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We study how well magnetic models can be implemented with ultracold bosonic atoms of two different
hyperfine states in an optical superlattice. The system is captured by a two-species Bose-Hubbard model, but
realizes in a certain parameter regime actually the physics of a spin-1/2 Heisenberg magnet, describing the
second-order hopping processes. Tuning of the superlattice allows for controlling the effect of fast first-order
processes versus the slower second-order ones. Using the density-matrix renormalization-group method, we
provide the evolution of typical experimentally available observables. The validity of the description via the
Heisenberg model, depending on the parameters of the Hubbard model, is studied numerically and analytically.
The analysis is also motivated by recent experiments [S. Folling et al., Nature (London) 448, 1029 (2007); S.
Trotzky et al., Science 319, 295 (2008)] where coherent two-particle dynamics with ultracold bosonic atoms
in isolated double wells were realized. We provide theoretical background for the next step, the observation of
coherent many-particle dynamics after coupling the double wells. Contrary to the case of isolated double wells,
relaxation of local observables can be observed. The tunability between the Bose-Hubbard model and the
Heisenberg model in this setup could be used to study experimentally the differences in equilibration processes
for nonintegrable and Bethe ansatz integrable models. We show that the relaxation in the Heisenberg model is
connected to a phase averaging effect, which is in contrast to the typical scattering driven thermalization in
nonintegrable models. We discuss the preparation of magnetic ground states by adiabatic tuning of the super-

lattice parameters.
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I. INTRODUCTION

One of the most exciting recent events in physics has been
the increasing overlap between two previously disjoint fields,
quantum optics and condensed matter physics. This has be-
come possible due to the enormous progress in cooling dilute
bosonic and also fermionic gases down to temperatures
where, respectively, Bose-Einstein condensation and Fermi
degeneracy (temperatures well below the Fermi energy) are
reached.

A very attractive feature of this new class of experiments
is that they provide the arguably cleanest realization of the
(bosonic) Hubbard model [1], which with nearest-neighbor
hopping and on-site interaction is the minimal model of
strong correlation physics [2].

Here, we describe and analyze numerically a particular
setup with ultracold bosons of two species in an optical su-
perlattice, described by a Bose-Hubbard model. In the limit
of strong on-site interactions, the system can be described by
the spin-1/2 Heisenberg antiferromagnet or ferromagnet, de-
pending on the parameters of the superlattice. The motiva-
tion is fourfold:

(i) In the vein of Feynman’s idea to simulate quantum
systems by other quantum systems [3], it would be a great
achievement to implement models of magnets such as the
Heisenberg model with ultracold atoms in optical lattices.
In condensed matter systems, collective magnetism arises
from the Coulomb interaction and the particle statistics
which cause (super)exchange processes [4—10]. In particular,
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exchange interactions resulting from second-order hopping
processes in the Fermi-Hubbard model dominate its behavior
in the limit of strong on-site interaction and are captured by
an effective spin model, namely, the Heisenberg antiferro-
magnet [10-12].

While collective magnetism has been widely studied in
solids over the decades, several experimental restrictions ap-
ply quite generally: it is generally far from clear to what
extent the typical simplified models are quantitatively realis-
tic and how to obtain the interaction parameters. External
control of these parameters is very difficult. Moreover, quan-
tum magnetism becomes particularly interesting in low di-
mensions. In real effectively low-dimensional solids it is
however hard to control or assert the effect of the weaker
interactions in the second and/or third dimensions. Last but
not least, solids give us only access to the linear response
regime as sampled, e.g., by neutron scattering. Questions of
out-of-equilibrium many-body dynamics are essentially inac-
cessible.

Experiments with ultracold atoms in optical lattices con-
stitute clean and well-tunable manifestations of the Bose- or
Fermi-Hubbard model [1,13]. To implement magnetic sys-
tems, the most straight forward approach would hence be to
use a gas of ultracold fermions. However, cooling of fermi-
onic gases to the quantum regime is a considerably harder
task due to the lack of s-wave scattering among identical
fermions [14-18]. Hence it is desirable to develop an alter-
native route via gases of ultracold bosons. Our investigations
follow this idea [19-23]. Although we focus here on one
dimension, analogous setups in higher dimensions [24] could
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FIG. 1. (Color online) (a) Tight-binding system parameters for
our system of ultracold bosons of two species (1,]) in a one-
dimensional optical superlattice (1). (b) If the phase shift between
the two laser potentials (dashed lines) is zero, the minima of the full
potential (solid line) are equidistant, the Wannier wave functions for
each site are reflection symmetric, and hopping parameters t and t'
are hence equal.

be used to investigate a plethora of frustrated spin systems
that are hard to access analytically and numerically.

(ii) The superlattice structure chosen in our setup (in anal-
ogy to the recent experiments [25,26]) allows in contrast to
[20,21] for the tuning of the effective spin-spin interaction by
changing an alternating scalar potential A (Fig. 1). With the
hopping strength t and the on-site interaction U of the Hub-
bard model, the coupling in the corresponding effective spin
model is then 482U/ (U?~A?). This allows on the one hand to
switch for the effective model between the Heisenberg ferro-
magnet and antiferromagnet. On the other hand one might
hope to increase for a fixed on-site interaction U the effective
coupling by choosing A~ U. In this case, the relevant phys-
ics would become visible at correspondingly higher tempera-
tures. However, the validity of the effective model breaks
down in the vicinity of A~U. So one has to balance the
validity of the Heisenberg description and the temperatures
needed to observe the quantum effects. To this purpose, the
parameter A can be easily varied and used to tune to the
Heisenberg regime in controlled fashion.

(iii) In recent experiments [25,26] by the Bloch group, the
same optical superlattice as the one discussed here was used.
But its parameters were chosen such that the superlattice
decomposed actually into isolated double wells. The experi-
ments analyzed dynamics in these double wells and con-
trasted in particular first-order (hopping) processes (Hubbard
regime) versus slower second-order processes (Heisenberg
regime). The next step would be to observe coherent many-
particle dynamics after coupling the double wells. We ana-
lyze such a situation by the time-dependent density-matrix
renormalization-group (DMRG) method [27,28]. We focus
on the coherent evolution of an initial Néel state and the
differences between the Heisenberg and the Hubbard regimes
and present the experimentally available observables.
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(iv) Besides testing the coherence in the experiments, the
setup allows one to address questions of nonequilibrium
many-particle systems, which is in general difficult for all
present analytical and numerical methods. Contrary to the
setup of isolated double wells, one observes for the many-
particle dynamics in our setup a relaxation of local quanti-
ties. This is an indicator for convergence of subsystems with
finite real-space extent to a steady state. Recently, the mecha-
nism of how such a relaxation may occur was clarified for
(free) integrable systems in [29]. Corresponding examples
can also be found in [30-33]. For a few nonintegrable sys-
tems the question was analyzed numerically in [34-36] and
analytically, e.g., in [37,38]. In general one expects that in
nonintegrable models, thermalization occurs (due to scatter-
ing processes) and that in integrable models, relaxation (to a
nonthermal steady state) occurs via phase averaging effects
[29]. This is demonstrated here analytically for the Heisen-
berg model. Our setup could be used to study experimentally
such relaxation processes—in particular, the qualitative dif-
ferences between nonintegrable systems, here the Bose-
Hubbard model, and Bethe ansatz integrable models [39,40],
here the Heisenberg model.

We also fill a certain gap of current literature on such
topics (see, e.g., [20-22]) by emphasizing that the Heisen-
berg spins of the effective model, obtained by the Schrieffer-
Wolff transformation (in Appendix A) [41], should not be
identified directly with the two boson species. A spin up of
the effective model corresponds rather to a particle of species
1 dressed by hole-double-occupancy fluctuations. The anal-
ogy holds only for small t/(U = A). The consequences for
experimentally available observables are surprisingly strong.
Recently in [23] a setup of coupled double wells (A=0,
but alternating hopping t#t’ in Fig. 1) was analyzed
numerically—in particular, the possibilities to generate en-
tangled pairs of particles were studied. Again, a perfect map-
ping to a spin model was assumed from the outset. The va-
lidity of this mapping is one central topic of our paper.

The paper is organized as follows. Section II describes the
experimental setup and how it can be described by a Bose-
Hubbard model. Restricting to half-filling, Sec. III and Ap-
pendix A derive by a Schrieffer-Wolff transformation for the
limit of large on-site interactions an effective model which is
the Heisenberg antiferromagnet or ferromagnet. In Sec. IV,
we investigate by time-dependent DMRG the evolution of
typical observables such as magnetization, momentum-space
correlator, and real-space correlator, where the first two are
also available experimentally. The focus is on contrasting the
differences between the full Hubbard dynamics and the cor-
responding effective spin model and also the differences to
the case of isolated double wells [25,26]. We observe indi-
cations for (local) relaxation to steady states. This is dis-
cussed in Sec. V where we also explain how the relaxation
for the Heisenberg model is connected to a phase averaging
effect. Section VI addresses in more detail the question why
and under what circumstances the effective model is a valid
description for the full Hubbard Hamiltonian, especially for
the dynamics. In Sec. VII we argue that the ground state of
the Heisenberg antiferromagnet could be prepared by tuning
an alternating hopping parameter of the superlattice adiabati-
cally. Section VIII gives a short conclusion.
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II. SETUP AND MODEL

In the following, we present a setup of ultracold bosonic
atoms in a one-dimensional optical superlattice that reduces
in certain parameter regimes, where first-order hopping pro-
cesses are suppressed, to the Heisenberg ferromagnet or an-
tiferromagnet. The use of bosons is motivated by the fact that
experimentally access to the low-energy quantum physics is
at the moment still much harder for fermionic systems. In
analogy to the fermionic case, for which the antiferromag-
netic Heisenberg model describes the effective low-energy
physics of the fermionic Hubbard model, we choose to have
two species o € {1, ]} of bosons in the lattice—two hyperfine
states of a bosonic atom. At half-filling (N sites, Ni=N,
=N/2), the effective low-energy model is, as we will see
later, the ferromagnetic Heisenberg model. To allow for tun-
ing the effect of first-order processes and to switch between a
ferromagnetic and antiferromagnetic regime, we employ an
alternating on-site potential A; and call the two sublattices A
and B. The potential minima differ by a value A>0. Such
superlattices can be generated by the superposition of two
laser frequencies of ratio 1:2 (see Refs. [25,26,42] and Fig.
1). Further, the tight-binding approximation with restriction
to the first Bloch band (one Wannier function per site) is
assumed. Then the system is described by the two-species
Bose-Hubbard Hamiltonian,

I:IZ -t 2 (Clj;.iaa.j + HC) + 2 Aina.’i + UE nT,-nU

aij) o.i i
Us
+72 no’i(nai_l)~ (l)

In particular, we choose

{—A/Z for even i

: 2)
A2 for odd i.
The superlattice potential is of the form
V(x) = V, sin®(kx) + V, sin®(kx/2 + ¢). (3)

The amplitude V; of the second potential can be used to tune
A; for our purposes, V;<V,. In Eq. (1) it was assumed that
hopping from a site i to its neighbors i = 1 occurs with equal
amplitude t. In principle, the hopping depends exponentially
on the distance between the potential minima [1,43]. Only if
we choose the phase difference ¢ to vanish as in Fig. 1(b),
the positions of the potential minima will be equidistant for
all vy, and the Wannier wave functions for all sites are re-
flection symmetric. In this case, the hopping will hence be of
equal strength for all bonds, i.e., t=t" in Fig. 1. This situation
is considered in the following.

