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We study the stability of Bose-Einstein condensate �BEC� with repulsive and attractive interatomic interac-
tions in a harmonic plus quartic trap �V�r�= 1

2m�2r2+�r4�. We find that BEC with repulsive interaction be-
comes more stable for ��0. For ��0, we observe a different metastability of the condensate even when the
scattering length is positive. For BEC with attractive interaction, we observe dramatic change in the stability

factor
Acr�asc�

aho
due to the anharmonicity. The frequencies of the collective excitations are also modified by the

atomic interaction and by the anharmonicity.
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I. INTRODUCTION

In most of the experiments on ultracold alkali atomic va-
pors, the trapping potential is harmonic. However the choice
of harmonic potential is very special and several recent ex-
periments employ anharmonic traps which rapidly increase
and become steeper at larger distances. A commonly used
trap potential takes the form Vtrap�x�= 1

2m�2x2+�x4 in one-
dimensional Bose-Einstein condensates �BECs�. In the ex-
periments of Stock and co-workers �1,2�, a blue-detuned
Gaussian laser directed along the axial direction makes the
additional quartic confinement. They studied fast rotation of
the 87Rb condensate in such a quadratic plus quartic trap. In
this trap configuration, one can easily increase the rotation
frequency ��� above the trap frequency �2���, which allows
one to study the various phases of the gas: vortex creation,
vortex excitation, and unstable phases. There are a lot of
theoretical calculations mainly using the mean-field theory to
study the quantized circular motion of the trapped conden-
sate �3–10�.

In the present study we are interested in the nonrotating
condensate, where � will be treated as a controllable param-
eter. We assume that � is a small anharmonic parameter. For
��0, the frequency is blueshifted and for ��0, the fre-
quency is redshifted. For the harmonic trapping, with repul-
sive interaction �for which s-wave scattering length �asc� is
positive�, the condensate is always stable for any number of
bosons. However if two-body forces are attractive �asc�0�,
the gas tends to increase its density in the center of the trap.
Naturally a collapse is expected when the number of bosons
exceeds a critical value Acr. For a spherical trap the onset of
collapse is determined by the stability factor k=

Acr�asc�
aho

, where

aho=� �

2�m� is the oscillator length. The mean-field theory
gives k=0.575 �11�, whereas the experimental result is k
=0.459	0.012	0.054 �12�. The many-body Schrödinger
equation predicts k=0.457 �13,14� for a purely harmonic
trap. Low-energy collective excitations in a harmonic trap
with spherical and axial symmetry have also been calculated
by different theoretical methods �11,15�. Recently collective
excitations in anharmonic traps have been investigated and it
has been observed that the frequency shifts of different ex-
citation modes are significant when the atomic interaction is

strong �16�. The stability of excited states of condensate in
an anharmonic trap has also been studied �16�. However
these authors considered either one-dimensional or effec-
tively one-dimensional BEC with repulsive interaction only.
Thus, further theoretical studies of three-dimensional con-
densate in anharmonic traps with both attractive and repul-
sive two-body forces remain to be done.

In the present work we find that the distortion produced
by � in the trap significantly affects the stability of the con-
densate. For repulsive interaction with ��0, the effective
potential in the hyper-radial space, in which the condensate
is confined, becomes shifted upward and becomes steeper at
large distances from the center of the cloud. Energies of the
ground state and higher excitations are shifted upward. In
general we find that stability increases when switching from
a harmonic to an anharmonic potential with ��0. For �
�0 we find the condensate to be metastable even when the
interatomic interaction is repulsive. In this case, the conden-
sate will have a finite decay probability of tunneling out to a
noncondensed Bose gas. More drastic effect has been seen
for negative scattering lengths, which correspond to attrac-
tive interactions. We find that the distortion makes the insta-
bility quicker and sets up new critical stability factor k. For
the repulsive BEC we consider 87Rb atoms with asc
=0.004 33 oscillator units �o.u.�, which corresponds to the
JILA experiment. For the attractive BEC we consider 85Rb
atoms with tunable interaction �scattering length tuned
by Feshbach resonance� following the experiment by Roberts
et al. �12�.

