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The atomic current in the Fourier-synthesized optical lattices under a constant external force is investigated
theoretically. Based on a two-band model, the atomic current is derived by solving the Boltzmann equations.
We find that the stationary atomic current changes with the probability of Landau-Zener tunneling, depending
on the adjustable energy structure of the optical lattices. In contrast to the classical results of an electron in
superlattices given by the Esaki-Tsu equations, the relation between the stationary atomic current and the
strength of the external force in optical lattices is modified significantly. Both these characteristics can be taken
as an effective way to observe the Landau-Zener tunneling in the optical lattices.
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I. INTRODUCTION

Landau-Zener tunneling is an important quantum phe-
nomenon and has attracted lots of interests since it was pre-
dicted �1�. Originally, Zener calculated the tunneling rate of
an electron from the valence band to the conduction band
due to an external electric field. However this process is
actually a kind of nonresonant tunneling �2�, and the tunnel-
ing rate is too small for electrons in usual crystal lattices
because of the large energy-band gap �in the regime of sev-
eral eV’s�. Although the situation in semiconductor superlat-
tices is improved notably �the miniband gap goes down to
the order of meV�, it is still demanding for the strength of the
external field. In these years, the achievements in the atom
cooling technique and the accelerating optical lattices pro-
vide a great platform �3� to demonstrate the Landau-Zener
tunneling �4–8�. The energy-band gap of the optical lattices
reaches down to several peV’s, so that the atom could jump
easily from one band to the other by the Landau-Zener tun-
neling with the help of the external force, such as its gravity.
Moreover, the energy-band gap is adjustable in experiment
by the relative phase of these two bichromatic lasers con-
structing the optical lattices �9�. Thus the Landau-Zener tun-
neling could be well controlled.

Then one expects to find a measurable macroscopic quan-
tity to observe the controllable Landau-Zener tunneling.
Atomic current is undoubtedly a good choice for its clear
physical meaning and possible direct measurement in optical
lattices �10�. A cold atom driven by the external force in
optical lattices behaves like Bloch oscillation �11,12� in one
band and produces oscillatory atomic current. Landau-Zener
tunneling makes it possible to elevate the atom up to the
excited band. Then the so-called Bloch-Zener oscillation
happens �13,14�. Both intraband and interband behaviors of
the atom have an influence on the total atomic current. In the
absence of damping factors the long time average atomic
current is zero. However in real systems there always exist
some kinds of damping factors, such as the spontaneous
emission �15,16� and collisions �17�. With the help of damp-

ing factors, the atomic current would approach a net nonzero
value after a long time and therefore transport is possible
�18�. The atomic current through the optical lattices without
Landau-Zener tunneling has been studied in Ref. �19�.

In this paper we get the information of the Landau-Zener
tunneling from the stationary atomic current. The objective is
to find the relation between the stationary atomic current I
and the probability of the landau-Zener tunneling, which
could be adjusted by the relative phase of the two bichro-
matic lasers or the external force F. Based on a two-band
model, we give the formula for the atomic current by solving
the Boltzmann equations. The stationary atomic current is
calculated with the realistic parameters of the Fourier-
synthesized optical lattices. Numerical results show that the
stationary atomic current increases with the decreasing
energy-band gap tuned by the relative phase. For a typical
value of relative phase, the I-F curves are found to be modi-
fied significantly in comparison with its counterpart, the I-V
�V is the external voltage� curve of electrons in the semicon-
ductor superlattices, which was first introduced in the famous
work done by Esaki and Tsu �20�. We find the Landau-Zener
tunneling may produce more than one Easki-Tsu peak in par-
ticular parameters. All these results provide an effective way
to observe the Landau-Zener tunneling in optical lattices.

