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Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particu-
larly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and
the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good
interference solutions for reducing vibration other than those normally used in optical experiments must be
explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency
vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free
subspaces that are described in quantum information processing. By removing the need for bulky vibration
isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications
and increase its sensitivity.
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I. INTRODUCTION

Neutron interferometry is one of the most precise tech-
niques used to test the postulates of quantum mechanics, and
it is also one of the most important and precise techniques
used to measure low-energy neutron cross sections �1�. Al-
though the fundamentals of neutron interferometry are easily
recognizable from common optics, the slow velocity of neu-
trons �1680 m/s for the 2.35 Å neutrons used in this study�
and low count rates at the detector �1000/min� demand novel
solutions. The most important of these was the development
of multiblade single-crystal interferometery which enables
high contrast to be observed with only limited beam align-
ment �2,3�. The challenge remains however of making the
experiment robust against mechanical vibrations �4,5�. A
typical single-crystal interferometer has path lengths of 10
cm with a typical 50 �s travel time of neutrons in the sys-
tem. Small-amplitude low-frequency vibrations may signifi-
cantly degrade the contrast. Here we propose a solution to
robust interferometry based on a four-blade single-crystal ge-
ometry that reduces errors introduced by vibrations.

II. INTERFEROMETER SCHEMATIC

The most common three-blade geometry for a perfect-
crystal neutron interferometer �NI� �1� is shown in Fig. 1�a�
along with the four-blade configuration �Fig. 1�b�� that is less
sensitive to low-frequency vibrations.

In the three-blade case the neutron beam, coming from the
left, is coherently split into two paths by the first blade via
Bragg scattering. After being reflected by the second blade,
these two paths are recombined at the third blade. The result-
ant interference is observed at the O- and H-detectors. Note
that we align the y coordinate parallel to the Bragg planes
and the x coordinate is perpendicular to the Bragg planes. In
the four-blade case the situation is nearly identical with the
significant difference that the paths are reflected and cross

each other without interfering at the center of the interferom-
eter; i.e., without a blade there is no mixing of the states.

It is sufficient to take a simple model for noise and to
consider vibrations as sinusoidal oscillations around the cen-
ter of mass of the single crystal, which we write as
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FIG. 1. �Color online� �a� A schematic diagram of the three-
blade neutron interferometer. A neutron beam �with neutron veloc-
ity v� comes from the left, is split by the first blade, is diffracted on
the second blade, and recombines at the third. After passing through
the interferometer, the beam is captured by the O- and H-detectors.
We model vibrations as oscillations of and around the center of
mass of the interferometer, as ��t�=�0 sin��t+��, where � could be
y �transverse vibrations�, x �longitudinal vibrations�, and � �rota-
tional vibrations�. In order to compare oscillations between the
three- and four-blade devices the distance between the blades is set
equal to 2L. �b� A schematic diagram of the proposed interferometer
with four blades. Instead of one diffracting blade here we have two,
which reverses the neutron paths in order to compensate for vibra-
tions. We will compare the performances using the same vibration
modes with the same amplitudes. Note that for the three-blade in-
terferometer the O-detector has the maximum contrast and in the
four-blade interferometer the H-detector has the maximum contrast.
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��t� = �0 sin��t + �� . �1�

For � we can specify any coordinates x, y, and z, or any
angles �such as �, the rotation around z axis�. In order to
motivate the discussion we adopt a simple model for the
neutron-blade interaction that includes all of the necessary
physics. The interaction is that of bouncing of a small par-
ticle �neutron� from a moving heavy wall �the blade� where
the particle is reflected. When the particle is transmitted there
is no interaction �Fig. 2�. We use conservation of momentum
and energy to calculate the neutron’s change in velocity after
bouncing. We require a small enough amplitude and low
enough oscillation frequency that the modified momentum of
the neutron still satisfies the Bragg condition.

Vibrations thus modify the neutron velocities and change
the path length of the neutron inside the interferometer �6–9�.

Using these approximations, it is clear that vibrations
along every axis except the z coordinate will reduce the in-
terferometer contrast. The z component of neutron velocity is
zero and the path lengths are independent of crystal vibration
along the z axis at this level of approximation.

III. VIBRATIONS ALONG THE y AXIS

We first consider vibrations along the y axis. The measure
of the quality of the interferometer is its contrast, so we
calculate and plot the contrast versus the frequency of oscil-
lations. The four-blade version returns higher contrast by
compensating with the third blade for momentum change
introduced by vibration of the second blade. We expect this
compensation to be most precise for low-frequency vibra-
tions.