For the actual analysis of dynamics in Sec. IV, we
will choose equal interspecies and intraspecies interac-
tion, U=U,. This is at the moment the standard situation
for the corresponding experiments. With U=U,, the effec-
tive Heisenberg models, describing the second-order physics,
will turn out to be isotropic. The on-site potential A and
interaction U can be calculated in harmonic approximation
of the lattice potential around its minima. For ¢=0 in
Eq. (3), the corresponding oscillator frequencies are
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fiw. =2VE (Vo= V,/4) = 2V Vo(1 + §11), where E, =15 is
the recoil energy of the laser potential with the shorter wave-
length. For the dependence of the on-site potential on the

lattice parameters follows

A:Vl—g(%—w_)zvl(l—}‘ %) (4)
In order to achieve an effectively one-dimensional lattice,
V(x) is superimposed with two transversal laser beam poten-
tials of a (higher) amplitude V. Within the harmonic ap-
proximation and with the s-wave scattering length a;, the
resulting on-site interactions for two neighboring sites are

[43]
8 V, =+ V4 v\ 4
U.=1|—ak M E. (5)
7T ) E3 r

r

They are in principle not identical. Irrespective of this, the
effective spin model derived in Sec. III would be isotropic
and translation invariant. As we will see in the following for
a set of realistic experimental parameters, we have for the
case V=0 (=A=0) that Vy>E, and V,>U. The on-site
potentials A considered in our numerical simulations of the
Hubbard model [Eq. (1)] are from the interval A €[0,4U].
According to Eq. (4), V; will for nonzero A hence obey V,
>V, and we can thus use U,=U_=U in good approxima-
tion.

For the tight-binding approximation to hold, we need that
energies t, U, and A are well below Zw.=2VE,V,, the
energy scale for vibrations of an atom in one min-
imum of the Ilaser potential. With the hopping t
=%(VOVi/Ef)l/“e‘z‘sVO/ErE, [13,43], we have for example
with A=27/k=800 nm, rubidium atoms (i.e., ak= 70.01),
Vy=8.7E, and V, =~30E, (compare, e.g., to [25]) that t
~0.06E,, U~=~8t, and fiwy=100t. So as long as A is also
well below 100t, the tight-binding approximation for Eq. (1)
using the lowest Bloch band is valid. This will be the case in
the rest of the paper.

II1. EFFECTIVE MODEL

To go to a regime where the physics of the two-species
Bose-Hubbard model (1) reduces to that of a Heisenberg
magnet, we choose half-filling

(N is the total number of lattice sites) and assume the large-U
limit

t<|U = A (7)

In this limit, occupation of a single site by more than one
boson is energetically unfavorable and will occur only in
short lived intermediate states. This means that single (first-
order) hopping processes are suppressed. Besides some hy-
bridization effects, exactly one boson sits on each lattice site
and can be identified with an effective spin on that site (up
and down orientations corresponding each to one of the bo-
son species). The second-order hopping processes as de-
picted in Fig. 2 lead then to nearest-neighbor spin-spin inter-
actions.
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FIG. 2. (Color online) Some second-order hopping processes
(superexchange) contributing to the effective spin model (9) when
first-order hopping processes in the full Hubbard model (1) are
suppressed. The figure displays possible initial states (light color)
with one particle per site and intermediate states (dark color) with
doubly-occupied and empty sites.

We will show below how the effective Hamiltonian can
be derived by a Schrieffer-Wolff transformation. While this
is a well-known procedure, there is an interesting twist to the
interpretation of the result. For the moment let us work with
the naive identification of spins up and down of the effective
model with the two boson species of the full model [Eq. (1)].
We want to derive an effective Hamiltonian describing the
physics of Hubbard Hamiltonian (1) in the subspace H; of
singly-occupied sites,

M, = span{[1),|)}*Y. (8)

The effective Hamiltonian can be deduced from the follow-
ing simple recipe: with exactly one spin per site, the on-site
interaction is ineffective. Hopping processes occur only in
second order, leading to a spin-spin interaction,

Hyr=-J2 (SiST+ 818D+ (J-1) 2§85 (9)
(ij) (ij)

The corresponding coupling strengths J and J, are obtained
by dividing for each possible second-order process (Fig. 2)
the product of the transition matrix elements t-t for the hop-
ping to a neighboring site and back by the energy difference
U=xA (U;*=A) to the intermediate state and adding all such
terms that contribute to the same effective spin-spin interac-
tion (see also [26]),

2¢2 2¢2 422U

J= + = Jy= 4,
T U+A U-A U*-AY 7

U?— A

(10)

The effective Hamiltonian (9) is the XXZ model. From now
on we specialize to U=U,, i.e., J—J,=—J, and have hence the
isotropic Heisenberg ferromagnet for A<U (/>0) and the
isotropic antiferromagnet for A>U (/<0). Note that the
effective Heisenberg Hamiltonian would also be isotropic
and translation invariant if the on-site interaction U would be
different for even and odd sites. If the hopping would be
alternating (t#t’), we would obtain the dimerized Heisen-
berg model.

A common mathematical approach for the deduction of
such effective models is the Schrieffer-Wolff transformation
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[ two species Bose-Hubbard |

1x TR X TR X
e—iS
+ -+ =— + —
Schrieffer-
‘Wolff

FIG. 3. (Color online) Spin up (down) states of the effective
magnetic model are not to be identified directly with a boson of
species T (species |) in the experimentally realized Bose-Hubbard
model. A spin up in the effective model corresponds rather to a

boson of species | with a cloud of hole-double-occupancy fluctua-

S

tions a,;— e'Sa,;e". In the vicinity of A=U, the correspondence

breaks down.

[41]. We are interested in the physics of the subspace H,
with exactly one particle per site. The Hubbard Hamiltonian
couples this subspace in first order of the hopping t to the
rest of the Hilbert space (states with doubly-occupied and
empty sites). The Schrieffer-Wolff transformation,

Afull . iS7y —iS orig . —iS
Heg = eHe™,  H{"™:= 7N, (11)

is a unitary transformation with generator S chosen such that

the transformed Hamiltonian H™' does not contain terms

anymore that couple H; to the rest of the Hilbert space or at
least only in some higher order of t. In Appendix A, a gen-
erator

) t
Szo(UiA) (12)

is derived, such that effective Hamiltonian is

Hyp=Hlly ==X 8, 8+ O(th). (13)
()

The full effective Hamiltonian Af,}}l [Eq. (A16)] still contains

a term i[S’ ,I:I?] representing the remaining coupling of the
s;lbspace "H, to the rest of the Hilbert space which is of order
t.

The method is based on the smallness of S. According to
Eq. (12), it hence breaks down when U~ |A|. The effective
Hamiltonian (13) is only valid for |U= A|>t. Only in this
regime, the first-order hopping processes leading out of H;
are suppressed. See the discussion in Sec. VI

Often spin up (down) states of the effective model are
then identified with a boson of species T (species |) on the
corresponding sites. However, with respect to the original
model [Eq. (1)], it is nor H, itself that is weakly coupled to
the rest of the Hilbert space and evolves according to the
Heisenberg Hamiltonian but the subspace H{"® defined in
Eq. (11). A spin up in the effective model corresponds rather
to a boson of species T with a cloud of hole-double-

occupancy fluctuations a,;— e’a e (see also Fig. 3). The

experimental consequences are surprisingly strong, as we
will see in Sec. IV.

053627-4



MAGNETISM, COHERENT MANY-PARTICLE DYNAMICS,...

IV. TIME EVOLUTION FROM THE NEEL STATE

In the following, numerical results for the evolution of the
system where the initial state is the Néel state

|py=[T1TIT]...) e H, (14)

are presented. This parallels recent experimental investiga-
tions [25,26] of the evolution of corresponding states |T|) in
isolated double wells.

To compare the effect of first- and second-order pro-
cesses, the evolution was done twice for each set of param-
eters (t=1, U=8, various A; see Sec. II), once with the cor-
responding Heisenberg model (in the subspace H,) and once
with the full Hubbard Hamiltonian (in the full Hilbert space),
where the initial state (14) was in fact chosen as the tensor
product of alternatingly having one boson of species T or |
on each site. The two different time scales of first- and
second-order processes become clearly visible. The qualita-
tive differences to the isolated double well situation (as ana-
lyzed in [25,26]) and resulting interesting questions for ex-
perimental investigations are discussed.

A. Errors through experimental limitations
in state preparation and measurement

We shortly want to discuss how well the dynamics of the
magnetic model, the Heisenberg model, can be implemented
experimentally by those of the two-species Bose-Hubbard
model. In the literature on magnetism via ultracold two-
species atom gases in optical lattices [20,21,23], spins up and
down of the magnetic system are usually identified directly
with atoms of species T and | of the ultracold gas. In this
vein, evolution of the Néel state (14) with the Heisenberg
Hamiltonian would be translated into evolution of the state
[TLT1711]...) with the Hubbard Hamiltonian. This is actu-

ally correct only to zeroth order in S.
We want to implement the evolution of a state |¢>) e M,

[Eq. (8)] under the effective Hamiltonian H,g=e¢ ’SHe"S|
by the evolution of a state |¢)=e ’S| qS) e HS"¢ [Eq. (11)] un-

der the Bose-Hubbard Hamiltonian H. The state |¢}) is | ),
superimposed with states where starting from |¢) pairs of
doubly-occupied sites and empty sites were created [e.g., Eq.
(18) and Fig. 3 below]. This can also be interpreted as con-
structing the Néel state with effective spins, each corre-
sponding to a boson accompanied by a cloud of hole-double-
occupancy fluctuations a,;— ¢’*a,,e'S. The decisive point is
now that it seems not possible to prepare such states from
H{™ (and has to our knowledge never been done) but only
some specific states from H,. Hence, instead of starting the
experiment from the initial state |#), one is forced to neglect
the Schrieffer-Wolff transformation and start from the state
|p)—in our example the Néel state. For observables that do
not change the number of doubly-occupied sites, this results
in an error of O(S?).

