with
E=0 can be seen to be an exact eigenstate of Eq. �6�.

A. Matching WKB solution at boundaries

1. Boundary condition at n=N

When considering the boundary conditions, the bound-
aries at n=0 and n=N behave differently. At n=N first note
that gN

2 g0��N+1 /2��2 /�
E���N / ln��N�, meaning the
WKB wave function is valid right up to this boundary. In
addition, the Schrödinger equation at the boundary becomes
E	N=N	N−1, and so to order 1 /�N, this boundary condition
is satisfied by 	N−1=0. Since the corrections to the semiclas-
sical energies found below are of order 1 / ln��N�, the much
smaller corrections of order 1 /�N can be neglected, and so
the boundary condition at n=N requires 
= �2q+2−N�� /2,
where q is any integer; for even N one may thus choose 

=0. From herein, even N is assumed; for odd N similar re-
sults with 
=� /2 follow straightforwardly.

2. Boundary condition at n=0

The boundary condition at n=0 is more complicated. For
this boundary, g0

2gN��2 /���N+1 /2, and so the condition
g0

2gN
E���N / ln��N� is not necessarily satisfied—the va-
lidity of the WKB wave function depends on taking ln��N�

1, which requires very large N; these corrections due to
finite ln��N� are the quantum corrections of interest in this
paper.

Because the WKB wave function breaks down for small
values of n, it is necessary to match the WKB wave function
to the exact wave function at a nonzero value of n=n0 rather
than at n=0; i.e., the exact wave function should be calcu-
lated for n�n0 and the WKB wave function made to match
it at n=n0. The larger the value of n0 one takes, the better the
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calculated energies will match the exact solution. Surpris-
ingly, even matching the solution at n=0 turns out to provide
useful information and correctly reproduces the scaling of
energy with system size; this is discussed below in Sec.
III B.

The procedure of matching is straightforward; for a given
value n0, one finds the exact solution 	n�n0

�0� �E� by solving
Eq. �6�, with 	n0+1=	n0+1

�WKB�; i.e.,

E	n
�0� = Hnm

�n0�	m
�0� + �n,n0

�n0 + 1��N − n0	n0+1
�WKB�, �10�

where H�n0� is the Hamiltonian restricted to n�n0; the
matching condition then becomes 	n0

�0�=	n0

�WKB�. By diagonal-
izing the �n0+1�� �n0+1� matrix H�n0� to give H�n0�

=�����	
���, the boundary condition equation can be written
as

cos�n0�

2
+ �n0

� = − sin�n0�

2
+ �n0+1�

� gn0

2 gN−n0�
�

�
���n0	�2

E − ��

. �11�

This gives a nonlinear equation for E, the complexity of
which increases with increasing n0. An example of solving
this equation, with n0=2, is shown in Fig. 2�b�, which clearly
accurately reproduces the results of exact diagonalization.

B. Simplified boundary condition and scaling with
system size

To understand how the corrections to Eq depend on num-
ber of two-level systems N, the equation with general n0 is
rather complicated, but as seen in Fig. 2�b�, matching at n
=0 gives the correct scaling with system size but an incorrect

numerical coefficient. Considering this matching at n=0, the
boundary condition becomes, from Eqs. �6� and �8�,

E cos�E�0� = −
2

�
�Nsin�E�1� . �12�

In Fig. 2�b�, the solution of this equation is represented by
the blue crosses, labeled n0=0.

To the same level of approximation made so far, one may
set �0��1� ln��N� /�N. If ln��N� were large, the solution
of Eq. �12� would be Eq=q� /�1=q��N / ln��N�, i.e., the
semiclassical result. For finite ln��N�, Eq. �12� produces cor-
rections O�q3� that break the harmonicity; these terms look
like

�Eq = Cq3
�N

�ln��N��4
. �13�

The coefficient C as calculated by expanding Eq. �12� in the
small parameter 1 / ln��N� is C=�6 /24�40.1 while the best
fit coefficient over the range shown in Fig. 2�a� is C=13.5;
however this gradient may should be treated with caution, as
1 / ln��106� is not a small number. The form in Eq. �13� is the
first main result of this paper—as shown in Fig. 2, this de-
pendence on ln��N� well describes the scaling of the anhar-
monicity; because the dependence on N is so slow, quantum
corrections to the semiclassical result remain relevant even
for 106 two-level systems.