The paper is organized as follows. In Sec. II we present
the approximation used to solve the many-body Schrödinger
equation for large number of trapped bosons. In Sec. III we
discuss our results and conclusions are drawn in Sec. IV.

II. METHODOLOGY

Early theoretical studies on BEC were based on the mean-
field approximation which results in the Gross-Pitaveskii
�GP� equation for contact two-body interaction �11�. In the
mean-field approximation the total condensate wave function
is taken as a product of single-particle wave functions. Thus
the effect of atomic correlation is completely ignored. It was
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pointed out by several authors �17–19� that mean-field ap-
proximation is inadequate especially for the attractive con-
densate for the following reasons. First, for the attractive
interaction, the atoms come closer and closer, making the
central density of atomic cloud high. Hence one can no
longer ignore the effect of atomic correlations. Second, the
presence of an essential singularity at r→0 for the attractive
contact interaction makes the Hamiltonian unbound from be-
low. Naturally a full quantum many-body Schrödinger equa-
tion �with a realistic interaction, which should be strongly
repulsive for r→0� is called for. In our study, we solve the
many-body Schrödinger equation by the potential-harmonic-
expansion method �PHEM�, which basically uses a truncated
basis set, keeping all two-body correlations. This is perfectly
justified for the dilute condensate. Thus, in our method, we
go beyond the mean-field approximation.

The basic idea of the PHEM is presented briefly below.
The details can be found in Refs. �19–22�. After elimination
of the center-of-mass motion, the Hamiltonian for A=N+1
identical trapped bosons is

H = �
i=1

N

�
i

2 + Vtrap + Vint�
�1, . . . ,
�N� , �1�

where Vtrap is the externally applied harmonic plus quartic

trap. The set of N Jacobi vectors �
�1 , . . . ,
�N	 describes the
relative motion and Vint is the sum of all pairwise interac-
tions. Hyperspherical-harmonic-expansion method �HHEM�
is an ab initio many-body tool used to solve the many-body
Schrödinger equation. The hyperspherical variables are con-
stituted by the hyper-radius r and �3N−1� hyperangles �2N
spherical polar angles ��� j ,� j� , j=1,N	 associated with N
Jacobi vectors and �N−1� hyperangles �2 ,3 , . . . ,N	 giv-
ing their relative lengths�. The total wave function is ex-
panded in the complete set of hyperspherical-harmonic �HH�
basis. The HH is the eigenfunction of the 3N-dimensional
hyperorbital angular momentum operator and has the form
�20�

Y �L� = Yl1m1
��1,�1�


j=2

N

Yljmj
�� j,� j�

�j�PLj

ljLj−1� j� , �2�

where Ylm��� is a spherical harmonic and the function
�j�PLj

ljLj−1� j� is expressed in terms of Jacobi polynomials
�20�. The symbol �L� is a concise notation for the set of
�3N−1� quantum numbers �2N orbital and azimuthal
��ljmj� , j=1,2 , . . . ,N	 and �N−1� hyperspherical �nj , j
=2, . . . ,N ; n1=0	� quantum numbers. Due to the large de-
generacy of the HH basis, HHEM is severely restricted to
three-body systems only. Thus, although HHEM is a com-
plete many-body approach, including all correlations, it can-
not be applied to a typical BEC containing a large number of
bosons. However, in a typical experimentally achieved BEC,
the interparticle separation is very large compared with both
the ranges of interatomic interactions and �asc�. Hence three-
and higher-body correlations in the condensate wave func-
tion can be safely ignored �11,19,22�. In 1983 Fabre de la
Ripelle �21� proposed an approximate but manageable way
to include all two-body correlations by choosing a subset of

the full HH basis, which is necessary and sufficient for the
expansion of the two-body potential V�rij� to expand the �ij�
Faddeev component. This subset is called potential harmon-
ics �PHs� and is clearly independent of the coordinates of the
�A−2� noninteracting particles. Closed analytic expressions

