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The Ginzburg-Landau theory of a trapped Fermi gas with a BEC-BCS crossover is derived by the path-
integral method. In addition to the standard Ginzburg-Landau equation, a second equation describing the total
atom density is obtained. These two coupled equations are necessary to describe both homogeneous and
inhomogeneous systems. The Ginzburg-Landau theory is valid near the transition temperature Tc on both sides
of the crossover. In the weakly interacting BEC region, it is also accurate at zero temperature where the
Ginzburg-Landau equation can be mapped onto the Gross-Pitaevskii �GP� equation. The applicability of GP
equation at finite temperature is discussed. On the BEC side, the fluctuation of the order parameter is studied
and the renormalization to the molecule coupling constant is obtained.
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I. INTRODUCTION

In a Fermi gas with a BEC-BCS crossover, the scattering
length as can be tuned by the technique of Feshbach reso-
nance �1�. The effective interaction between atoms is propor-
tional to the scattering length. A dilute Fermi gas with a
negative scattering length is in a BCS pairing state below a
critical temperature �2–5�, very similar to BCS supercon-
ductors. A dilute Fermi gas with a positive scattering length
is in a BEC state of diatomic molecules below another criti-
cal temperature �6,7�. Although the scattering length is diver-
gent at the resonance, the system evolves smoothly between
the BCS state and the molecular BEC state across the reso-
nance at low temperatures. The observation of the BEC-BCS
crossover �8� provided a platform to study strong-correlation
effects in fermionic systems.

The BEC-BCS crossover can be qualitatively understood
in the BCS-type mean-field theory �9,10�. In this theory, as
the interaction changes sign from attractive to repulsive
across the resonance, the pair size of Cooper pairs decreases
and eventually these atom pairs become diatomic molecules.
Although the mean-field theory offers the correct physical
picture, it overestimates the critical temperature and the
molecule-molecule scattering length in the weakly interact-
ing BEC limit. Nozières and Schmitt-Rink �NSR� �11� found
that fluctuation effects have to be considered to get the cor-
rect critical temperature. The total fermion density includes
not only the mean-field fermion density but also the density
of thermal molecules, which provides the important relation
between the density and the chemical potential. The NSR
theory is essentially equivalent to treating Gaussian fluctua-
tions in the Ginzburg-Landau theory �12�. The NSR theory
was also applied at zero temperature and the molecule-
molecule scattering length was found in good agreement
�13,14� with the few-body calculation �15�.

The purpose of this paper is to construct the Ginzburg-
Landau theory to describe the BEC-BCS crossover in a
trapped Fermi gas. Compared to microscopic theories, the
Ginzburg-Landau theory has potential advantages of requir-

ing less computation and being easier to be applied to inho-
mogeneous cases such as trapped systems. In the weakly
interacting BEC region, the Ginzburg-Landau equation was
shown to be equivalent to the Gross-Pitaevskii �GP� equation
at zero temperature �16�. In the unitary region, a modified
Ginzburg-Landau theory was developed to describe the
phase slip �17�, vortex �18�, and vortex lattices �19�. How-
ever there still lacks a complete Ginzburg-Landau descrip-
tion of the whole BEC-BCS crossover. In the following, we
first derive the Ginzburg-Landau theory of a trapped Fermi
gas by the functional-integral method and obtain the
Ginzburg-Landau equation and the equation for the fermion
density. The density equation is important for providing the
density profile of the BEC-BCS crossover in both the inho-
mogeneous and homogeneous cases. Then we concentrate on
weakly interacting BEC limit, study the Ginzburg-Landau
equation at both zero and finite temperatures, and consider
effects due to fluctuations of the order parameter. The con-
clusion is given in the end.