IV. DETUNING

The remainder of this paper discusses the effect of detun-
ing, i.e., of �i=��0; this again reveals a distinction between
the semiclassical dynamics and the full quantum mechanical
problem and provides some insight into the case where not
all values of �i are identical. The time dependence in the case
of �i=��0 is shown in Fig. 3, showing a change to the slow
envelope. Semiclassically, the effect of nonzero � in Eq. �3�
is to give �=� /2, �=N− �� /2�2. Since it is � that controls
the collective oscillations, the leading correction to the fre-
quency of pulses, i.e., the semiclassical energy splitting �
should be quadratic in �,
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FIG. 2. �Color online� Anharmonicity, Eq−qEq, plotted against
system size N with variables transformed to demonstrate agreement
with the scaling expected from Eq. �13�. Panel �a� compares Eq for
q=2, 3, and 4. Panel �b� compares WKB approximations to E2

−2E1 on the same transformed axes, with n0 terms near the n=0
boundary.
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Eq = q�, �� �
��2

8�N ln��N�
. �14�

The following discussion focuses on the case of small � and
shows that quantum corrections give shifts of energies linear
in � for small �, such that for any finite N, the leading cor-
rection to Eq is quantum not semiclassical.

It is straightforward to see from Eq. �6� that for small �,
the linear peturbative correction to eigenstate q would be

Eq → Eq − �
Xq�n̂�Xq	 , �15�

and so the aim of this section is to find how 
nq	
�
Xq�n̂�Xq	 depends on system size N and eigenstate label q.
One should note that a q independent shift of Eq has no effect
on the time dependence of photon number. In the semiclas-
sical picture, such a constant shift just corresponds to a
change in �, hence our interest is in the quantity �Eq−�E0.

Figure 4�b� shows that the WKB eigenstates matched to
the exact solution for n�n0=3 reproduce the result of exact
diagonalization for N=3000, giving confidence that the
WKB wave function can be used to determine 
nq	. Using
the WKB wave function of Eq. �8� one has


nq	 �
�
n=0

N

n
�1 + �− 1�n cos�2Eq�n��

gn
2gN−n

�
n=0

N
�1 + �− 1�n cos�2Eq�n��

gn
2gN−n

. �16�

To analyze how the above expression depends on the number
of two-level systems N, it is convenient to write it as 
nq	
= �A0+�Aq� / �B0+�Bq�, where �Aq and �Bq come from the
term proportional to �−1�n in the summand and A0 and B0

from the other term. One may then show that

A0 = �
n=0

N
n

gn
2gN−n

� �
0

n

dn
1

�N − n
= 2�N �17�

and from Eq. �9�, one sees that

B0 �
2

�N
cosh−1��2N� �

2
�N

ln�2�2N� . �18�

Because A0
B0, one may anticipate that �Bq has a more
significant effect on the answer than does �Aq; this can be
made more firm by noting that for even N,

�Aq=0 � �
n=0

N
�− 1�n

�N − n + 1/2
� �

n=0

�
�− 1�n

�n + 1/2
� 0.944,

and numerically one may confirm that �Aq is a factor �N
smaller than A0 in general. For �Bq one may observe that the
main contribution to the sum comes from values of n�N,
where the denominator is smallest, and so approximate

�Bq �
1

�N
�
n=0

�
�− 1�n cos�Eq�n�

�n + 1/2�
. �19�

This expression for �Bq has the form of 1 /�N multiplied by
a function that should depend only on ln��N�—by consider-
ing the forms of E in Eq. �5� and �n in Eq. �9�, it is clear that
only logarithmic dependence on system size enters the prod-
uct E�n.