If we had determined the exact Schrieffer-Wolff transfor-
mation e~ (i.e., S exact to all orders in t) and could actually
implement it, e.g., by time evolution in the experiment, all
measurements would be exact. One could prepare the state
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|#), apply the Schrieffer-Wolff transformation by time evo-
lution to obtain |zﬁ), evolve with the Hubbard Hamiltonian
for some time ¢, apply the inverse Schrieffer-Wolff transfor-
mation, and measure our observable O. This would yield the
exact equality

<¢|e—ﬁleﬂ-t/iﬁ . é . eﬁlefft/iﬁ|¢>
= (PleiSeHitgTS . 0. eiSeHIti IS by (15)

where fleff would now of course be a generalization of the
Heisenberg model with longer ranged interactions.

In Appendix A 1, S is determined to first order in ﬁ
[Eq. (A15)] and correspondingly H.; to first order in the
effective coupling J [Eq. (A21)]. Using this approximation
of S instead of the exact one, the remaining errors in the
observables are of order S%, i.e., O[(73)*]- [1t is not O(S?)

because the operator S, given in Eq. (A14), changes the
number of double occupancies by one and the typical observ-

ables O we are interested in do not.] However, failing to
implement the Schrieffer-Wolff transformation completely,

i.e., measuring (¢le ~Hilih ). e”’”h|d>> instead of Eq. (15),

leads to errors of order &2. This will be demonstrated in an
example (Sec. IV D). In addition to the error from neglecting
or truncating the Schrieffer-Wolff transformation, there is the
error from truncating the effective Hamiltonian (A21). This
accumulates with time and is in principle of order J%t but
may also just result in a sort of rescaling of the time axis.
Also the local observables considered relax relatively
quickly, making this second source of error less important.
In the remainder of the paper, initial state (14), evolved
with Heisenberg Hamiltonian (13), will be called (7). If it is
evolved with the Hubbard Hamiltonian (1), it will be called

(1),
[$(0)) 3= et g) and | (1) = ), (16)
and concerning observables we have explained that
(0)3=(0)4+ 0. (17)

To illustrate the considerations above, let us shortly regard
the case of an isolated double well (two sites). Hamiltonian

and S read (cf. Appendix A)

A

H:[A{,‘l'l:lo,

I:IO=

+H.c.),

S= sl
+H.c.

With this, the effective Hamiltonian and the transformed ini-
tial state are
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. AU o 4 .
== o1 S+ 0S8,

N1 D= (1-id)|1. 1)+ O(S?)
=1, )+ 551 L0y = 5501 1) (18)

So a magnetic state with one particle per site corresponds in
the experimentally realized Hubbard model to the magnetic
state plus an admixture of states with doubly-occupied and
empty sites (Fig. 3). The original Hamiltonian generates with

}EIt doubly-occupied sites to first order in t. Conversely, in the
(full) effective model, such terms are at least of order +* (in
the two-site case here, actually of order t*).

B. Symmetry between the ferromagnetic
and the antiferromagnetic cases

The Néel state |¢) [Eq. (14)] and the effective Hamil-
tonian [Eq. (13)] are both real in the {S;}; eigenbasis B
:={|o)=|0,0...)} (real coefficients and matrix elements).
Typical observables O of interest like .§f for the magnetiza-
tion or §l§] and .§‘l+§j_+.§;“§l_ for correlators are real in that
basis and self-adjoint. It follows that the corresponding ex-

pectation values <0A>¢(t) are identical for the Heisenberg fer-
romagnet (J=1) and antiferromagnet (J=-1): let 0,

= <0’|é|0">, ¢0':= <0-| ¢>’ and u(A)FM,o’,o”(t)
:=(0]Uapm(1)|o’) for the time evolution operator of the
(anti)ferromagnetic Heisenberg model. Then

R 5 (| U(1) - O - Upn(0)| )
=@ uly(®) - 0 upn(0) ]
= & (ufp(0)" - 0 - (upy(1))* b
=(P|Ujpm(®) - 0- Uarm(0)| ). (19)

The evolution of the corresponding observable under the
full Hubbard Hamiltonian (é};s(,) will obey this symmetry to

zeroth order in S. Typically, the resulting curve will coincide
well with the corresponding Heisenberg curve. The smaller
|U?—A?| is chosen, the worse the effective model will cap-
ture the actual dynamics and the stronger deviations from the
corresponding Heisenberg results will be. The specific form
of the deviations, however, will depend on the choice of U,
A, and t. In particular they show no symmetry when switch-
ing between the antiferromagnetic and the ferromagnetic re-
gimes (A = U). To illustrate this further, several plots contain
the two curves A=0 and A=\2U which have, according to
Eq. (10), the same effective spin-spin interaction strength J
except for the opposite sign (FM and AFM, respectively).

C. Numerical method and parameters

For the numerical simulation, a Krylov subspace variant
[44,45] of the time-dependent DMRG algorithm was used
[27,28,46]. For the Hubbard model, the site basis was re-
stricted to a maximum of two particles for each species. In-
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FIG. 4. (Color online) Evolution of the magnetization on a
particular site x, starting from the Néel state and evolving with
respect to the full Hubbard Hamiltonian with U=8 and A> U, and
the isotropic Heisenberg antiferromagnet, respectively. The first-
order processes occur on the time scale t=1 (here 1/J due to the
rescaling of the time axis, where time is given in units of the effec-
tive coupling J) and their amplitude decreases quickly with increas-
ing |U?-A2.

sensitivity of observables to the chosen maximum number of
bosons per site was affirmed. We chose lattice sizes of L
=33 for the Bose-Hubbard model and L=65 sites for the
Heisenberg model. Odd numbers are useful here to have re-
flection symmetric states.

As a matter of fact, boundary effects are much less prob-
lematic here than in ground state calculations, as the initial
state is a product state and correlations between sites are
generated inside a causal cone (the analogon of a light cone;
see Sec. IV E). So as long as measurements are done in the
middle of the system, outside of the causal cones starting
from the boundary sites, results are, except for exponentially
small contributions, identical to those of an infinite system
(thermodynamic limit).

In the time evolution, the absolute difference per physical
time unit between exactly evolved state and the state evolved
via DMRG |[|¢f5' = y2MRG||/ dtN was bounded from above by
£=10"* to =107 and the time step chosen appropriately
between dr=0.1 and 0.01. The errors were determined in a
rigorous fashion by calculating the exact value of [|[k+1)

-H |k)||, where |k) are the Krylov vectors. For all calculated
observables, convergence in the error bound and dt was
checked. The resulting number of basis states, used to repre-
sent the time-evolved state, was <3000.

D. Site magnetization

Figures 4—6 show the evolution of the site magnetization
mx=<3'§)¢ in the Heisenberg model and the corresponding
quantity 7, =(n,—n,)3/2 (=<.§‘§)¢+ O(S?) according to Sec.
IV A) for the full Hubbard Hamiltonian. For the latter, times
were rescaled by the coupling constant J [Eq. (10)] of the
corresponding effective spin model. Site x was chosen to be
in the middle of the system in order to avoid finite-size ef-
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FIG. 5. (Color online) Evolution of the magnetization on a par-
ticular site x, starting from the Néel state and evolving with respect
to the full Hubbard Hamiltonian with U=8 and A<U, and the
isotropic Heisenberg ferromagnet, respectively. The first-order pro-
cesses occur on the time scale t=1. Here the contributions of the
first-order processes cannot be made arbitrarily small as we are
limited by |U?~ A%< U?. The Heisenberg curve here is identical to
the one of the antiferromagnet in Fig. 4 due to symmetry (see Sec.
IV B). The effective coupling J has the same modulus for A=0 and
A= \EU, namely, |J|=4t>/U, but opposite sign. The two curves
show quite different behavior. There is no particular symmetry ex-
cept the one for the second-order physics as discussed in Sec. IV B.

fects (cf. Sec. IV C). For the Heisenberg model (in the ther-
modynamic limit), the site magnetization obeys for symme-
try reasons m,,;=-m,. Analogously, due to invariance under
translations by an even number of sites and particle number
conservation, one has for the Hubbard model (again in the
thermodynamic limit) (n,,+71,.)3=1V, and hence 7i,,,
==, and (141 1)5=2—(ny+n g for all times. As
discussed in Sec. IV C, deviations of our numerical results
from the thermodynamic limit are negligible, although the
simulations are carried out with finite lattice sizes.

The larger |U*-~A?| is (for fixed t=1), the better the
curves for the full Hubbard Hamiltonian coincide with those
of the Heisenberg model. This is consistent with Sec. III as
the perturbative derivation of the effective model becomes
exact in this limit. Note that the deviations between the mea-
surements stem from two contributions here: (a) failure of
preparing the correct H{"® state, i.e., applying the Schrieffer-
Wolff transformation at =0 and (b) failure of measuring S’i
instead of e S85%ei=8~i[8,5]+O(S?). The weight of
those errors which are of order &? vanishes only far away
from |[A|=U.

For the Heisenberg model, we observe relaxation of the
site magnetization from *=1/2 to 0. The oscillations of this
observable occur on the time scale 1/J. The relaxation is
possible due to the continuous spectrum of the Heisenberg
model (in the thermodynamic limit). Here, the convergence
to a steady state is connected to a phase averaging effect, as
is typical for integrable systems. Analytically this can be
seen in a time-dependent mean-field treatment of the Heisen-
berg model which we present in Sec. V B. For the staggered
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FIG. 6. (Color online) Evolution of the occupation number
(nyy+n;»—1 (upper panel) and its variance <n§>—(nx>2 (lower
panel) on a particular site x, starting from the Néel state and evolv-
ing with respect to the full Hubbard Hamiltonian with U=8 and
several A. The two quantities should be exactly zero if the analogy
to the spin model was exact. The analogy breaks when |U?—A?]
goes to zero. In the special case A=0, the system is (additionally
to the invariance under translations by two sites) invariant under
translation by one site plus interchange of particle species. Hence
(ny+n)=1V, for A=0.

magnetization (m,) one obtains (in this approximation) a
damped oscillation with the amplitude decaying as ~1/73/2.
This coincides well with the DMRG data, giving support to
the mean-field approach (see Sec. V B and Fig. 18).