II. GINZBURG-LANDAU THEORY OF A TRAPPED
FERMI GAS

A Fermi gas with a wide Feshbach resonance can be ef-
fectively described by a single-channel model, while for the
narrow resonance case a two-channel model is more accurate
�20�. In this paper we consider only the wide resonance case
in which the single-channel Hamiltonian density is given by

H�x� = �
�

��
†�x��−

�2�2

2m
+ V�r�����x�

+ g�↑
†�x��↓

†�x��↓�x��↑�x� , �1�

where x= �r ,�� is the coordinate in space and time, ���x� is
the field operator of atoms with spin component �, m is the
mass of a Fermi atom, V�r� is the external trapping potential,
and the coupling constant is given by g=4��2as /m. In the
following we consider only the spin-balanced case where the
densities of spin-up and spin-down atoms are the same.

The grand partition function Z can be written in
functional-integral formalism as*yinlan@pku.edu.cn
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Z =� D��
�D�� exp�S�� , �2�

with the action given by

S� =� d4x	− �
�

��
��x���� − �����x� − H���,��
 , �3�

where 0���1 / �kBT� and � is the chemical potential.
The interaction term in Eq. �1� can be decoupled by in-

troducing an auxiliary field ��x� and applying the Hubbard-
Stratanovich transformation �12�. After integrating out the
fermion field ��x�, we obtain

Z =� D��D� exp�S�� , �4�

where the action S� is given in terms of the auxiliary field �,

S� = ln det M +
1

g
� d4x���x��2, �5�

M = �− �� − Ĥ�r� − ��x�

− ���x� − �� + Ĥ�r�
� , �6�

and

Ĥ�r� = −
�2�2

2m
+ V�r� − � . �7�

The action S� can be further separated into two parts,

S� = Sef f + S0, �8�

where S0=ln det M0 is independent of � with

M0 = �− �� − Ĥ�r� 0

0 − �� + Ĥ�r�
� , �9�

and the second part Sef f vanishes when �=0,

Sef f =
1

g
� d4x���x��2 + Tr ln�I − Gu� , �10�

with u=M0−M= � 0 ��x�
���x� 0 �, I as the identity matrix and G

=M0
−1= �

G+ 0
0 G−

� being the Green’s function of a noninteracting
Fermi gas.

Next we expand the second term in Sef f to the fourth order
in �. This approximation holds only when � is small com-
pared to the Fermi energy, which is true when �T−Tc� /Tc
	1 or the system is in the weakly interacting BEC regime.
After the expansion, we obtain

Sef f �
1

g
� d4x���x��2 +� d4xd4x1Q�x,x1����x���x1�

−
1

2
� 

i=1

4

d4xiR�x1, . . . ,x4����x1���x2����x3���x4� ,

�11�

where

Q�x1,x2� = − G+�x1,x2�G−�x2,x1� ,

R�x1, . . . ,x4� = G+�x1,x2�G−�x2,x3�G+�x3,x4�G−�x4,x1� .

�12�

Since we are interested in low-energy and long-
wavelength properties of the system, we apply gradient ex-
pansion in Eq. �11� and obtain

Sef f �� d4x�d���x�����x� + c���x�
�2�2

4m
��x�

+ �a +
1

g
����x��2 −

1

2
b���x��4� , �13�

where

a =� d4x�Q�x − x�/2,x + x�/2� ,

b =� 
i=1

3

d4xiR�x,x1,x2,x3� ,

c =
4m

�2 � d4x�
r�2

6
Q�x − x�/2,x + x�/2� , �14�

and x�= �r� ,���. The coefficient d of the time-derivative term
is defined as the coefficient of the linear term in the expan-
sion of Q in the frequency space in the zero-frequency limit,

d = lim

→0

� d4x�
ei
�� − 1

i

Q�x − x�/2,x + x�/2� . �15�

The equation of motion of the order parameter can be ob-
tained by taking �Sef f /����x�=0, which yields