A. Three-blade interferometer

Assume that the neutron hits the first blade of interferom-
eter at the time t=0. We rewrite Eq. �1� for vibrations along
the y axis where � is a random phase between the arriving
neutron and the vibrating blade,

y�t� = y0 sin��t + �� . �2�

The velocity of the interferometer at the time t is

uy�t� =
dy�t�

dt
= y0� cos��t + �� . �3�

At time t=0, the velocity of the interferometer along the
y coordinate is uy�0�=y0� cos �. Conservation of momen-
tum and energy at the moment t=0 implies that the velocity
of the transmitted neutron does not change, while the re-
flected neutron’s velocities are vrefl�0+�=vxx̂− �vy −2uy�0��ŷ.

The phase difference for the neutron between path I and
path II is

�� = ��path II� − ��path I� =
1

	
�

path II
pds −

1

	
�

path I
pds ,

�4�

where p is the momentum of the neutron and s is the path-
length vector along which the neutron is moving.

For the neutron to travel between the first two blades
takes a time t=2L /vx=2
. The contrast depends on the total
phase difference between the paths. Notice that under these
assumptions the two paths cross the third blade at the same
spot and the travel time along these paths remains 4
. So, the
loss in contrast seen in the presence of vibration is not due to
the finite coherence length of the interferometer but rather is
due to the extra phase shifts introduced by the vibrations.

Using these we find

����� = 16
mn

	

�vy − uy�0���uy�2
� − uy�0�� . �5�

If we assume that uy�t� is slowly varying on the scale
of 2
 �or �
�1�, we can approximate the expression
uy�2
�−uy�0� as a derivative of uy�t�,

����� = 16
mn

	

2�vy − uy�0��2�duy�t�

dt
�

t=


. �6�

The intensity at the O detector is

IO��� = 1 + cos������ + �� �7�

and depends on the random phase �. An experimental phase
� is introduced by a phase flag. We average the intensity
over random phase �:

IO��� =
1

2
�

0

2

�1 + cos������ + ���d� . �8�

The contrast C as usual is defined as

C =
max�I���� − min�I����
max�I���� + min�I����

, �9�

where we vary the phase � to find the max or min.
Fig. 3�a� shows the dependence of the contrast Cy on the

frequency of vibrations along the y axis for the three-blade
interferometer. The contrast was calculated for L=5 cm, a
neutron velocity of v=2000 m /s, and vibration amplitudes
of y0=0.1 �m. Here we observe that the contrast starts to
decrease near 100 Hz.
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FIG. 2. �Color online� A schematic diagram of the neutron scat-
tering from a blade of the neutron interferometer. Due to the crystal
movement, the reflected neutron’s momentum is modified. For the
transmitted case, the momentum remains unaltered.
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B. Four-blade interferometer

As in the three-blade interferometer case, we derive ex-
pressions for the phases the neutron acquires while traveling
along the two interferometer paths. Here, the time for the
neutron to travel between the first two blades is 
=L /vx.
Note that the detector corresponding to the neutron paths
with equal number of reflections for the three-blade interfer-
ometer is O-detector and for the four-blade interferometer it
is H-detector.

Between the first blade and the second, the phases are
identical to the three-blade interferometer case except that 2L
changes to L. The phase difference between path II and path
I is

����� = 8
mn

	

�uy�0� − vy��2uy�0� − 3uy�
� + uy�3
�� .

�10�

Again, as for the case of three-blade interferometer, we as-
sume that the function uy�t� is slowly varying on the scale of

 �or �
�1� and we rewrite the phase change in terms of a
derivative,

����� = 16
mn

	

2�vy − uy�0��	�duy�t�

dt
�

t=
/2
− �duy�t�

dt
�

t=2




= 16
mn

	

3�vy − uy�0��

3

2
�duy

2�t�
d2t

�
t=5
/4

. �11�

Notice that the linear term drops out. This is the source of
the protection against vibrations. The contrast comparison
we make is the O-beam of the three-blade interferometer to
the H-beam of the four-blade interferometer. The intensity at
the H-detector is

IH��� = 1 + cos������ + �� �12�

and depends on the random phase � of vibration. Again we
average the intensity over this random phase:

IH��� =
1

2
�

0

2

�1 + cos������ + ���d� . �13�

We obtain the contrast using Eq. �9�. In Fig. 3�a� we plot
the frequency dependence of the contrast for the four-blade
interferometer. Notice that paths I and II cross the fourth
blade at the same spot. From Fig. 3�a� we clearly see that the
four-blade interferometer is predicted to be much less sensi-
tive to y vibrations.

IV. VIBRATIONS ALONG THE x AXIS

In the case of vibrations along the x axis the momentum
of the neutron is not modified �see Fig. 2�. However the path
length changes depending on the phase � of the oscillations
at t=0.