Putting all these considerations together one may write


nq	 �
2N

2 ln��N� + �N�Bq

and thus one may expand

2N


nq	
− 2 ln��N� � �N�Bq = �q

0 +
�q

1

ln��N�
+

�q
2

ln��N�2
+ ¯

�20�

for large N. This scaling indeed seems to occur in Fig. 4�a�
and strongly suggests that �q

0 is independent of q, while �q
1

depends on q. One may thus write the q dependent part of
the energy shift as

�Eq − �E0 � −
�N

ln��N�
� �0

1 − �q
1

2 ln��N�2� + ¯ , �21�

where only the leading order term in powers of the logarithm
has been retained. Comparing Eq. �21� to the semiclassical
correction of Eq. �14�, one may note that in both the limit
fixed N, �→0 and also for fixed �, N→�, the quantum cor-
rection is larger than the semiclassical correction.

Relating detuning to disordered �i

The above results on treating � perturbatively can also
describe properties of the model where �i=1,. . .,N−1=0, �N=�;
i.e., �H=�sN

z , again considering � perturbatively. The fact
this case can be treated by first-order nondegenerate pertur-
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FIG. 4. �Color online� Panel �a�: scaling of 
nq	 with system size
calculated using the WKB wave function matched to the exact so-
lution for n�n0=40 and transformed following Eq. �20�. Dotted
lines are a quadratic best fit to the data for N�104, assuming all
lines tend to a common asymptote. Panel �b�: comparison of exact
diagonalization and WKB approximations for 
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showing that the WKB approximation should be valid for the panel
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bation theory is not trivial; it arises because although degen-
erate states do exist �particularly states with zero energy�, the
asymmetry introduced by altering a single spin energy �i
does not mix these degenerate states. With a greater number
of different �i this simplifying condition fails, and degenerate
perturbation theory is instead required.

For the special form of �H above for which nondegener-
ate perturbation theory is relevant, one may consider the ex-
pectation of perturbation Hamiltonian between the boson
number states, for which one may show that


n�si
z�n�	 = �nn��1

2
−

n

N
� , �22�

which reproduces the results of Sec. IV with �→� /N. Such a
result hints that quantum corrections in the nonsymmetric
model may become more significant since for weak disorder
of energies �i, such linear corrections due to quantum correc-
tions will win over the quadratic semiclassical effects of dis-
order. However, direct calculation of the quantum dynamics
is challenging, as the size of the Hilbert space explored in
such a model is exponential in N, and if quantum corrections
still vanish as powers of ln��N�, one requires very large sys-
tems to study the asymptotic behavior at large N.

V. CONCLUSIONS

In conclusion, the quantum dynamics of the symmetric
Tavis-Cummings model starting from an initially inverted
state describes a train of hyberbolic secant pulses �as in the
semiclassical result� but with an additional slow envelope.
The slow envelope arises due to the anharmonicity of the
eigenvalues of the quantum problem; this anharmonicity re-
duces as the system size increases but only logarithmically
with the number of two-level systems. In the absence of
detuning, i.e., for �i=0, the eigenvalues take the form Eq

�q��N / ln��N�+Cq3�N / �ln��N��4.

With a small detuning �, the quantum problem has a per-
turbative correction linear in the size of detuning �E
��N / �ln��N��3, while the semiclassical result has only cor-
rections quadratic in the detuning �E��2 / ��N ln��N��. As a
result, for either finite detuning and N→� or finite N and
�→0, the classical effects vanish faster than quantum cor-
rections. This result may also be indicative of the effects of
disorder, i.e., of nonidentical values of �i. For a fixed distri-
bution of �i, as N→� the effects of this disorder vanish
compared to the energy scale of the common coupling ��N.
It seems likely that in such a limit, quantum corrections may
vanish more slowly than the classical effects of the distribu-
tion of �i.

In the general case of disordered �i, the quantum problem
is significantly harder to solve as the size of the Hilbert space
grows exponentially with the number of two-level systems,
whereas for �i=�, it grows only linearly. However, the inte-
grability of the problem may simplify the problem, as dis-
cussed in �13�. In the symmetric case, the integrability of the
semiclassical problem means that while conservation laws
restrict the system to exploring an N-dimensional Hilbert
space, in the limit of large N, the system in fact only explores
a one-dimensional path through this space. Similarly for the
disordered model, the problem is integrable �29,30�, which in
turn leads to the semiclassical dynamics �5–7� following a
one-dimensional path, suggesting that a simple description of
the quantum corrections even for large values of N might be
possible.