are possible for the PH basis �21�. Choosing 
�N=r�ij, we have
�lk=0, mk=0, nk=0; k=1, N−1	. The full wave func-
tion is then written as a sum of all pairwise Faddeev compo-
nents. Since only two-body correlations are relevant, the
Faddeev component for the �i , j� interacting pair is a function
only of r�ij and r. Hence it can be expanded in the PH appro-
priate for the �ij� partition. The expansion in the PH basis
offers a complete description of two-body correlation and
ignores three- and higher-body correlations. The contribution
to the total orbital and grand orbital angular momenta comes
only from the interacting pair.

The PH basis function has an analytic expression �21�

P2K+l
l,m ��N

�ij�� = Ylm��ij�
�N�P2K+l

l,0 ��Y0�D − 3�, D = 3N .

�3�

�N
�ij� represents the set of hyperangles corresponding to the

�i , j� partition �
�N=r�ij� and Y0�3N−3� is the HH of order
zero in the �3N−3�-dimensional space spanned by

�
�1 , . . . ,
�N−1	 Jacobi vectors.  is the hyperangle given by
rij =r cos . The set of �3N−1� quantum numbers of HH is
now reduced to only three for any number of particles. These
are

l1 = l2 = ¯ = lN−1 = 0, lN = l , �4�

m1 = m2 = ¯ = mN−1 = 0, mN = m , �5�

n2 = n3 = ¯ = nN−1 = 0, nN = K . �6�

Hence the three independent quantum numbers are L=2K
+ l, L= l, and M =m. As there are only three active angle
variables for any N, the numerical difficulty in the imposition
of symmetry and calculation of potential matrix element is
tremendously simplified. The full wave function � is decom-
posed into Faddeev components

� = �
ij�i

A

�ij , �7�

and �ij is expanded in the appropriate PH basis,

�ij = r−��3N−1�/2��
K

P2K+l
lm ��N

�ij��uK
l �r� · �8�

The two-body Faddeev component satisfies

�T + Vtrap − E��ij = − V�rij� �
kl�k

A

�kl. �9�

Summing both sides over all �ij� pairs, we get back the full
many-body Schrödinger equation.

But the convergence of the above expansion is slow, since
the first term of the expansion basis is a constant and does
not reflect the strong two-body repulsion for rij→0. We in-
clude a short-range correlation function ��rij� in the PH ex-
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pansion to enhance the rate of convergence. Thus in the
correlated-potential-harmonic-expansion method �CPHEM�,
Eq. �8� is replaced by

�ij = r−��3N−1�/2��
K

P2K+l
lm ��N

�ij��uK
l �r���rij� · �10�

The need for such a correlation function can also be under-
stood from the experimental context. In a typical BEC ex-
periment the condensate is kept at a very low temperature
and in very dilute condition. Hence only binary collision at
almost zero kinetic energy is relevant, which is completely
described in terms of the s-wave scattering length. Hence we
obtain ��rij� as the zero-energy solution of �ij�-pair relative
motion in the potential V�r�ij�,

−
�2

m

1

rij
2

d

drij
�rij

2 d��rij�
drij

� + V�rij���rij� = 0. �11�

The correlation function quickly attains its asymptotic form
C�1−

asc

rij
� for large rij. The asymptotic normalization is cho-

sen to make the wave function positive at large rij �13�. Sub-
stitution of Eq. �10� into the many-body Schrödinger equa-
tion and projection on a particular PH gives a set of coupled
differential equations,

−
�2

m

d2

dr2 + Vtrap +
�2

mr2 �L�L + 1� + 4K�K + � + � + 1�	 − E�
�UKl�r��K�fKlVKK��r�fK�lUK�l�r� = 0, �12�

where Vtrap= 1
2m�2r2+�r4 is the externally applied trapping

potential. UKl�r�= fKluK
l �r�,L= l+ 3A−6

2 , �= 3A−8
2 , �= l+ 1

2 , and
fKl is a constant representing overlap of the PH for interact-
ing partition with the full set, which is given in Ref. �21�.
The potential matrix element VKK��r� is given by