II. MODEL AND SOLUTION

For an atom in the optical lattices, it could jump from one
energy band to another by the Landau-Zener tunneling. Since
all the gaps between excited energy bands are almost zero
and controllable Landau-Zener tunneling mainly takes place
between the two lowest energy bands �9,21� in the optical
lattices, we model the system as a two-band one to manifest
the influence of Landau-Zener tunneling on the atomic cur-
rent. Assume that the lattice constant is d and the energy
dispersions for band j �j=1,2� are � j�q�, respectively, where
q is the momentum along the direction of periodic lattice.
Due to the periodicity of the potential, we have the Fourier
transformation of the energy dispersion as

� j�q� = �
n=0

�

Rn
j cos�nqd� �j = 1,2� , �1�

where Rn
j are the Fourier coefficients of the energy dispersion

of jth band. The atomic velocity is obtained correspondingly
as
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v j�q� =
1

�

�� j�q�
�q

. �2�

The distribution function f j�q , t� �j=1,2� of the states satis-
fies the Boltzmann equations

� f jq

�t
+

Fd

�

� f jq

�q
= − g1

j �f jq − f jq
0 � + ��f j̄q − f jq� , �3�

where j=1,2 and j� j̄, f jq
0 represents the equilibrium distri-

bution in band j, and g1
j is the jth band’s damping rate to the

equilibrium state. The last term on the right-hand side of the
above equations is the change in the distribution due to the
Landau-Zener tunneling. As we all know, the atom, supposed
to be in the low energy band, would behave like Bloch os-
cillation as driven by the external force in the absence of
Landau-Zener tunneling. In every time period of the Bloch
oscillation TBO, it will run one time across the Brillouin zone
and pass through the point where the band gap lies �usually
at q=0�. When the Landau-Zener tunneling takes effect, it
will have a certain probability to tunnel to the upper energy
band, which leads to the redistribution of the population lo-
cated in each band. The Landau-Zener tunneling probability
can be estimated to be e−ac/a, where ac=d�2 / �4�2�, a is ac-
celeration, and � is the energy-band gap. The exponential
function implies that the Landau-Zener tunneling could be
assumed to happen just at point q=0. Therefore we have the
formula

� = e−ac/a��q�/TBO. �4�

Here we consider the ultracold atoms without interactions. It
is known that the interactions between atoms can be tuned by
Feshbach resonance �see Ref. �22� and referred experiments
therein� and the nonlinear term can be viewed as an effective
potential for the weak interaction when the interaction en-
ergy is small compared to the lattice depth. Since our formal-
ism is applied for general lattice potential, the interaction is
partially included in the effective optical potential through
parameters Rn as long as the nonlinear interaction is too
weak to produce the loop structure of energy band �23�.
Moreover, as we introduce the damping factor in the Boltz-
mann equations, the interactions between the atoms could be
taken as one kind of mechanism contributing to the damping
factor g1 and free of more detailed investigation here.

For the periodicity of the energy dispersion, the distribu-
tion function can also be expanded in the form of a Fourier
series,

f j�q,t� = �
n=−�

�

fn
j �t�e−inqd, �5�

where j=1,2 and i is the imaginary unit. Then the Fourier
transforms fn

j �t� satisfy the equations

dfn
j

dt
= in

Fd

�
fn

j − g1
j �fn

j − fn
j0� + e−ac/a�

m

�fm
j̄ − fm

j �/TBO, �6�

where f j0 is the Fourier transformation of equilibrium distri-
bution f jq

0 . Finally we can express the transient current as

j�t� =� v�q�f�q,t�dq , �7�

=− i
�d

�
�

j
�
n=1

�

nRn
j �fn

j �t� − f−n
j �t�� . �8�

The atomic current would get stationary after a long time
because of the damping factor. The stationary atomic current
is then defined as

I = lim
t→�

j�t� . �9�

III. RESULTS AND DISCUSSION

In the Fourier-synthesized optical lattices, the potential
felt by the atom is

V�z� =
V1

2
cos�2kz� +

V2

2
cos�4kz + �� , �10�

where V1 and V2 are the potential depths of two lattice har-
monics, respectively, and � is the relative phase. The spatial
period of the optical lattice is d=	 /2, where 	=2� /k.