For large |U?—A?| the Hubbard dynamics clearly follow
the curves obtained with the Heisenberg model (second-
order processes) (Figs. 4 and 5). On the shorter time scale
1/t=1 (J/t in the rescaled plots), corresponding to first-order
processes, small oscillations around the Heisenberg curves
are visible. Their amplitude decreases with increasing |U?
—A?|. The perturbative treatment of the system, leading to
the isotropic Heisenberg model, breaks down for |A|~ U. In
this case, the two boson species cannot be interpreted as spin
up or down states anymore and one has an appreciable
amount of double occupancies in the system as demonstrated
in Fig. 6.

Finally, we want to compare those results to the dynamics
for isolated double wells as addressed experimentally in
[25,26]. Figure 7 shows for this case the dynamics of the site
magnetization again for the Hubbard model at various A
>U and the corresponding antiferromagnetic Heisenberg
model. The decisive difference is that no equilibration is pos-
sible in this case. This is due to the fact that the Hamiltonian
has only a few discrete eigenvalues here, as opposed to a
gapless continuous spectrum for the lattice systems in the
thermodynamic limit. In the two-site Heisenberg model we
have only two states in the basis of the $°=0 Hilbert space.
The two eigenstates have energy difference J. The magneti-
zation curve for the Heisenberg curve is hence just a cosine
with frequency J and constant amplitude 1. The dynamics of
the corresponding two-site Hubbard model is determined by
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FIG. 7. (Color online) Evolution of the magnetization [tfi;
:=(ny;—ny;)/2] on one site of an isolated double well, starting from
the Néel state and evolving with respect to the full two-site Hub-
bard Hamiltonian with U=8 and A=10,16,24,32, and the isotropic
Heisenberg antiferromagnet, respectively. Contrary to the case of an
infinite lattice, the magnetization does not relax here. The upper
panel shows (ift;) 5 %(<p|e‘H’/iﬁﬁleH’/iﬁ| ¢). In the lower panel shows
(PleSe~ o=y eiSeHhe=iS| ) ie., there the Schrieffer-Wolff
transformation was accounted for [3' correct to O(UTtA)]. As dis-
cussed in Sec. IV A, the stretching in the curves with respect to
time results from terms of order J? in the effective Hamiltonian.
They originate from fourth-order hopping processes.

three (discrete) incommensurate frequencies. The magnetiza-
tion is hence not completely periodic but due to the relation
to Heisenberg model, a frequency ~/J is still dominating. No
sign of relaxation is visible.

As mentioned above, the differences between Hubbard
and Heisenberg dynamics stem from the fact that the two
Schrieffer-Wolff transformations in Sec. IV A have been ne-
glected. Figure 7 shows in the lower panel the site magneti-
zation for the case where both error sources (a) and (b) have
been corrected. Although this should be hard to implement
experimentally, it is unproblematic for our numerical analy-
sis. We apply the Schrieffer-Wolff transformation (A14), cor-
rect up to O(ﬁ), to the initial state before the Hubbard
time evolution and its inverse before the measurement. As
discussed in Sec. IV A, the remaining deviations from the

Heisenberg curve are then only of order S (Figs. 7 and 8).

E. Correlation functions

The correlation functions in Figs. 9-12 support on the one
hand the results already obtained from the magnetization dy-
namics in Sec. IV D. On the other hand one also sees here
explicitly that correlations spread out inside a causal cone
(analogon of a light cone) defined by the maximum group
velocity. The latter coincides for large |U?—A?| with the
maximum group velocity 2J of the Heisenberg model. One
also notes here that equilibration to a steady state occurs first
for small subsystems. This issue will be discussed in Sec. V.
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FIG. 8. (Color online) Time average of the particle number vari-
ance on one site of an isolated double well (1 =n;+n;), evolving
with respect to the full two-site Hubbard Hamiltonian with several
U and A [J=4U/(U?*-A?)]. The variance should be exactly zero
if the analogy to the spin model was exact as we would have ex-
actly one particle per site then. As discussed in Sec. IV A, the error
is of O(8?) if the Schrieffer-Wolff transformation is neglected com-
pletely [Eq. (17)] and of O(8¥ if its first-order approximation
(A14) is used. In the special case of the isolated double well, the
second-order terms in S vanish [because ﬁ? =0 here, see Eq. (A6)].
Hence, we actually observe O(8%) instead of O(S%). The quantity
on the x axis quantifies O(S). For each curve, either A or U was
kept constant and the other parameter varied. Compare also to Figs.
4 and 6.

F. Momentum distribution and correlators

Experimental access to on-site magnetization or, corre-
spondingly, the particle number difference (“spin imbal-
ance”) has already been demonstrated [25,26]. However
there is no direct access to the real-space correlators. As it
turns out, the standard experimental observable for experi-

10 T T T T T T 1
8 - -
_ | 0.1
o 6 [ =i
8
©
§
5 4r 1
0.01
o ///”/ _
0 e all |I_I]| I I I 0.001
0 0.5 1 15 2 25 3
Jt
FIG. 9. (Color online) Evolution of the analogon

Hp=n )y e=n ) g= 51 ) §npwe—n e of  the
magnetization-magnetization correlation function, starting from the
Néel state and evolving with respect to the full Hubbard Hamil-
tonian with U=8 and A=16. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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FIG. 10. (Color online) Evolution of the magnetization-

magnetization correlation function (3‘;3‘; +€>¢_<§i>¢<§i +0) ¢ Starting
from the Néel state and evolving with respect to the isotropic
Heisenberg antiferromagnet. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.

ments with ultracold atoms, the momentum distribution

(ny=(ny+ny), is to zeroth order in S constant in time. It
measures to this order simply the particle density which is in
the limit of Heisenberg dynamics A>U very close to 1,

2 ni+ — 2 kit il (20)

Ut#/
It follows with Eq. (17)
(myg= )y + OSH) =1+0(S). (1)

Hence one needs to go beyond the measurement of
the momentum distribution. By analysis of shot noise of ab-
sorption images taken by time-of-flight measurements, one

01 T T T -HI.“. LI T
0.08 AFM Heisenberg, | =1 ------- ]

A AFM Heisenberg, | =2 ==~

% 006 AFM Heisenberg, | = 3 ------- |
W Hubbard A = 16, | =1 ——

v Hubbard A=16,1=2 ——
NAx 0.04 Hubbard A =16,1=3 —— |
3 .

\%

A 002 s AW N\ |
NE T
1%}

w 0 i

v

-0.02 4
-0.04 L L 1 1 1 L
0 1 2 3 4 5 6 7

Jt

FIG. 11. (Color online) Evolution of short range magnetization-
magnetization correlation function (distances €=1,2,3), starting
from the Néel state and evolving with respect to the full Hubbard
Hamiltonian with U=8 and A=16 and the isotropic Heisenberg
antiferromagnet, respectively. With increasing time, deviations be-
tween Heisenberg and Hubbard dynamics become more pronounced
than for the magnetization in Fig. 4. However, in both cases ten-
dency toward equilibration to a steady state is visible.
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FIG. 12. (Color online) Evolution of the magnetization-

magnetization correlation function, starting from the Néel state and
evolving with respect to the full Hubbard Hamiltonian with U=8
and A=16 and the isotropic Heisenberg antiferromagnet, respec-
tively. See also Fig. 11.

obtains momentum-space particle density correlation func-
tions [47,48]. Experimentally available are (nn,) and
() =2 (Mg gy and hence also = {1 h1_gr). In the
following, we will again use the approximation <é>g,:<é>¢
+0(8")=(0),,

) ik ¥ _
. rk1>¢— — E ek i) (g7 sl G-

ij,nm
(22)
Those give information about long-range spin correlations
(aljarjalnain g = (8Smnyinim
+ (1= 8)) 88yt a0} jari)g
={050ml1+5)(5+5;)
+(1-0)8,,(5+5)(3+8),
(23)

for the observable (1) and

2 <ao'l a'] —o'm —a—n : <5ij5mn2 Ngil_gm + (1
ag
zn /mz am“o’] —O’] —0’l>

¢
= <5ij5mn(% 2‘§f‘§fn) +(1
5)5uu2(S185,+ 550)), (24)

for the observable 2 {n n_x ). This also reflects the fact

that to zeroth order of S’, there are no double occupancies
with respect to the original basis. However, there is an ad-

mixture of them, contributing in second order of S,
<”Ti”U>J>=O(‘§2)' Inserting Eqgs. (23) and (24) to Eq. (22)
yields

053627-9



BARTHEL et al.

002

0015 [
Lt 7 2%
001 R~ s
5
— e,
59777~ 4e 2o 0 s,
. = e SN
0005 ,'”,,,;333‘1\\‘\*“‘:1'&7'///%33:3:33;5{5"
= Wiy e
=~ .
11 < 7
52 7
st s 2y "
357

FIG. 13. (Color online) Evolution of the momentum-space spin-

spin correlator <§Zk§f Ar)o for the Heisenberg antiferromagnet. The
correlator corresponds according to Eq. (25) to the density-density
correlator in the Hubbard model and is available in experiments
with ultracold atoms [47]. The initial state (14) is uncorrelated.
Correlations build up on the time scale 1/J. Finite-size effects have
been corrected (see text).

_ 1 1 3 a a
(Myph)g=71-5+ 710k + <SZAkSiAk>¢= (nph ) g

(25)

and
E (Mg _ger) § = % - 1%/ + 2<§Zk§fAk + §}Ak*§zAk>¢’ (26)
where Ak=k-k’', 3‘;’5 ,%,E e’q"iS‘f’ a= ,%,E,S‘f‘, and

57 p(1))=0 were used.