VKK��r� = �hK
��hK�

���−1/2�
−1

+1

PK
���z�

�V�r�1 + z

2
�PK�

���z���r�1 + z

2
�Wl�z�dz ·

�13�

Here hK
�� and Wl�z� are, respectively, the norm and weight

function of the Jacobi polynomial PK
���z� �23�. Numerical

procedure used to handle the extreme rapid variation in Wl�z�
near z=−1, especially for large A, and the technique used to
calculate the integrals with large precision even when A
=14 000, are well described in previous works �13,19�. The
set of CDEs is solved by hyperspherical adiabatic approxi-
mation �24,25�, in which potential matrix together with hy-
percentrifugal repulsion is diagonalized for a fixed value of
r. The lowest eigenvalue gives the lowest eigenpotential,
�0�r�, as a parametric function of r. This �0�r� is the collec-
tive potential as a function of the hyper-radius �r�, in which
the condensate moves in the hyper-radial space. The energy
and wave function of the system are then obtained by solving
the adiabatically separated hyper-radial equation for the col-
lective motion with �0�r� as the effective potential.

III. RESULTS

The interatomic potential has been chosen to be the van
der Waals potential with a hard core of radius rc, viz.,
V�rij�=� for rij �rc and =−

C6

rij
6 for rij �rc. The strong short-

range repulsion is parametrized by the hard core. The
strength �C6� is known for a given type of atom. We use o.u.
corresponding to the trap frequency ��� of the JILA experi-
ment with 87Rb atoms �26�. For Rb atoms, C6=6.4898
�10−11 o.u. In the limit of C6→0, the potential becomes a
hard sphere and rc coincides with the s-wave scattering
length asc. For the potential including the long-range part, a
tiny change in rc may cause an enormous change in asc,
including sign �27�. As rc decreases from a large value, asc
decreases, and at a particular critical value of rc, it passes
through an infinite discontinuity from −� to +� �13�. There-
after the potential supports a two-body bound state. This pat-
tern repeats as rc decreases further. Positive values of asc
correspond to repulsive potential, whereas negative asc val-
ues correspond to attractive potential. Thus minute tuning of
rc can cause the effective potential to change from attractive
to repulsive. In the laboratory this is achieved by Feshbach
resonances �12,28�.

A. Repulsive condensate with ��0

For the repulsive BEC we consider the condensate con-
taining 87Rb atoms. We choose the scattering length asc
=0.004 33 o.u. at trap frequency �=77.78 Hz. These pa-
rameters correspond to the JILA experiment �26�. In Fig. 1
we plot the ground-state energy per particle �

E0

A � versus A, for
condensates containing up to 14 000 atoms in the spherical
harmonic trap ��=0�. The value of rc is chosen to be 1.21
�10−3 o.u., which gives asc=0.004 33 o.u. from the
asymptotic ��rij�, having one node. In the same figure, we
also present the results obtained from the GP equation, for
comparison.

In Fig. 2, the ground-state energy per particle,
E0

A , is plot-
ted as a function of anharmonicity parameter �, for small
distortions and for selected number of particles in the con-
densate. The effect of anharmonicity is quite prominent even
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FIG. 1. �Color online� Plots of ground-state energy per particle
in o.u. for 87Rb atoms �with asc=0.004 33 o.u.� as a function of A,
calculated by PHEM and GP equation.
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when � is quite small and
E0

A gradually increases for ��0.
The effect is larger for larger A. This can also be visualized
from Fig. 3, where we plot the lowest eigenpotential, �0�r�
for harmonic and anharmonic ��=0.0001 o.u.� trappings for
A=500. In our many-body picture, �0 is the effective poten-
tial in which the condensate is trapped in the hyper-radial
space. For �=0, �0 is roughly harmonic, but shifted upward
due to the repulsive interatomic interaction. As the conden-
sate is very dilute, the effect of harmonic trapping is domi-
nating. Now for �=0.0001 o.u., �0 becomes upwardly
shifted, the shift being significant. It also becomes tighter as
the quartic term grows much faster than the quadratic term
for larger distances from the center of the atomic cloud. This
causes stronger binding and naturally ground-state energy
will increase. In Ref. �2�, the strength of quartic admixture
was �=10−3.