We use the following parameters: 87Rb atoms,
	=800 nm, V1=4Er, and V2=1.2Er, where Er is the recoil-
ing energy. In this paper, we use Er and 	 as the units of
energy and length, respectively. Then the unit of atomic cur-
rent is Er /h, where h=2��. The external force is added by
tilting the lattices and so the acceleration of the atom is
a=g cos 
, where g is the gravity acceleration and 
 is the
angle between the direction of the optical lattices and the
gravity. The structure of energy band depends on the relative
phase; therefore, one can tune the Landau-Zener probability
by adjusting the relative phase as shown in Fig. 1. We can
see that the relative phase is really an effective way to con-
trol the Landau-Zener tunneling probability, varying from
almost 0 to almost 1.

When the damping factor is taken into account, the atom
in either band would oscillate in the external field and jump
from one band to the other with certain probability due to the
Landau-Zener tunneling. The Landau-Zener tunneling plays
different roles in the process of Bloch-Zener oscillation with
different �. We choose a typical value �=0.75� to demon-

FIG. 1. �Color online� The Landau-Zener tunneling probability
in the optical lattices adjusted by the relative phase �.
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strate the Bloch-Zener oscillation and its influence on the
atomic current. Figure 2�a� gives the energy dispersion and
Fig. 2�b� is the corresponding equilibrium distribution func-
tion for each band, respectively. The atom is supposed to stay
in band 1 in equilibrium at the initial time. As the external
force is tuned on, the atom population and the atomic current
contributed from each band would evolve with time as plot-
ted in Figs. 2�c� and 2�d�, respectively. In Fig. 2�c�, we see
that the population in band 1 decreases while that in band 2
increases until they get almost equal. The stepwise jumping
matches the Bloch oscillation period TBO. In Fig. 2�d�, the
atomic current contributed from each band demonstrates the
characteristic of Bloch oscillation. The changing amplitude
of the oscillation means the variation in the population in
each band, which proves the existence of Landau-Zener tun-
neling.

When the damping factor is considered, the net atomic
current would not be zero any more after a long time. On one
side, the external force drives the atom to perform Bloch
oscillation; on the other side, the damping factor pulls the
atom back to the equilibrium state. Finally, when the system
gets stationary, there is a net atomic current. A typical evo-
lution of the atomic current with time as the damping exists
is shown in the inset of Fig. 3. As the stationary atomic
current is an easily measured quantity in experiment, we
could connect it with the relative phase � and hence with the
probability of the Landau-Zener tunneling. In other words,
the Landau-Zener tunneling can be observed by measuring
the stationary atomic current with the variation in �. Figure 3
shows the relation between the stationary atomic current and
the relative phase �. For �=0 the Landau-Zener probability

is almost zero, so the atom mainly stays in one band �band
1�. With � increasing, the gap of energy band decreases and
the probability for the atom to tunnel into the upper band
�band 2� increases correspondingly. In this process the
weight of the contribution to the stationary atomic current
from band 2 increases gradually. The total stationary atomic
current increases simultaneously because the atom in band 2
has a bigger contribution to the stationary atomic current
than that of band 1 due to their different energy-band struc-
tures. With � increasing further, the Landau-Zener tunneling

FIG. 2. �Color online� Demonstration of the atomic current in the Bloch-Zener oscillation. �a� Energy dispersion of the atom in the optical
lattices with �=0.75�. The lowest two bands are labeled with 1 and 2, respectively. �b� The equilibrium distribution functions of band 1
�lower� and band 2 �upper�. �c� The time evolutions of the populations in bands 1 and 2, respectively. �d� The time evolutions of atomic
currents contributed from bands 1 and 2, respectively.

FIG. 3. �Color online� The stationary atomic current with the
variation in � in the optical lattices with the damping factor con-
sidered. The damping rate is 0.02Er. Inset is the time evolution of
the atomic current at a typical value of �=0.75�.
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probability becomes large enough to mix two bands before
damping factor takes effect and consequently results in al-
most equivalent atom population between two bands. Once
the populations get unchanged between two bands, the sta-
tionary atomic current reaches maximum.