A numerical comparison of the evolution of the
momentum-space spin-spin (density-density) correlator for
the Heisenberg and the Hubbard models is given in Figs.
13-15. To achieve such a good agreement, two corrections
were necessary that are described in more detail in Appendix
B. First of all one needs to correct for finite-size effects.
Second, single-particle Green’s functions (a}La ;) enter which
are trivial when evolving with the Heisenberg model
({ala;)4=8;ny(1)) but have contributions of O(S8?) when
evolving with the Hubbard Hamiltonian. In the comparison
of both evolutions, they can hence be understood as a major
carrier of disturbance, reflecting first-order processes in the
Hubbard model. To achieve comparability it would be desir-
able to remove contributions from (a/a ;> completely. This
would be possible for our numerical analysis. In a corre-
sponding experiment, however, the quantities are not avail-
able. Hence we confined ourselves to removing only the con-
tributions from nearest-neighbor correlators (ajaitl). As
Figs. 13—15 demonstrate that this is already sufficient and
Fig. 16 that it is necessary. The experimental observation of
the nearest-neighbor correlators is within reach [49].

The specific form of the momentum-space correlation
function can be understood with the causal cone behavior of
the corresponding real-space correlators discussed in Sec.
IV E. At the beginning of time evolution, correlations for
small distances build up (e.g., due to the spin flip terms
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0.015
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FIG. 14. (Color online) Evolution of the momentum-space
density-density correlator izkmkak"w)% [minus the trivial parts
on the right hand side of Eq. (25)] in the Hubbard model with
U=8 and A=16. Except for quick oscillations on the time scale
t=1/t, the result reflects the evolution of the corresponding spin-
spin correlator in the Heisenberg model (Fig. 13). Finite-size effects
have been corrected and first-order hopping contributions entering
through the nearest-neighbor correlator (aja_,»)g, were removed (see
text).

3'?3‘;11 in the Heisenberg model). This corresponds in the
momentum-space representation to correlations for large Ak.
As the correlations spread out in real space, correlations for
smaller momenta Ak build up.

V. RELAXATION TO STEADY STATES
A. General features

Contrary to the setup of isolated double wells, one ob-
serves for the many-particle dynamics in our setup a relax-
ation for local quantities. This may be seen as an indicator

0.018

0.016
0.014
0.012

0.01
0.008

< Sk i >

0.006
0.004

0.002

= Hubbard A=16
0 Hubbard A=24 - 8

-0.002 L L L

FIG. 15. (Color online) Evolution of the momentum-space
density-density correlator ﬁkEk(nTkWnTk)g, for Ak=7 [minus the
trivial parts on the right-hand side of Eq. (25)] in the Hubbard
model with U=8 and A=16,24. The Hubbard results follow once
more the Heisenberg curves, except for some quick oscillations due
to first-order hopping processes which die out for |A| far from U.
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FIG. 16. (Color online) The same observable as in Fig. 14 ex-
cept that the observable has not been corrected for finite-size effects
and the effects of the correlator (aja j);[;. We see here clearly that
those corrections of the raw data are important to achieve compa-

rability to the corresponding Heisenberg result in Fig. 13.

for convergence of the states of subsystems with finite real-
space extent to a steady state. Recently, the mechanism of
how such a relaxation may occur was clarified for (free)
integrable systems [29]. Corresponding examples can also
be found in [30-33]. The setup considered in this paper
could be used to study experimentally such relaxation
processes—in particular, the differences for the noninte-
grable Bose-Hubbard model and the Bethe ansatz integrable
Heisenberg model. Experimental investigations would be
very useful here, as the fast entanglement growth during time
evolution [Fig. 17] prohibits numerical access to long times
and for Bethe ansatz integrable systems, analytical results are
also relatively limited for such purposes.

Integrable many-particle systems do not relax to the well-
known canonical, or “thermal,” ensembles (a fact that was
already observed experimentally, e.g., in [51]). If they relax
the steady state is due to the integrals of motion to a much
more constrained ensemble [29,30]. This could be detected
experimentally by comparing the steady state correlation
functions after time evolution to those obtained for the cor-
responding thermal ensemble. The temperature should be
chosen such as to have the same energy in both states. For
(free) integrable models, the relaxation occurs due to a phase
averaging (“dephasing”) effect [29]. In Sec. V B, the relax-
ation in the Bethe ansatz integrable Heisenberg model is
treated within a mean-field approximation. Also in this case,
relaxation is connected to a phase averaging effect.

Nonintegrable systems are generally believed to relax to a
thermal ensemble due to effective scattering processes. Re-
cent numerical analysis of such systems [34-36] is not yet
fully conclusive due to limitations on maximum observation
times (density-matrix renormalization group) or system size
(exact diagonalization). Analytical approaches are usually re-
stricted to rather exotic models or limiting cases. See, e.g.,
[37,38] for investigations by dynamical mean-field theory
(DMFT).

In our setup, the nonintegrable two-species Bose-Hubbard
model could be tuned so close to the Heisenberg regime
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FIG. 17. (Color online) For the initial state (14), evolution of the
entanglement entropy with respect to a partition of the system into
left and right half. The growth is roughly linear in time (compare,
e.g., to [50]) resulting in an exponential increase in the computation
time required for the simulation. The more important the first-order
processes are, the faster the entanglement entropy increases. The
tuning from the Heisenberg model (|U?-A?|— ), where no first-
order processes occur, to the regime |A|~ U=8 can be understood
as a smooth increase in the number of relevant degrees of freedom,
resulting in a stronger entanglement growth. The entanglement en-
tropies for the Heisenberg ferromagnet and antiferromagnet are
identical because the corresponding density matrices are in the {3‘?}
eigenbasis simply related by complex conjugation (cf. Sec. IV B).

(large |U?~A?)) that thermalization occurs very slowly. One
might hence observe first a relaxation to a nonthermal (al-
most) steady state due to the integrable Heisenberg dynam-
ics, which would then be followed by slower thermalization
due to the remaining nonintegrable first-order processes of
the full Bose-Hubbard Hamiltonian.

B. Relaxation for the Heisenberg magnet
in mean-field approximation

In this section, we investigate analytically the relaxation
of the Heisenberg magnet with the initial state being the Néel
state (14). In particular we will derive that the (staggered)
magnetization decays as 1/7>? due to a phase averaging ef-
fect.

The model is Bethe ansatz integrable [39,40]. However, it
is in general not possible to solve the equations of motion for
arbitrary initial states. With appreciable numerical effort this
has been achieved recently (only) for the initial state being
the ground state plus a one-particle excitation [52]. To inves-
tigate the dynamics nevertheless, we hence employ a mean-

A
Z

field approximation for the §38%

9, term,

=3 [ 18150, + 6,800 + 5555,
= 3[4+ 8580 -2 D, 05]. @)

where the order parameter p,, is the staggered magnetization
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FIG. 18. (Color online) Evolution of the magnetization on a
particular site x, starting from the Néel state and evolving with
respect to the isotropic Heisenberg Hamiltonian, once with DMRG
and once in the mean-field approximation. The (staggered) magne-
tization shows a 1/7> decay (dotted lines). In the mean-field ap-
proach one sees that local relaxation is connected to a phase aver-
aging effect as is typical for integrable models [29] (see text).

).

After a Fourier and a Jordan-Wigner transformation [53,54]
with

3 (28)

pr=r2 (= DUSH =32 (= 1), ~

i-1 &z A
ci= (= 1)2"=1(SH+1/2)S1'_

and .§'§=cjci—%, the mean-field Hamiltonian and the stag-
gered magnetization read with g;:=cos k,

Ho= X [ewcick—2pL0ctmcil, (29)
—m2=k<m/2
1 T
p)=— 2 2Relcjcpn)- (30)
N—ﬂ'/2£k<ﬂ'/2

The initial state is the Néel state (14) and readg in the fermi-
onic operators for t=0 with 1;(0)=v,(0)=1/+2,

I1

—m2=k<m/2

(u(Def + v (e, 0. (1)

|(1)) =

So each mode ¢, is in the initial state only correlated with
mode ¢, . As mean-field Hamiltonian (29) couples for every
k also just those two modes, the state remains in form (31)

for all times. With ih&,ck(t):[ck,ljl(t)] one obtains the equa-
tions of motion (A=1)

19 (1) = e (t) = 2p(Dvi(t), (32a)

10,0(1) = — gau(t) = 2p (D (1), (32b)
a system of N coupled nonlinear differential equations.
Those can be integrated numerically, yielding for the stag-
gered magnetization p,(r) a damped oscillation decaying as
1/£%2. Figure 18 compares p,(t) from the mean-field analysis
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to the corresponding DMRG result (Fig. 4) and shows good
qualitative agreement.

As demonstrated in [55], where the same equations of

motion were obtained for the evolution of a system of spin-
less fermions, Eq. (31) is equivalent to the equations of mo-

tion of the classical Hamiltonian

2

N

> (Sisy + Susy)  (33)

k&'

HS=_ E 2SkSi+

—mr=k<r

with the Anderson pseudospin variables S;=vu;, S
=il ~lu?) for ~T=k<Z and S},,=Si, S}5=-S°
[55,56]. This Hamiltonian occurred in the mean-field analy-
sis of quenches in fermionic condensates (see, e.g., [57-60)).
From this, it is known that Eq. (33) and hence Eq. (31) are
integrable [59] due to the N/2 integrals of motion L,f,

Sk!
Li=e,+2, ,
Kk’ Bk T EK

(34)

gL =0.

One can now argue that the x and y components of
the vectors L, will vanish for large times, as done in [55].
From this one can determine the (nonthermal) steady state
by equating [Li(r—)]* with L7(t=0). The result is
lim,_., $(1)=3cos k. With ;=3 (jv,2~|u?) and [v,[2+]u[>
=1V, it follows that

lim|uy(¢)| = V1 = cos k2, (35)
1—00
limv, ()| = V1 + cos k/\2. (36)
t—00

With the knowledge of the steady state, the 1/7°> decay of
the magnetization p. can now be derived.