The effect of larger anharmonicity is shown in Fig. 4,
where we plot

E0

A as a function of interaction strength �asc�
for chosen values of � �=0, 10−4, 10−3, and 10−2 o.u.� and a
fixed value of A �=100�. The energy per particle increases
slowly for �=0. For small values of � �10−4 and 10−3 o.u.�
the curves are nearly parallel to the �=0 curve, indicating
that the effect of anharmonicity is small. This is because the
chosen values of scattering length are quite small and the

condensate is extremely dilute. But the effect is appreciable
for �=0.01, and ground-state energy significantly increases
even when the weakly interacting condensate is very dilute.

For the same range of interatomic interaction and same A,
we plot the lowest excitation frequency, �M = �E1−E0� /�, as
a function of asc in Fig. 5. For �=0, the frequency of the
lowest breathing oscillation is nearly double the external trap
frequency, which is 2 in our chosen unit. For �=0.0001, the
frequency is shifted to 2.31 and for �=0.001, it is 3.63, for a
noninteracting condensate �asc=0�.

The results for larger scattering length �asc
=0.004 33 o.u.� and for larger anharmonicity are shown in
Fig. 6, where

E0

A is plotted against A for chosen values of �.
The effect is quite large due to magnified effects of the in-
teratomic interaction.

B. Repulsive condensate with ��0

Drastic effects are seen for ��0, for which the excitation
frequency is redshifted. In Fig. 7, the effective potential is
plotted as a function of r, for A=500, �=−0.000 02 o.u.,
and asc=0.004 33 o.u. We observe dramatic change in the
effective potential, which poses the important question of

Α = 1000

Α = 500

Α = 100

λ

E
A

0

0.5x10 1.0x10 1.5x10 2.0x10 2.5x10 3.0x10−5 −5−5 −5 −5 −5
1.6

1.8

2

2.2

2.4

2.6

2.8

3

0

FIG. 2. �Color online� Plots of ground-state energy per particle
in o.u. as a function of anharmonicity �, for different indicated
values of A.
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FIG. 3. �Color online� Plot of effective potential �lowest eigen-
potential� �0�r� in o.u. against r for A=500 bosons for harmonic
�lower curve� and anharmonic traps �upper curve�.
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FIG. 4. �Color online� Plot of ground-state energy per particle in
o.u. for A=100 bosons, as a function of asc for different � ��0.01,
0.001, 0.0001, and 0.0 in o.u. respectively from top to bottom�.
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FIG. 5. �Color online� Lowest excitation frequency of breathing
mode ��M� in o.u. for A=100 bosons as a function of asc for dif-
ferent � as indicated in figure.
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stability of the condensate even when the scattering length is
positive.

From Fig. 7 we see that the condensate has a metastabil-
ity, but of a nature different from the usual one �harmonic
and asc�0�. It has a large tunneling probability to tunnel out
of the condensate to larger distances, giving rise to a non-
condensed Bose gas. The tunneling probability can be calcu-
lated using the semiclassical WKB approximation. In the
case of an attractive condensate in a harmonic trap, a very
deep well appears on the left side of the metastable region
�MSR� �13� and just before collapse �A slightly less that Acr�
the metastable condensate tunnels inward and settles down to
a lower-energy state within the well, forming bound clusters.
The released binding energy causes heating. In that case
�0�r� increases steeply on the right side and the condensate
will decay only through the intermediate barrier near origin,
forming bound clusters of atoms. For positive asc, atoms try
to be further away from each other. When � becomes nega-
tive, a metastable region and a barrier on the right of the
MSR appear, the effective potential decreasing thereafter.
Hence the condensate will easily tunnel out of the trap �see
Fig. 7�. But this time there will be no cluster formation; the
atoms will escape outward from the metastable trap and form
a dilute noncondensed Bose gas. Thus we fail to get a per-
manently stable condensate for ��0, asc�0. As � decreases