Besides the energy-band gap, the Landau-Zener tunneling
probability is also dependent on the strength of the external
force F. Then how does the I-F curve change in the presence
of the Landau-Zener tunneling? If the relative phase � is so
small that the Landau-Zener tunneling could be neglected,
the relation of the stationary atomic current to the external
force should have the same characteristics as the I-V curve
for electrons in single band in semiconductor superlattices
�20�. When the Landau-Zener tunneling begins to play a role,
however, the stationary atomic current would change due to
the joined contribution from band 2. The modification of the
external force F is usually realized by adjusting the compo-
nent force of gravity F=mg cos 
 in experiment. The calcu-
lated stationary atomic currents are plotted with the variation
in angle 
 for different values of � in Fig. 4. In Fig. 4�a�, we
set the damping rate as g1

1=0.01Er and g1
2=0.06Er. It is

shown that, when �=0, the I-F curve has almost the same
shape as that in the absence of Landau-Zener tunneling,
meaning that the behavior of the atom is almost determined

by the single band. But the difference at the tail of the curve
indicates the existence of Landau-Zener tunneling. The role
played by the Landau-Zener tunneling becomes more and
more obvious with the increasing value of �. Finally there
appears an additional peak in the case of �=�. The appear-
ance of the new appeared peak is mainly contributed by band
2. As the location of Esaki-Tsu peak is closely connected
with the damping rate, we find that, if the energy-band gap is
small enough and the damping rates of these two bands have
an appropriate difference, the two-peak phenomenon could
be observed in the I-F curve in optical lattices. However this
phenomenon is usually impossible in the semiconductor su-
perlattices. If the damping rates of these two bands are not so
distinct, the Esaki-Tsu peaks contributed from these two
bands may be difficult to distinguish from each other. For
example, in Fig. 4�b�, we set the damping rates as g1

1=g1
2

=0.01Er. For �=�, the population in band 2 is accumulated
more enough even at the small value of F and therefore the
peaks of both bands overlap with each other. However the
Landau-Zener tunneling could still be observed by the shoul-
der of the peak for the cases of �=3� /4 and � /2. That
means the curve of dI /dF, the counterpart of differential
conductance dI /dV in semiconductor superlattices, is re-
shaped by the Landau-Zener tunneling. On all accounts, the
I-F curve is determined by the interplay between the damp-
ing rates and the probability of Landau-Zener tunneling, and
the latter is determined by the relative phase �. Conse-
quently, the I-F curve is an effective way to observe the
Landau-Zener tunneling in optical lattices.

IV. CONCLUSION

Based on a two-band model, we get the atomic current in
optical lattices by solving the Boltzmann equations. With the
realistic parameters in the Fourier-synthesized optical lat-
tices, we calculate the stationary atomic current with the
Landau-Zener tunneling taken into account. We find the sta-
tionary atomic current goes with the increasing probability of
Landau-Zener tunneling, adjusted by the relative phase.
Moreover, in contrast to the case of electrons in the semicon-
ductor superlattices governed by the classical Esaki-Tsu
equation, the I-F curve in optical lattices is modified signifi-
cantly by the Landau-Zener tunneling. Two peaks may ap-
pear in the I-F curves. All of the results are the reflection of
the changes in population in the upper energy band caused
by the Landau-Zener tunneling. Therefore the well-
controlled Landau-Zener tunneling in the optical lattices can
be observed through the stationary atomic current, a measur-
able quantity in experiment.
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FIG. 4. �Color online� The stationary atomic current with the
variation in the gravity for different values of � and the damping
rates �a� g1

1=0.01Er and g1
2=0.06Er; �b� g1

1=g1
2=0.01Er. The gravity

is adjusted by changing the angle 
. Because the value of � can
always be transferred to a corresponding value in the interval �0,��
with the optical lattices unchanged, we only consider the values of
� in the interval.
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