To this purpose let us first recall the general dephasing
scenario for d-dimensional (free) integrable models. In [29]
it was demonstrated that local observables G(¢) (i.e., correla-

tors) lead in general to expressions of the form

G(1) =Gy + f dke*M'f(k), (37)

where the amplitude f(k) is determined by the chosen ob-
servable, the initial state, and the eigenbasis of the Hamil-
tonian. The phase function ¢(k) is determined by the spec-
trum of the Hamiltonian. Now, the quantity G(z) relaxes to
G, for large times if the phase function varies quickly
enough in regions of the k space where the amplitude f(k) is
nonzero. Whether and how quickly an observable relaxes is
in particular determined by contributions from points where
o(k) is stationary or f(k) diverges. For the paradigmatic sce-
nario of ¢(k)~ @o+|k|’, f(k)~1/k™ near a stationary point
k=0, the integral in Eq. (37) behaves as

f dq e, x=

m+{—d

; (38)

eicpotf ddkﬁeilk‘ét -
e

Hence the time-dependent contribution to G(¢), for r— oo,
does not vanish if y=1, vanishes as /X if 0<x<l1, and

at least as 1/¢ if y <0 [61].
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FIG. 19. (Color online) Evolution of the occupation number
(n=1—=(ngr), phase @(k)=arg[u (v (r)]-arg[u; ,()v ()] of
the wave function, and |ujv,| for each pair of modes ¢, ¢4y, The
initial state, the Néel state with u;=v,=1/12, is evolved with the
mean-field approximation of the isotropic Heisenberg Hamiltonian
(29). Except for the lowest panel, the curves for r=128 coincide
(within resolution of the plots) with the limiting curves for t—
which are =522 cos k, and [sin k|/2, respectively.

Now we come back to the staggered magnetization. Ex-
pressed in the variables u# and v, it reads after going to the
thermodynamic limit

p(1) = f dk Re(ujv;) = f dk Re[e"*M'f(k,1)].  (39)

This is, except for the additional time dependence of the
amplitude function f(k,7), an integral of the form (37). Pre-
suming that p_ vanishes for long times, it follows from the
equations of motion [Eq. (31)] that for large ¢, the phases of
u, and v, are roughly *eg and hence ¢(k)=g,—gp,,
=2 cos k, which is stationary (with £=2) at k=0 (cf. Fig. 19).
For finite times, the amplitudes of u; and v, are finite as
lug>=(ny) and |v|?=(npem)=1-(ny). Hence m=0 for k=0
which is also confirmed numerically in Fig. 19. The dephas-
ing of the staggered magnetization (39) is determined by the
stationary point k=0 of ¢. With d=1, m=0, and €=2 we
have )(—L€‘7l—l The phase averaging accounts hence for a
factor of 1/¢'"X=1/¢"? for the decay of the staggered mag-
netization. Linearizing the equations of motion around the
steady state we find that |uquo| [f(k,) around k=0] decays as
1/t and further that only a vicinity |k|=<1/17 of k=0 is
contributing to (the leading order of) the integral (39). Tak-
ing all this together, we infer the 1/ decay of the stag-
gered magnetization.
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VI. VALIDITY OF THE EFFECTIVE SPIN MODEL

One may be wondering why the restriction to the single-
occupancy space H, [Eq. (8)] is justified (if the initial state
of the system is in H; and we evolve with the effective
Hamiltonian), although the coupling to the rest of the Hilbert
space has the same strength as the coupling for dynamics
inside the subspace H; and although parts of the rest of the
Hilbert space overlap energetically with ;. There could be
considerable transition rates out of the subspace with (pre-
dominantly) one particle per site, rendering a description or
comparison with dynamics of the effective model derived for
that subspace useless. We will assess here that this is not the
case (for the large-U limit).

First of all, the numerical results of Sec. IV showed that
for large |U%—
the Heisenberg curves, indicating very little transitions to
other subspaces. One can also give a somewhat handwaving
but rather suggestive argument. We will show in the follow-
ing that transition matrix elements leading out of H; occur
predominantly to states with energy difference ~U and di-
minish in the large-U limit. Those yield therefore finite small
transition amplitudes. In higher orders of the perturbation
theory, there are also transitions to states with energy
~U= A, which will lead to a small (controllable) transition
rate out of H.

In the full effective Hamiltonian (A16), we regard the

term V= i[S’ ,I:I?] that generates or destroys double occupan-
cies, i.e., generates transitions between subspace M" with n
doubly-occupied sites as a perturbation,

Y = B+ V. (40)

The subspaces M" separate (energetically) further into
M _um With m doubly-occupied and w empty sites on sub-
lattice A (n—m doubly-occupied and n—pu empty sites on

sublattice B); i.e., HIEM&O. Figure 20 shows the many-

particle spectrum of the effective Hamiltonian I:I(e)ff for the
subspaces M and M! as obtained from exact diagonaliza-
tion in the $°=0 sector for N=38 sites.

The single (quasi)particle excitations in these subspaces
have energies of order O(J,t)—spinwaves and hopping of
doubly-occupied and empty sites. However, the subspaces
overlap energetically (in the thermodynamic limit) as, in a
qualitative picture, one can have ~N quasiparticle excita-
tions resulting in the width ~N|J|> U of the spectrum for
each subspace. Specifically for MO, the lower and upper
bounds on the spectrum are determined by the ground state
energies of the ferromagnetic and the antiferromagnetic
Heisenberg models. Those are in the thermodynamic limit
Epy=—3JN and —E py=(In 2—7)JN [39,62].

If we act on a state i) € M of energy E with the opera-
tor V=i[&8 ,ﬁ? 1 (cf. Appendix A), first, S generates a double
i i» 1) 070741, 0) on two
Second, a corresponding

neighboring sites i and i+1.
hopping term from I:I(t) acts on i (or i+1) and i—1 (or i+2)
such that, e.g., |o_,,004,,0)—|0,10;,0,,,0) or
|0:041,0, 000|070, 0:42,0). Hence both the doubly-
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FIG. 20. (Color online) The many-particle spectrum of the ef-
fective Hamiltonian 1’:12ff for the subspages MO (green) and M!
(black) with U=8 and A=2,4,6,8,10,y2U,14,16,... as obtained
from exact diagonalization in the S°=0 sector for N=8 sites
(dim M%=70, dim M'=2800). Each dot corresponds to an
eigenenergy. For the plot, small random numbers were added to the
A values to give a rough impression of the density of states. The
subspace M is separated energetically into ./\/l(l)’OU/\/l(])’l around
E=U and Mi’l, Mil,O around E=U=*A.

occupied and the empty sites are on the same sublattice A or

B and the resulting state V|i) e Mg oUMy, has energy E
~E+U (see Fig. 21).

Let us consider transitions from M9 to M!. For any ini-
tial eigenstate |i) € M° the transition amplitude to a state
|f) € M! is in the Born approximation given by

£ 1
=] @1
T

. T
cAT) = ;’ f di{fViyeor' = (9(
I

0

This estimate of a small (oscillating) transition amplitude
follows from the consideration that nonvanishing transition
elements exist only for states with energy differences 7w
=O(U). We have pointed out that the subspaces M° and M
ultimately overlap energetically. However, states |f) and |i)
with comparable energy will have a vanishing transition ma-

SE=U-A SE=U+A
— +

++ —

A B A B

FIG. 21. (Color online) The subspace M!, with exactly one
doubly-occupied and one empty sites, separates energetically into
three different subbands M}’I, M(IJ,OUM(I)’I, and Mll,O' The
operator  V=i[S ,I:I?] maps states from M? to states from
M(l)’o u M(')’l that differ in energy by ~U (see text).
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FIG. 22. (Color online) Transition matrix elements {f{V]i) be-
tween eigenstates of the effective Hamiltonian ﬁgff for the sub-
spaces M” and M! with U=8 and A=16 as obtained from exact
diagonalization in the $°=0 sector for N=8 sites. Each dot corre-
sponds to a nonzero transition matrix element. The narrow panels to
the left and bottom show the corresponding eigenenergies. Nonva-
nishing matrix elements exist only for states with energy difference
of O(U).

trix element: as argued above, the operator 1% generates states
from M! and causes a change of ~U in energy. Besides this
it can create or destroy in a qualitative picture only a small
number of quasiparticle excitations as it is a product of only
four ladder operators. This will change the energy only by a
small amount of O(J,t). So fiwy; will indeed be of order

O(U) for all nonvanishing transition amplitudes {f]V]i).
To illustrate this, Figs. 22 and 23 show the transition ma-

trix elements (f|\7|z> between eigenstates of the effective

Hamiltonian ﬁgff for the subspaces M and M! as obtained
from exact diagonalization in the S*=0 sector for N=8§ sites.

U-a 0 U U+A
3
. 25
2
A
ur 15 >
v
1
0.5
- - 0

FIG. 23. (Color online) Transition matrix elements (f|V]i) be-

tween eigenstates of the effective Hamiltonian ﬂgff for the sub-
spaces M? and M with U=8 and A=10 as obtained from exact
diagonalization in the $°=0 sector for N=8 sites. Still nonvanishing
matrix elements exist only for states with energy difference of
O(U). But as A is closer to U here, the matrix elements are larger in
amplitude [Eq. (41)] and the spectral subbands are broader due to a
larger effective coupling J.
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Small matrix elements to states with energy difference
U = A remain. For unfortunate choice of U and A one may
hence encounter nonvanishing transitions to states in M"~0
with ﬁwﬁ~0. Consider, e.g., A=2U. In this case, two ac-

tions of the operator 1% may end up in a state |f) with com-
parable energy [U+(U-A)=0] and hence to a (finite but
small) transition rate out of M°. By appropriate choice of
the ratio U/A, one can achieve that the effect occurs only in

higher orders \A/ resulting in a small transition rate. Further,
the transition matrix elements itself can be made small by
going to the large-U limit (7).

VII. PREPARATION OF THE ANTOFERROMAGNETIC
GROUND STATE BY ADIABATIC EVOLUTION

In Secs. IV and VI we have given arguments and gathered
numerical support for the fact that transition rates from the
single-occupancy subspace H{"® [Eq. (11)] to the rest of the
Hilbert space can be made small for time evolution with the
Hubbard Hamiltonian. If this can also be realized experimen-
tally for sufficiently long times, it would be possible to pre-
pare, for example, the ground state of the antiferromagnetic
Heisenberg model by adiabatically switching on the coupling
t’ between initially isolated double wells (Fig. 1), i.e.,
switching from t'=0 to t'=t, while t is kept constant. As
demonstrated in [25,26] for the initial situation of isolated
double wells, the ground state of the single-occupancy sub-
space (8) can be prepared experimentally.

For the adiabatic approximation [63,64] to be applicable,
the system needs to be gapped on the whole path in the space
of system parameters except for the end point, where the gap
has to close abruptly enough. As argued in Sec. VI, transi-
tions to other subspaces with (quasiparticle) double occupan-
cies can be neglected for a certain period of time 7 that can
be made very large. So we only need to worry about transi-
tions from the "¢ ground states to excited states inside the
subspace, i.e., we need to derive conditions on the depen-
dence of the corresponding energy gap on the hopping t’
between initially isolated double wells such that t'=t can be
reached adiabatically in a finite amount of time 7<<T.