Note added. Recently, a similar treatment of this model
has been undertaken in �31�.

ACKNOWLEDGMENTS

I would like to acknowledge useful discussions with P. R.
Eastham, M. J. Bhaseen, and J. Hope and funding from
EPSRC under Grant No. EP/G004714/1.

�1� R. H. Dicke, Phys. Rev. 93, 99 �1954�.
�2� M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 �1968�.
�3� In the context of super-radiance and of atom-molecule inter-

conversion in cold atoms, the Tavis-Cummings model is often
referred to as the Dicke model.

�4� R. Bonifacio and G. Preparata, Phys. Rev. A 2, 336 �1970�.
�5� A. V. Andreev, V. Gurarie, and L. Radzihovsky, Phys. Rev.

Lett. 93, 130402 �2004�.
�6� R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 93, 130403

�2004�.
�7� E. A. Yuzbashyan, V. B. Kuznetsov, and B. L. Altshuler, Phys.

Rev. B 72, 144524 �2005�.
�8� M. H. Szymańska, B. D. Simons, and K. Burnett, Phys. Rev.

Lett. 94, 170402 �2005�.
�9� P. R. Eastham, J. Phys.: Condens. Matter 19, 295210 �2007�.

�10� P. R. Eastham and R. T. Phillips, Phys. Rev. B 79, 165303
�2009�.

�11� J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S.

Fillipp, P. J. Leek, A. Blais, and A. Wallraff, e-print
arXiv:0812.2651.

�12� M. Gross and S. Haroche, Phys. Rep. 93, 301 �1982�.
�13� A. Faribault, P. Calabrese, and J.-S. Caux, J. Stat. Mech.:

Theory Exp. �2009� P03018.
�14� C. Emary and T. Brandes, Phys. Rev. Lett. 90, 044101 �2003�.
�15� C. Emary and T. Brandes, Phys. Rev. E 67, 066203 �2003�.
�16� M. Frasca, Ann. Phys. 313, 26 �2004�.
�17� N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,

073602 �2004�.
�18� J. Vidal and S. Dusuel, Europhys. Lett. 74, 817 �2006�.
�19� T. Liu, Y.-Y. Zhang, Q.-H. Chen, and K.-L. Wang, e-print

arXiv:0812.0321.
�20� K. Hepp and E. H. Lieb, Phys. Rev. A 8, 2517 �1973�.
�21� A. Vardi and J. R. Anglin, Phys. Rev. Lett. 86, 568 �2001�.
�22� A. Vardi, V. A. Yurovsky, and J. R. Anglin, Phys. Rev. A 64,

063611 �2001�.
�23� S. Matyjaśkiewicz, M. H. Szymańska, and K. Góral, Phys.

Rev. Lett. 101, 150410 �2008�.

JONATHAN KEELING PHYSICAL REVIEW A 79, 053825 �2009�

053825-6



�24� O. Tsyplyatyev and D. Loss, e-print arXiv:0811.2386.
�25� J. Seke, O. Hittmair, and F. Rattay, Opt. Commun. 70, 281

�1989�.
�26� G. Ramon, C. Brif, and A. Mann, Phys. Rev. A 58, 2506

�1998�.
�27� S. M. Chumakov and M. Kozierowski, Quantum Semiclassic.

Opt. 8, 775 �1996�.

�28� L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed.
�Butterworths, London, 1977�.

�29� J. Dukelsky, G. G. Dussel, C. Esebbag, and S. Pittel, Phys.
Rev. Lett. 93, 050403 �2004�.

�30� A. Kundu, J. Phys. A 37, L281 �2004�.
�31� O. Babelon, L. Cantini, and B. Douçcot, e-print

arXiv:0903.3113.

QUANTUM CORRECTIONS TO THE SEMICLASSICAL… PHYSICAL REVIEW A 79, 053825 �2009�

053825-7