Here the contrast is primarily limited by the neutron co-
herence length of 1 /�k. The four-blade geometry does not
protect against this and indeed the influence of a finite co-
herence length is slightly worse due to the noise being intro-
duced since the intervals between blades are changed by the
vibrations. In the three-blade case there are two such inter-
vals, while in the four-blade case there are three. So with
finite �k the more blades there are, the worse the noise is.
However, since the acceptance of the NI is small, �k is small
and this contribution to the noise is small.

Here we calculate just the contribution to the loss in con-
trast from the phase shift introduced by vibrations along x
axis. The vibrations along the x axis are

x�t� = x0 sin��t + �� . �14�

In this case the phase shift is due to the paths crossing at a
point displaced from ideal as shown in Fig. 4. Once we find
�x for each interferometer, then �l=2�x tan � sin � and the
phase difference is

����� =
mn

	
v�l . �15�

For the three-blade interferometer, we have 
=L /vx and

�x � x�4
� − 2x�2
� + x�0� , �16�

where we neglect distance x�2
�−x�0� ��1 �m� in compari-
son with L ��1 cm�. For the four-blade interferometer
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FIG. 3. �Color online� �a� Contrast due to vibrations along the y axis. �b� Contrast due to vibrations along the x axis. �c� Contrast due to
rotational vibrations � around z axis and the center of mass. Note that the scale of the frequency axis in �c� is different from those shown in
�a� and �b�.

DECOHERENCE-FREE NEUTRON INTERFEROMETRY PHYSICAL REVIEW A 79, 053635 �2009�

053635-3



�x = x�4
� − 4x�
� + 3x�0� . �17�

Using these �x we can get ��, substitute obtained �� to
find intensities, and average the intensities over different � to
obtain the contrasts.

Figure 3�b� shows the contrast dependence on the fre-
quency of vibrations along the x axis. This should be viewed
as an upper bound on the predicted contrast. The message is
that vibrations along the x axis are not very important even
though the four-blade design is somewhat more sensitive to
them than is the three blade design. In the final analysis the
four-blade design is predicted to have better overall perfor-
mance.

V. ROTATION AROUND THE z AXIS

These vibrations are expected to be the most limiting
since the neutron interferometer has such a small acceptance
angle. In the case of rotational vibrations, we rewrite the
oscillation in terms of the angle � around the z axis,

��t� = �0 sin��t + �� . �18�

For small angles, rotational vibrations can be considered
as translational vibrations, i.e., �r=r��, where r is the dis-
tance from the blade to the center of rotation.

A. Three-blade interferometer

In the three-blade interferometer, the center of rotation is
also the center of mass and the center of the middle blade.
For the point �see Fig. 1�a�� where the neutron path crosses
the blades, the rotational vibrations can be modeled as vibra-
tion along the y axis for the first and last blades and along the
x axis for the path crossing the middle blade. In this case, the
interaction with the middle blade does not change the veloc-
ity of the neutron. At the first blade we have a change in the
momentum of the reflected beam and no change for the
transmitted neutrons,

vpath I�t = 0+� = vxx̂ + vyŷ , �19�

vpath II�t = 0+� = vxx̂ + �− vy + 2u1y�0��ŷ , �20�

where u1y�t�=2L�0 sin��t+�� velocity of the first blade in
the ŷ direction.

The phase difference between the two paths is

����� = ��path II� − ��path I� =
mn

	
��vpath I�2

− �vpath II�2�4
 = 8
mn

	
L�0� sin ��2L�0� sin �

− vy�4
 , �21�

where 
=L /vx.
Substituting this difference in phase into Eq. �7� for the

O-beam intensity and averaging, we find the frequency de-
pendence of contrast �9�. Fig. 3�c� shows this contrast. As an
amplitude of vibrations �0 we used 1 �rad. The value for the
amplitude comes from the current NIST setup, where a vi-
bration isolation table is controlled to this level �5�.

B. Four-blade interferometer

In the four-blade interferometer the center of rotation and
the center of mass coincide between the blades. For points
�see Fig. 1�b�� where the neutron path crosses the blades, the
rotational vibrations are modeled as vibrations along the y
axis. As in the three-blade case the vx component of the
neutron velocity does not change. The velocities are modi-
fied as follows.

For path I:

vy�I:1 → 2� = vy , �22�

vy�I:2 → 3� = − vy + 2L2 + �vy
�2�0� cos��
 + �� ,

�23�

vy�I:3 → 4� = vy − 2L2 + �vy
�2�0��cos��
 + ��

+ cos��3
 + ��� , �24�

where 
=L /vx and the sign of the last cosine term is positive
because the oscillations of the second and the third blades
have a  phase-shift difference.