The quantitative condition for adiabaticity is generally
stated as

(Eo(0| 2 |E,(1)
Ey(1) - E,(1)

‘ <1 vte[O,T],n#O’ (42)

where |E,(f)) label the energy eigenstates and |E,(0)) is the
initial state. Recently, substantial problems were pointed out
[65,66] and two more conditions added [67]

fdt
0

T ES L E ()
fo N o) - E,0

If we have one time-dependent system parameter p(7),
namely, the dimerization p=J, where

d (Eo0)| % E, (1)

it B -E® | " (43)

<1. (44)

‘ (B0 1)
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1= =i
RSV A P T

(45)

and one part of the Hamiltonian is linear in that parameter
(this is the case for the effective Hamiltonian and §— 0), the
numerators of Eqs. (42)—(44) are proportional to the sweep-
ing speed v(z):=dp(r)/dt. The denominator is the spectral
gap E(). Only points p(7) in parameter space where the gap
vanishes are problematic. If the gap vanishes as

E (1) = |p(7) - p()|", v>0, (46)

v should (for ¢ close to 7) be reduced as c|7—t|*. According
to Eq. (42),

clr—t* |[7—t*

E() | (™

t ~

8 ‘f dss*
0

Hence, only for v<<1, i.e., for gaps that close abruptly
enough, adiabaticity can be reached with u= ﬁ The sec-
ond condition [Eq. (43)] is in this scenario fulfilled automati-
cally; the third [Eq. (44)] implies u> % which is also true.

For J' =J, a situation which was examined intensively in
the context of spin-Peierls systems, the model was first
treated by Jordan-Wigner transformation and subsequent
bosonization [68]. The precise result for the excitation gap
can be obtained by a mapping to the four-state Potts model
[69] or conformal field theory [70] (see also [71]). The gap is
given by

1>

s o |r—dprerl - (47)

/3
|1n 511/2

That means we have a gap with v=2/3 <1 and hence the
gap can be closed in a finite amount of time with exponent
m=2. This means that the dimerization & has to be varied
with speed v(t)=c|7—1[%, hence &(t)=5|7—1]*. One needs thus
the time 7=(2/¢)'3. The smaller the c is, the farther we are
in the adiabatic regime but the longer we need for the prepa-
ration. An analysis of how small c is to be chosen to achieve
a given accuracy of the prepared state could be carried out
along the lines of Ref. [72].

Note that in [73], it was recently discussed within a mean-
field approach how the antiferromagnetic phase of the three-
dimensional Fermi-Hubbard model could be reached by
adiabatic tuning of the lattice potential.

E(8) = 0(8). (48)

VIII. CONCLUSION

We have studied a setup of two species of ultracold
bosonic atoms in an optical superlattice, which realizes in a
certain parameter regime the Heisenberg ferromagnet and
antiferromagnet. The focus was in particular on time evolu-
tion of nonequilibrium states. Our numerical results and ana-
lytical considerations showed that the physics of Bose-
Hubbard model implemented in the experiment differs for
certain parameter ranges considerably from the physics of
the effective Heisenberg models. Note that this would also be
true for alternative suggestions as in [19-23]. The spin states
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up and down can in general not be identified directly with a
bosonic particle of one specific species. The regime where
the correspondence between the two models is good implies
higher requirements on cooling and coherence (coherence
time) in an experimental realization. The explicit form of the
Schrieffer-Wolff transformation was used to analyze the tran-
sition rates out of the magnetic subspace of the full Hilbert
space.

In contrast to the accomplished experiments [25,26] for
isolated double wells (filled each with two particles), the
setup of coupled double wells discussed here allows for re-
laxation of the many-particle state. In the numerics we ob-
served indications for (local) relaxation to steady states. For
the Heisenberg model in a mean-field approximation, we ex-
plained how the relaxation is connected to a phase averaging
effect. This is typical for integrable models which have non-
thermal steady states. Nonintegrable models are generally
believed to thermalize due to effective scattering effects. Our
setup can be tuned from the nonintegrable Bose-Hubbard
model to the Bethe ansatz integrable Heisenberg model and
could hence be used to study the differences of the relaxation
processes experimentally.

Finally we argued that the ground state of the Heisenberg
antiferromagnet could be prepared by tuning an alternating
hopping parameter of the superlattice adiabatically.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
MODEL BY SCHRIEFFER-WOLFF TRANSFORMATION

Here we derive the effective spin Hamiltonian (13) de-
scribing the physics of the two-species Bose-Hubbard model
(1) in the subspace H{"® [Eq. (11)], where every site is oc-
cupied by exactly one quasiparticle. The spin-spin interaction
is generated by second-order hopping processes of the par-
ticles. In the large-U limit, transitions from 7{"¢ to bands
with double occupancies are energetically hindered. In par-
ticular, transitions from

H1=Span{|n1, ...,nN>,nT,v+nli=1V,} (Al)

to the subspace with double occupancies (and holes), H,, can
be treated perturbatively.

The Hamiltonian contains terms, linear in the hopping t,
which couple H; to the subspace with double occupancies

We are looking for a canonical transformation H —>H£‘§}l
—e’SHe"S such that the smgle occupancy subspace H; of

the resulting quasiparticles eSame -is
order to double occupancies (H,).
The calculation can be done in analogy to the derivation
of the Kondo lattice model [74] from the periodic Anderson
model [12,41,75] or the z-J model [11] from the fermionic

Hubbard model [2] and is modified only by the asymmetry

couples only in second
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FIG. 24. Tllustration of the hopping terms (A8)—(A11). 7+ in-

creases or decreases the number of doubly-occupied sites and 7ov
leaves it unchanged.

term A; and the finite intraspecies repulsion (double occu-

pancies |11) and [[])).
Let us rewrite Hamiltonian (1), restricted to the subspace

H{UH,, in the form

I:I=1LAIO+I§?+I:I:'+I:F£, (A2)
Ho=H, + Hy, (A3)
I:IA = 2 Aino.‘i, (A4)

. U,
Hy=U nyng; + ?E Nyi(ngi—1), (A5)
Hl=-t 2 (T0+T10), ve{l2}, (A6)

o (ij),v

=—t > (T,;+ T, (A7)

o(ij)

where (ij) runs over nearest neighbors (one index from each
sublattice), I:If increases or decreases the number of doubly-
occupied sites, and I:I? leaves it unchanged (Fig. 24). Here

10} = 81000010, (A8)
T?n' nzama 0n,2 (A9)
T3= 8),205000i0, 1+ (A10)
T,;= 0u,1051670, 2, (A11)

where & denotes the Kronecker delta and in its argument,
n;=ny;+n|; denote the particle number operators. For the

operators f;ij, we further distinguish between those which
change the number of (a) interspecies and (b) intraspecies
double occupancies (see Fig. 24),

(A12)
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1. Schrieffer-Wolff transformation

The Hamiltonian contains terms I:If, linear in the hopping
t, which couple H; to the double-occupancy subspace
We are looking for a canonical transformation H— Hg}l
—e’SHe"S such that the single-occupancy subspace H; of the
resulting quasiparticles e’Same ~i§
order to double occupancies (H,),

couples only in second-

Afull _ iSEy —iS
H s =e'"He

2
—A+iS,H]+ ’E[S, [8,8]]+ O(S3H)

=ﬁ0+H°+fI++ +z[SH]+ [S [SH]]+ e
In the first commutator, the contribution [3‘ ,I:IO] dominates
and we therefore look for a generator S such that

(8. Hy) =~ (H; + HY). (A13)

From this equation follows with Hy=O(U,U,,A) and H,

=O(t) that S=0O( )) and hence

(UU A
gl f B0 4 T8 ) 2oaranz ( ’ )
HY =Hy+H +i[S,H]+ —[S,[SH]]+O| ——— .
eff 0 t l[ t] 2[ [ ]] (U,US,A)2
This yields for Eq. (A13) the solution
§=i> ( )
oy \U+A=A T U+ A=A
t b t , )
+ s T'—
U+A=A; 7 U+ A=A 7
(A14)

With A; from Eq. (2), we can now state more precisely

A t t
S=0\—7—F,—/——|.
(U *TA U * A)
So the perturbative treatment will break down near the cross-
ing point A=U and for large hopping t.

(A15)

2. Effective spin Hamiltonian for half-filling

The full effective Hamiltonian reads

I:IS}}'_HO+HU+HA+ [S e H+[S.HY+ OF).

(A16)

The commutator terms still couple H; with the rest of the
Hilbert space (subspaces with differing numbers of doubly-
occupied sites). However, this coupling is now not O(t), as
in the original Hamiltonian (A2), but of O(t?). This was

achieved by the Schrieffer-Wolff transformation S, which re-
places our original particles a,;, by particles with a cloud of
hole-double-occupancy fluctuations a,; — e*Sae”™. In the
single-occupancy subspace H, at half-filling [Egs. (A1) and

PHYSICAL REVIEW A 79, 053627 (2009)

(6)] i H As HU, 1[8 HO] and the terms of third order in the
hopping are all ineffective such that we are left with

Hegp = Hfly, = [S L+ H Ly + O, (A17)

The commutator consists of hopping terms via virtual
double-occupancy states. They are of the form 77 T and

o' ji* oij
can be rephrased as spin-spin interactions. With
E T dtely, = (1- 488912, (A18)
b 4w
2 T oI, = 1+4555, (A19)
E e Traly, = 8155 + 587, (A20)

the effective Hamiltonian (A17) reads

Hag==J2 ($;8;+8]8) + (= J) 2 58;+ O,
(ij) (ij
(A21)

where (see also [26])
42U 42U,
— s, J=2—
-A bTU - A?

(A22)

This Hamiltonian is, except for higher order effects, the XXZ
model. In the bulk of the paper we specialize to U=U,, i.e.,
J-J,=—J, and have hence the isotropic Heisenberg ferro-
magnet for A<U (J>0) and the isotropic antiferromagnet
for A>U (J<0). As was already pointed out, the full effec-
tive Hamiltonian (A16) still contains a coupling to the sub-
space with one double occupancy (of quasiparticles). The
approximation made by neglecting it is discussed in Sec. VI.
A peculiarity of our situation is that, due to half-filling of
both particle species, we are restricted to the S°=0 sector of
the Heisenberg model.