�d�� + c
�2�2

4m
+ a +

1

g
���x� − b���x��2��x� = 0. �16�

For an arbitrary trap potential V�r�, it is difficult to obtain
the exact analytical expression of the Green’s function G.
Here we consider only the case where the trap length is much
larger than the interparticle distance and the local-density
approximation �LDA� can be applied,

G�x1,x2� � G�0��x1,x2� . �17�

Here G�0�= �
G+

�0� 0

0 G−
�0� � is the Green’s function of a homogeneous

noninteracting Fermi gas with the chemical potential ��=�
−V��r1+r2� /2�,

�− �� − T̂ + �� 0

0 − �� + T̂ − ��
�G�0��x − x�� = ��x − x��I ,

�18�

where T̂=−�2�2 / �2m�. In LDA, the coefficients in Eq. �14�
are given by

HUANG, YU, AND YIN PHYSICAL REVIEW A 79, 053602 �2009�

053602-2



a =� d3k

�2��3

tanh��k/�2kBT��
2�k

,

b =� d3k

�2��3� tanh��k/�2kBT��
4�k

3 −
sech2��k/�2kBT��

8kBT�k
2 � ,

c =� d3k

�2��3� tanh��k/�2kBT��
4�k

2 −
sech2��k/�2kBT��

8kBT�k
� ,

d =� d3k

�2��3

tanh��k/�2kBT��
4�k

2 , �19�

where �k=�2k2 / �2m�−��. It is important to note that in ob-
taining the coefficients given by Eq. �19� LDA is applied to
the Green’s function of a noninteracting Fermi gas G�0�,
which is different from applying LDA directly to the broken-
symmetry state. The latter case requires that the gap has to be
much larger than the trap frequency, which does not hold
near the critical temperature or in the weakly interacting
BEC regime.

In the unitary and BCS regime where there is a clear
Fermi surface, the Fermion energy �k has zero points and
there are divergences in integrands on right hand side �rhs� of
Eq. �19� at zero temperature, suggesting that this formalism
does not work at zero temperature. At finite temperatures, the
integrand on rhs of the equation for the coefficient d also
diverges. A more careful treatment of this coefficient leads to
damping in the dynamics of the order parameter �21�. In the
following, we will not study the dynamics or zero-
temperature properties in this regime so these issues do not
occur.

At the stationary state, the function ��r� satisfy the
saddle-point condition

�Sef f

���r�
= 0, �20�

which leads to the Ginzburg-Landau equation

− c
�2

4m
�2��r� − �a +

1

g
���r� + b���r��2��r� = 0. �21�

The Ginzburg-Landau equation can be rewritten in terms of a
wave-function �r� defined by �r���c��r�,

−
�2

4m
�2�r� + ��r� + ���r��2�r� = 0, �22�

where

� = −
1

c
�a +

1

g
� ,

� =
b

c2 , �23�

and the gradient terms of c are ignored due to its small spa-
tial variation within LDA. In Eq. �23�, the coupling constant
is given by

g−1 =
m

4��2as
−� d3k

�2��3

1

2�k
0 , �24�

where �k
0 =�2k2 / �2m� and the second rhs term is a counter

term in the particle-particle channel.
In the simple homogeneous case, the critical temperature

Tc is determined from the equation

� = 0, �25�

which is exactly the Tc equation in the mean-field BCS
theory,

� d3k

�2��3	 tanh��k/�2kBTc��
2�k

−
1

2�k
0
 = −

m

4��2as
. �26�

Above Tc, the Ginzburg-Landau equation does not have a
nontrivial solution. Close to Tc, to the first order of T−Tc, the
coefficient � is approximately given by

� � ��Tc��T − Tc� , �27�

where

��Tc� =� d3k

�2��3

1

4ckBTc
2sech2� �k

2kBTc
� .