For path II:

vy�II:1 → 2� = vy + 2�0�2L cos � , �25�

vy�II:2 → 3� = − vy�II:1 → 2� + 2L2 + �vy
�2�0� cos��


+ �� , �26�

vy�II:3 → 4� = − vy�II:2 → 3� − 2L2 + �vy
�2�0� cos��3


+ �� . �27�

The phases along each path are as follows.
For path I:

��I:1 → 2� =
mn

	
v2
 , �28�

x

y

FIG. 4. �Color online� A schematic diagram of the neutron ar-
riving to the third blade. Due to the crystal movement, the paths of
the neutron will not recombine at the ideal point but at �x away
from the third blade.
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��I:2 → 3� =
mn

	
�vx

2 + vy�I:2 → 3�2�2
 , �29�

��I:2 → 3� =
mn

	
�vx

2 + vy�I:3 → 4�2�
 . �30�

For path II:

��II:1 → 2� =
mn

	
�vx

2 + vy�II:1 → 2�2�
 , �31�

��II:2 → 3� =
mn

	
�vx

2 + vy�II:2 → 3�2�2
 , �32�

��II:2 → 3� =
mn

	
�vx

2 + vy�II:3 → 4�2�
 . �33�

The phase difference is

����� = ��II:1 → 2� + ��II:2 → 3� + ��II:3 → 4�

− ���I:1 → 2� + ��I:2 → 3� + ��I:3 → 4�� .

�34�

As before, we can find the IH intensity at the H detector,
average it over the random phase �, and extract the contrast.
This contrast dependence on the frequency of rotational vi-
brations is plotted in Fig. 3�c�. We see that for these rotations
the four-blade interferometer design is significantly more ro-
bust than the three-blade. Notice that for rotational vibrations
the first moment of the loss of contrast is not equal to zero;
all vibrations contribute to the loss of contrast.

VI. CONCLUSION

Our model reconstructs the situation that is normally seen
in neutron interferometry. Vibrations we use in our simula-
tions �with amplitude of 10−7 m in translation� produce
changes in the incident angle of the neutron of much less
than the acceptance angle of the crystal ��5�10−6 rad� and
of a similar order for the 50 Hz frequency range previously
measured �5�. In order to exceed the acceptance angle the
amplitude of vibrations would have to be bigger than
50 �m.

Note that small angle vibrations around the x axis will be
similar to the translational vibrations along the y axis, and
small angle vibrations around y will be similar to the trans-
lational vibrations along x. As mentioned before, vibrations
along the z axis do not influence the contrast.

Taken together these results bring us to the four-blade
experimental geometry for neutron interferometer. Although

the four-blade design leads to a loss of half of the neutron
intensity, we can make up for this loss with a more robust,
small system that can be moved closer to the beam break. We
thus regain and even increase the final neutron intensity at
the detectors. In order to achieve high contrast the proposed
four-blade interferometer system still requires excellent tem-
perature stability �10�.

The robust nature of the four-blade interferometer can
also be understood as a result of dynamical decoupling or
decoherence-free subspace �DFS�. The dynamical decou-
pling analogy �11,12� is easiest to see; the third set of blades
acts to undo the change in momentum introduced by the
second blades. Provided that the noise �motion of the NI� is
the same when the neutron encounters both the second and
third blades, then the momentum error is completely re-
moved.

The DFS �13–15� picture can be seen if two additional
paths are considered. Now we have four paths and an inter-
ferometer that acts over SU�4�; see Fig. 5. The outer two
paths are sensitive to the noise and the inner two are isolated
from it. We are presently installing a five-blade interferom-
eter to test these predictions.

ACKNOWLEDGMENTS

Support provided by NIST is gratefully acknowledged.
The authors are grateful for discussions with D. L. Jacobson,
R. Laflamme, B. Levi, and C. Ramanathan. Discussion with
S. A. Werner about an earlier idea of a four-blade interfer-
ometer for use in gravity and spin-rotation �7� experiments is
gratefully appreciated.

1 2 3 4 5

I

II

III

IV

∆k

∆k

-∆k

∆k

-∆k

-∆k

k

vnoise

FIG. 5. �Color online� A schematic representation of the robust
four-blade interferometer embedded in a five-blade interferometer.
The overall interferometer operates over SU�4� and can be thought
of as a tensor product space of two qubits. A simple abstraction of
the noise generators is ��k at each internal reflection �there is no
noise at the first and final blades�. When we look over the entire
path, two paths have noise �I and IV�, and two paths do not have
noise �II and III�. The noise generator is proportional to
sgn�k� ·v�noise��k for each reflection internal to NI.
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