�for a given A and a fixed positive asc�, tunneling probability
increases and lifetime of the metastable condensate de-
creases. In this case, there will be a critical value of � at
which the metastable region of Fig. 7 just disappears, beyond
which no metastable condensate is possible. Note that we
tacitly assume that the external field producing the anhar-
monic trapping is of finite spatial extent. Otherwise even a
small negative value of � will exclude a metastable solution.
This collapse occurs for less negative values of �, as A
increases. For example, for A=1000, collapse occurs at
�=−0.000 01 and for A=1200 collapse sets in at �=−8
�10−6 �both for asc=0.004 33 o.u.�.

In Fig. 8,
E0

A is plotted against negative � for asc
=0.004 33 o.u. and selected number of particles. The
ground-state energy per particle rapidly decreases even for
very small change in � and the effect gets enhanced for
larger A.

C. Attractive condensate with ��0

Next we study the stability of an attractive condensate in
a positive anharmonic trap. The commonly studied instability
arises from attractive interactions in a harmonic trap. For our
purpose, we choose the 85Rb condensate in the JILA trap
where the controlled collapse was observed in the harmonic
trap. In this experiment �12,28� Feshbach resonance was
used to tune different negative scattering lengths and then
find the critical number which determines the stability factor.
In our many-body approach we just tune the cutoff radius to
make the condensate more attractive, i.e., making asc more
negative. In Table I we present the chosen asc values �12,28�
and the corresponding cutoff radii rc. For chosen values of
asc �negative� and � �positive� we calculate �0�r� for increas-
ing number of particles. The curve has the same pattern as
that for an attractive condensate in a harmonic trap �see Fig.
4 of Ref. �13��. For smaller values of A, as r increases from
zero, �0�r� decreases sharply from a large positive value,
passing through a finite minimum, increases sharply again to
an intermediate finite barrier, decreases again, reaching a lo-
cal minimum, and then increases with r. The last well is the
MSR in which the attractive condensate resides. For large r,
�0�r� increases more steeply as positive � increases. For
fixed negative asc and positive �, the MSR gradually shrinks

λ = 0.001

λ = 0.0

λ = 0.0001

A

E
A

0

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200 250 300 350 400 450 500

FIG. 6. �Color online� Plot of ground-state energy per particle in
o.u. as a function of A for different anharmonicity as indicated in
figure.
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FIG. 7. �Color online� Plot of effective potential �0�r� against
r in o.u. for A=500 bosons in anharmonic trap with �
=−0.000 02 o.u.
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FIG. 8. �Color online� Plots of ground-state energy per particle
�in o.u.� as a function of � for different indicated particle numbers.
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with increasing A, and finally at a critical value A=Acr, it
disappears completely. The condensate is metastable for A
�Acr and becomes unstable for A=Acr. The critical stability
factor is again given by k=

Acr�asc�
aho

, where aho is the oscillator
length. For a fixed �, we calculate Acr for each of the chosen
negative values of asc and plot 1

Acr
against �asc� in Fig. 9.

The points are nearly on a straight line for a fixed �. From
a linear least-squares fit, we calculate the slope of the straight
lines. The slope of each graph determines the critical stability
factor for different anharmonicities. In Table II, we present
the value of k for different distortions �. The effect is really
dramatic. The anharmonicity causes quicker collapse. As asc
becomes more negative, the atoms come closer due to attrac-
tive interaction. Furthermore, with increasing positive �, the
effective potential becomes steeper in the outer region, forc-
ing the atoms toward the center of the atomic cloud, tending
to increase the central density. Both these effects cause
shrinking of the MSR and thus collapse sets in quicker.