In the trapped case, the critical temperature Tc is approxi-
mately determined by

��r0� = 0, �28�

where r0 is the place with the highest fermion density.
The Ginzburg-Landau equation determines the distribu-

tion of the order parameter in the stationary state. To obtain
the density distribution, we need to study the thermodynamic
potential �, given by

� = − kBT ln Z = � f + �s, �29�

where � f is thermodynamic potential of a noninteracting
Fermi gas; in LDA it is given by

� f = 2� d3r� d3k

�2��3 ��k + kBT ln nk� , �30�

and nk=1 / �1+exp��k / �kBT��� is the Fermi distribution func-
tion. The term �s is the contribution to thermodynamic po-
tential by the order parameter. If we consider only the sta-
tionary state and ignore fluctuations of the order parameter in
the mean-field approximation, �s is approximately given by

�s
�0� = − kBTSef f

�0�

=� d3r�− ��r�
�2

4m
�2�r� + ���r��2 +

�

2
��r��4� .

�31�

From the relation N=−�� /��, the atom density in the mean-
field approximation can be obtained,

n�r� � nf�r� + ns
�0��r� , �32�

where nf associated with � f is the density of a homogeneous
noninteracting Fermi gas with the chemical potential ��=�
−V�r�,
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nf�r� = 2� d3k

�2��3nk�r� , �33�

and ns
�0� associated with �s

�0� is the density due to the order
parameter,

ns
�0��r� �

�a

��
���r��2 = 2��r��2. �34�

Note that in Eq. �34� the quartic term in �r� is ignored
because it is much smaller than the quadratic term. The den-
sity equation �32� indicates that the total density can be sepa-
rated into two parts, i.e., nf from the normal state and ns

�0�

from the superfluid order parameter, which is consistent with
the two-fluid model of a superfluid at finite temperatures.
The superfluid atom pairs are described by the wave function
�r�. In a trapped system, usually the total number of atoms
N is given,

N =� d3rn�r� , �35�

from which the chemical potential � can be solved. The
Ginzburg-Landau equation �22� and the density equation
�32� provide a complete mean-field phenomenological de-
scription of a trapped superfluid Fermi gas.

III. GINZBURG-LANDAU EQUATION IN THE WEAKLY
INTERACTING BEC REGIME

In the weakly interacting BEC regime, the Fermi gas is
dilute, nas

3	1, and the order parameter � is much less than
the binding energy of a diatomic molecule given by �0
=�2 / �mas

2�. In this regime, since the chemical potential � is
negative, there is no Fermi surface. The coefficients in the
Ginzburg-Landau equation given by Eq. �19� are well de-
fined even at zero temperature. Therefore the Ginzburg-
Landau theory can be applied from zero temperature to near
Tc. In this section we study the Ginzburg-Landau equation in
this regime.

At zero temperature, from Eqs. �19� and �23�, the coeffi-
cients in the Ginzburg-Landau equation are given by

�0 = 4����������� − ��0/2� ,

�0 =
2�2��3

m3/2�����
,

d0 = c0. �36�

Since the density n0= ��0 /�0� is much smaller than 1 /as
3, we

obtain ��=−��0 /2��1+O�n0as
3�� and approximately

�0 � − �2�� + �0� ,

�0 �
8��2as

2m
. �37�

With the time-dependent term, the Ginzburg-Landau equa-
tion can be written as

���x� −
�2�2

4m
�x� + �2V�r� − �b��x� +

8��2as

2m
��x��2�x�

= 0, �38�

where �b=2�+�0 is the chemical potential of molecules.
This time-dependent Ginzburg-Landau equation is identical
to the Gross-Pitaevskii equation of molecular BEC if the
imaginary time � is analytically continued to the real time t,
�= i�t, with mb=2m identified as the molecule mass and ab
=2as identified as the scattering length between molecules.
The density equation �32� in this regime is trivial, n=2��2,
which means all the atoms are paired into condensed mol-
ecules at zero temperature. However, the molecule scattering
length ab extracted from Eq. �38� is ab=2as, contradicting to
the result ab�0.6as from the few-body calculation �15�. This
discrepancy is due to the fact that we have not considered the
fluctuation effect which is discussed in the next section.