One can go to higher orders in the perturbative treatment
of the hopping by adding higher order terms to the generator

S of the Schrieffer-Wolff transformation. The next order term
S? has to be chosen such that it eliminates the term
i[S(D,PAI?] in Eq. (A17). This would result in a further con-
tribution to the effective spin Hamiltonian, namely, next

nearest-neighbor and four-spin interactions, generated by se-
quences of four virtual hopping events.

APPENDIX B: POSTPROCESSING OF DENSITY-DENSITY
CORRELATORS

1. Elimination of finite-size effects for the numerics

The numerics were done for a finite-size system (cf. Sec.
IV C). To correct for the resulting finite-size effect is simple
for the calculation of the spin-spin correlators in the Heisen-
berg model in the right-hand side (rhs) of Egs. (23) and (24).
One can use
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(S758) 4> (S282 1 ) g

(B1)

where x; is some site in the middle of the system that is odd
(even) for odd (even) i. This corresponds to the invariance of
the systems under translations by multiples of two sites in
the thermodynamic limit.

The momentum-space density-density correlators [Eq.
(25)] in the Hubbard model are determined from the real-
space four point correlators [Eq. (23)]. To eliminate finite-
size effects of those, we note first that due to the restriction
of all correlations to a (causal) time-space cone, the four
point correlators behave for large distances as (spin indices
suppressed)

R
Cijn+=(a;aa,,;_a,)

— {alaial,; ) + [afa)al,; a) + (8, - 8 ) n)].
(B2)
Consequently, the quantity

C{jn = <aj-ajaj;+j—ian> - <a;}.aj><a;1+j—ian> - [<ajan><al+j—iaj>

+ (5”1 - 511)<”l>] (B3)

is localized; it has support only for j and n inside the causal
cone centered at site i (compare to Sec. IV E). So the value
of C;j, for the thermodynamic limit is approximated well by

Ci}n = Ci,jn +8i j8ntjmin + [8in&nrj=ij + (Oin— . ))8ii]s
(B4)

where g; ; is the (approximate) single-particle Green’s func-
tion in the thermodynamic limit
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(B5)

8ij = <aliaxi+j—i> s

and for odd (even) i, x; is an odd (even) site in the middle of
the system.

2. Reduction of effects from first-order processes
for numerics and experiments

As disclosed by Eq. (B2) or (B4) the four point correla-
tors entering the momentum-space density-density correlator
contain contributions from products of single-particle corr-
elators (aja])g,. Those are trivial when evolving with the
Heisenberg model: (a}aj)qﬁ: d;n1(t), as there is exactly one
particle per site. But according to Eq. (17), they have contri-
butions of O(S?) when evolving with the Hubbard Hamil-
tonian. In the comparison of observables evolved with both
models, those correlators enter hence as a major carrier of
disturbance. To achieve comparability it would be desirable
to remove contributions from <ajaj> completely. This would
be possible for our numerical analysis. In a corresponding
experiment however, the quantities are not available. Hence
we confined ourselves to removing only the contributions
from nearest-neighbor correlators (cz:fa,»i 1)- That means g; ; in
Eq. (B4) is set to zero for j=i = 1. This was already sufficient
to demonstrate the correspondence of the dynamics if we are
safely in the large-U limit [Eq. (7)]. An experimental proce-
dure for the measurement of the nearest-neighbor correlator
was suggested in [49]. Hence, the same manipulations might
be carried out for experimentally obtained momentum-space
density-density correlators.

[1] D. Jaksch, C. Bruder, J. 1. Cirac, C. W. Gardiner, and P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).
[2] J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).
[3] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[4] W. Heisenberg, Z. Phys. 39, 499 (1926).
[5] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 112, 661 (1926).
[6] W. Heisenberg, Z. Phys. 49, 619 (1928).
[7] P. A. M. Dirac, Proc. R. Soc. London, Ser. A 123, 714 (1929).
[8] H. A. Kramers, Physica (Amsterdam) 1, 182 (1934).
[9] P. W. Anderson, Phys. Rev. 79, 350 (1950).
[10] P. W. Anderson, Phys. Rev. 115, 2 (1959).
[11] K. A. Chao, J. Spatek, and A. M. Oles, J. Phys. C 10, L271
(1977).
[12] P. Fazekas, Lecture Notes on Electron Correlation and Mag-
netism (World Scientific, Singapore, 1999).
[13] L. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).
[14] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).
[15] B. DeMarco, J. L. Bohn, J. P. Burke, M. Holland, and D. S.
Jin, Phys. Rev. Lett. 82, 4208 (1999).
[16] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and
J. E. Thomas, Science 298, 2179 (2002).
[17] M. Kohl, H. Moritz, T. Stoferle, K. Giinter, and T. Esslinger,

Phys. Rev. Lett. 94, 080403 (2005).

[18] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C.
Sanner, K. Xu, and W. Ketterle, Nature (London) 443, 961
(2006).

[19] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,
100401 (2003).

[20] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[21] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin, New J.
Phys. 5, 113 (2003).

[22] J. J. Garcia-Ripoll, M. A. Martin-Delgado, and J. I. Cirac,
Phys. Rev. Lett. 93, 250405 (2004).

[23] P. Barmettler, A. M. Rey, E. Demler, M. D. Lukin, I. Bloch,
and V. Gritsev, Phys. Rev. A 78, 012330 (2008).

[24] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto,
Phys. Rev. A 73, 033605 (2006).

[25] S. Folling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A.
Widera, T. Miiller, and 1. Bloch, Nature (London) 448, 1029
(2007).

[26] S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I.
Bloch, Science 319, 295 (2008).

[27] A. Daley, C. Kollath, U. Schollwick, and G. Vidal, J. Stat.

053627-18



MAGNETISM, COHERENT MANY-PARTICLE DYNAMICS,...

Mech.: Theory Exp. (2004) 04005.

[28] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[29] T. Barthel and U. Schollwdck, Phys. Rev. Lett. 100, 100601
(2008).

[30] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev.
Lett. 98, 050405 (2007).

[31] M. A. Cazalilla, Phys. Rev. Lett. 97, 156403 (2006).

[32] M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys.
Rev. Lett. 100, 030602 (2008).

[33] D. M. Gangardt and M. Pustilnik, Phys. Rev. A 77, 041604(R)
(2008).

[34] C. Kollath, A. M. Léuchli, and E. Altman, Phys. Rev. Lett. 98,
180601 (2007).

[35] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu,
Phys. Rev. Lett. 98, 210405 (2007).

[36] M. Cramer, A. Flesch, 1. P. McCulloch, U. Schollwick, and J.
Eisert, Phys. Rev. Lett. 101, 063001 (2008).

[37] M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702
(2008).

[38] M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404
(2008).

[39] H. Bethe, Z. Phys. 71, 205 (1931).

[40] N.-C. H. Zachary, Quantum Many-Body Systems in One Di-
mension (World Scientific, Singapore, 1996).

[41]7J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

[42] M. Anderlini, J. Sebby-Strabley, J. Kruse, J. V. Porto, and W.
D. Phillips, J. Phys. B 39, S199 (2006).

[43] W. Zwerger, J. Opt. B: Quantum Semiclassical Opt. 5, S9
(2003).

[44] T. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).

[45] M. Hochbruck and C. Lubich, SIAM (Soc. Ind. Appl. Math.) J.
Numer. Anal. 34, 1911 (1997).

[46] U. Schollwdck, Rev. Mod. Phys. 77, 259 (2005).

[47] E. Altman, E. Demler, and M. D. Lukin, Phys. Rev. A 70,
013603 (2004).

[48] S. Folling, F. Gerbier, A. Widera, O. Mandel, T. Gericke, and I.
Bloch, Nature (London) 434, 481 (2005).

[49] A. Flesch, M. Cramer, 1. P. McCulloch, U. Schollwéck, and J.
Eisert, Phys. Rev. A 78, 033608 (2008).

[50] P. Calabrese and J. Cardy, J. Stat. Mech.: Theory Exp. (2005)
04010.

[51] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London)

PHYSICAL REVIEW A 79, 053627 (2009)

440, 900 (2006).

[52]J.-S. Caux and J. M. Maillet, Phys. Rev. Lett. 95, 077201
(2005).

[53] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

[54] E. H. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 407
(1961).

[55] M. B. Hastings and L. S. Levitov, e-print arXiv:0806.4283.

[56] P. W. Anderson, Phys. Rev. 112, 1900 (1958).

[57] G. L. Warner and A. J. Leggett, Phys. Rev. B 71, 134514
(2005).

[58] M. H. Szymanska, B. D. Simons, and K. Burnett, Phys. Rev.
Lett. 94, 170402 (2005).

[59] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, J. Phys. A 38, 7831 (2005).

[60] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Phys. Rev. B 72, 220503(R) (2005).

[61] For free systems, the (Gaussian) state of any subsystem is fully
characterized by its one-particle Green’s function. This was
exploited in [29] to derive conditions on the relaxation of sub-
system states based on the relaxation of the Green’s function.

[62] D. Medeiros and G. G. Cabrera, Phys. Rev. B 43, 3703 (1991).

[63] T. Kato, J. Phys. Soc. Jpn. 5, 435 (1950).

[64] J. E. Avron, R. Seiler, and L. G. Yaffe, Commun. Math. Phys.
110, 33 (1987).

[65] K.-P. Marzlin and B. C. Sanders, Phys. Rev. Lett. 97, 128903
(2006).

[66] D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev.
Lett. 95, 110407 (2005).

[67] D. M. Tong, K. Singh, L. C. Kwek, and C. H. Oh, Phys. Rev.
Lett. 98, 150402 (2007).

[68] M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).

[69]J. L. Black and V. J. Emery, Phys. Rev. B 23, 429 (1981).

[70] 1. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A
22, 511 (1989).

[71] M. Kumar, S. Ramasesha, D. Sen, and Z. G. Soos, Phys. Rev.
B 75, 052404 (2007).

[72] S. Trebst, U. Schollwéck, M. Troyer, and P. Zoller, Phys. Rev.
Lett. 96, 250402 (2006).

[73] A. Koetsier, R. A. Duine, 1. Bloch, and H. T. C. Stoof, Phys.
Rev. A 77, 023623 (2008).

[74] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).

[75] P. W. Anderson, Phys. Rev. 124, 41 (1961).

053627-19