The situation will be more interesting for the case with
negative �. In Fig. 10 we have shown the effective potential
with asc=−1.832�10−4 o.u. and �=−7�10−6. Here the
metastable condensate is now bounded by the two neighbor
barriers. The left-side barrier is the effect of negative scatter-
ing length as one gets for the attractive condensate in the
usual case of harmonic trapping, whereas the right-side bar-
rier is the effect of negative anharmonicity which basically

corresponds to finite optical trap. Naturally in such situation
the metastable condensate will have the probability to tunnel
out the trap through both the barriers. Figure 10 corresponds
to A=2000 bosons in the trap. We have checked that increas-
ing the value of ��−1�10−4, the barrier on the right side
quickly decreases even when A is quite small ��100�. Now
increasing A=300, we observed that the metastability just
disappears and the condensate will leak completely as ex-
pected, whereas keeping � fixed, if we tune asc to more nega-
tive values, the metastable condensate now will leak through
the left-side barrier. As there are two competing factors in
this case, depending on the most dominating part, the form
of the effective potential will change abruptly.

IV. CONCLUSIONS

We have investigated the properties of Bose-Einstein con-
densates in a harmonic plus quartic trap for both attractive
and repulsive interatomic interactions. The coefficient of the
quartic term ��� has both positive and negative values. For
positive �, the trap becomes steeper. As a consequence en-
ergy per particle and excitation energy increase with increas-
ing positive � and positive asc, as expected. Interesting fea-
tures are observed for negative �. For a finite extent of the
trap and for small negative �, energy per particle decreases
as expected. For larger negative �, but repulsive interaction
�asc�0�, a metastable region is formed in the effective po-
tential �0�r�, permitting leakage of particles to larger dis-
tances away from the condensate cloud. The escaped atoms
form a noncondensed Bose gas with no increase in tempera-

TABLE II. Calculated stability factors for the above set of asc

values with different anharmonicities in the external trap.

Distortion ��� k=
Acr�asc�

aho
Experimental value �12�

0.0 0.453 0.459	0.012	0.054

0.0001 0.394

0.001 0.307

0.01 0.226

r

0ω
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1000
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2500
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FIG. 10. Plot of effective potential �0�r� against r in o.u. for
A=2000 bosons in an anharmonic trap with �=−7�10−6 and asc

=−1.832�10−4 o.u.

TABLE I. Selected values of asc reported by Roberts et al. �12�
to study the controlled collapse of 85Rb atoms. The potential is van
der Waals with C6=6.4898�10−11 o.u. The required values of rc

are obtained from the two-body solution in the zero energy.

asc

�o.u.�
rc

�o.u.�

−1.836�10−4 1.3955�10−3

−1.7901�10−4 1.3960�10−3

−1.3885�10−4 1.4003�10−3

−9.7538�10−5 1.4050�10−3

−7.2293�10−5 1.4080�10−3

a

λ = 0.0
λ = 0.0001

λ = 0.001

λ = 0.01

A
1

sc

cr

6x10 −5 8x10−5
0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007
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0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

FIG. 9. �Color online� Plots of 1
Acr

against �asc� for a condensate
of 87Rb atoms with tunable interaction for different indicated values
of � �in o.u.�.
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ture. This metastability is very different from the metastable
condensates for attractive interaction �asc�0�, where atoms
from the condensate tunnel through an intermediate barrier,
into a deep narrow well near the center, forming clusters and
heating the cluster gas by the released binding energy.

The situation is also interesting for attractive condensates
�asc�0� with positive �. Attractive interaction in a harmonic
trap produces a metastable region in the effective potential.
With increase of particle number, the metastable region
shrinks and at a critical value �=Acr�, it just disappears sig-
naling a collapse of the metastable condensate. For positive
�, �0�r� becomes steeper in the outer region, forcing atoms

inward. On the other hand as A increases for a negative asc,
atoms tend to come closer together toward the origin. Both
the effects being in the same direction, collapse occurs
sooner and the critical stability factor decreases as positive �
increases.
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