In the weakly interacting regime, the BEC transition tem-
perature Tc is much smaller than the molecule binding en-
ergy �0, kBTc	�0. As a result, at any finite temperature be-
low or near Tc, the coefficients in the time-dependent
Ginzburg-Landau equation are almost the same as those at
zero temperature given by Eq. �38�, except the molecular
chemical potential �b now varying with temperature. There-
fore the time-dependent Ginzburg-Landau equation �38� re-
mains valid at finite temperatures below or near Tc.

IV. FLUCTUATION EFFECTS

In this section, we consider the effect due to the fluctua-
tion of the order parameter which is ignored in our derivation
so far. The effective action in terms of the pair wave function
�x�=�c��x� is given by

Sef f =� d4x����x����x� + ��x�
�2

4m
�2�x� − ���x��2

−
1

2
���x��4� , �39�

where �=d /c. For simplicity we consider only the homoge-
neous case. In the following, we concentrate on the weakly
interacting BEC regime near or below Tc, where ��1, �
�−�b, and ��8��2as / �2m�. In this regime, the effective
action given by Eq. �39� is the same action of a Bose gas
with the boson mass given by 2m and a scattering length
given by 2as.

The effective action given by Eq. �39� provides a contri-
bution to the thermodynamic potential given by

�s = − kBT ln� D�D exp�Sef f� , �40�

from which we can obtain its contribution to the density ns
by taking −��s /��. For a weakly interacting Bose gas,
Bogoliubov’s theory is accurate �22�, in which ns is given by
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ns � 20
2 +� d3k

�2��3� ��bk − ��
Ebk

coth� Ebk

2kBT
� − 1� , �41�

where �bk=�2k2 / �4m� is the kinetic energy of a molecule and
Ebk=��bk��bk−2�� is the excitation energy of the molecular
quasiparticle. The order parameter 0 is equivalent to the
expectation value of the Bose field-operator, 0=�−� /�,
where its phase is chosen so 0 is positive for simplicity.

In Bogoliubov’s theory of a dilute Bose gas, there is an
ultraviolet divergence appearing in the calculation of the
thermodynamical potential �s and the ground-state energy,
which is removed by the renormalization of the coupling
constant

gb
−1 =

2m

4��2ab
−� d3k

�2��3

1

2�bk
,

where the second rhs term is a counter term only appearing
in the calculation involving the particle-particle channel.
However in the effective action Eq. �39�, the constant � is
not renormalized so far, which would result in a divergent
term in �s and the ground-state energy �23� given by

�s� = − �2�
k

1

4�bk
, �42�

with the contribution to density given by

ns� = − �� d3k

�2��3

1

�bk
, �43�

where �� /���−2. This ultraviolet divergence is an un-
physical result due to the invalidity of the gradient expansion
used in derivation the Ginzburg-Landau action given by Eq.
�13� at short distances. Fluctuations inside molecules become
important at short distances, which is beyond the description
of the gradient expansion. The energy scale at which the
gradient expansion is invalid is approximately given by the
molecule binding energy �0=�2 / �mas

2�, which is equal to the
molecular kinetic energy at wave vector k=2 /as. Thus a
straightforward renormalization method is to put a cutoff �
=2 /as in the k integrals of Eqs. �42� and �43�, which yields

ns� = −
4�m

�2�2as
=

16

�
0

2. �44�

After considering the renormalization due to fluctuations, we
obtain the density equation

n = nf + ns + ns� = 2�1 +
8

�
�0

2

+� d3k

�2��3� ��bk − ��
Ebk

coth� Ebk

2kBT
� − tanh� �k

2kBT
�� .

�45�

At zero temperature, the density equation is simply given
by

n = 2�1 +
8

�
�0

2 +� d3k

�2��3� ��bk − ��
Ebk

− 1�
= 2�1 +

8

�
�0

2 +
16

3
0

3� 8

�
as

3. �46�

The first rhs term in Eq. �46� implies that the condensate
density is n0=2�1+8 /��0

2, not simply 20
2. The second rhs

term is proportional to 0
3, which comes from the quantum

depletion of molecules. Thus in term of the true molecular
condensate wave function

̃�x� = ��1 + 8/���x� , �47�

the Ginzburg-Landau equation given by Eq. �38� should be
rewritten as

��̃�x� −
�2�2

4m
̃�x� + �2V�r� − �b�̃�x� +

4��2ab

2m
�̃�x��2̃�x�

= 0, �48�

where ab is the scattering length of molecules after consid-
ering the renormalization,

ab =
2as

1 + 8/�
� 0.56as, �49�

very close to the result ab�0.6as from the few-body calcu-
lation �15�.

Although the renormalization to the mean-field molecule
scattering length given by Eq. �49� was obtained below Tc, it
is valid above Tc as well, which can be understood in the
vacuum renormalization of the molecule coupling constant in
the T-matrix approximation,

gb
−1 = gb0

−1 − i� d


2�
� d3k

�2��3Gb�k,
�Gb�− k,− 
�

= gb0
−1 +� d3k

�2��3

1

2�bk
, �50�

where gb0=8��2as / �2m� is the molecule coupling constant
in the mean-field approximation, gb=4��2ab / �2m� is the
renormalized coupling constant, and

Gb�k,
� =
1


 − �bk + i�

is the Green’s function of a molecule in vacuum. A cutoff
�=2 /as should be put in the k integral of Eq. �50� due to the
same reason as stated above that this effective description
ceases to be accurate when �bk��0, leading to the same
renormalization,

ab =
2as

1 + 4as�/�
, �51�

same as Eq. �49� at �=2 /as. The molecule scattering length
ab as a function of the cutoff � is shown in Fig. 1. It should
be emphasized that a more precise cutoff than 2 /as is neces-
sary for any further numerical comparison with the few-body
result, which requires understanding of high-energy pro-
cesses beyond the Ginzburg-Landau description. The
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vacuum renormalization of the molecule coupling constant
can also be applied to trapped systems within LDA as long as
the molecule binding energy is much bigger than trap fre-
quencies.

At Tc, �=0, the density is given by

n = 2� d3k

�2��3	 1

exp��bk/�kBTc�� − 1
+

1

exp��k/�kBTc�� + 1

 ,

�52�

indicating that there are only thermally excited atoms and
molecules. Since kBTc	�0, the number of thermally excited
atoms are negligibly small and almost all the particles are
thermal molecules,

n �� d3k

�2��3

2

exp��bk/�kBTc�� − 1
. �53�

Generally at finite temperature below Tc, the density can
be separated into the superfluid density nsf and the normal
density nn, n=nsf +nn. The superfluid density is given by the
condensate density and the quantum depletion,

nsf = 2̃0
2�1 +

8

3
�̃0

2ab
3

�
� , �54�

consistent with traditional theories of a dilute Bose gas �22�.
The normal density is given by the total density of thermal
atoms and molecules. Since the thermal atoms are negligible,
the normal density is approximately given by the density of
thermal molecules,

nn = 2� d3k

�2��3

��bk − ��
Ebk

1

exp�Ebk/�kBT�� − 1
. �55�

Compared to the mean-field result in Eq. �32�, both the su-
perfluid density and the normal density are renormalized. In
the weakly interacting BEC limit, as shown in Fig. 2, the
renormalization to the density is quite strong. At zero tem-
perature, the mean-field density account for only about 28%

of the total density, while the rest density is due to fluctuation
contribution. At Tc, almost all the density are due to fluctua-
tion contribution.

Away from the weakly interacting BEC limit, the fluctua-
tion effect is more difficult to deal with in the Ginzburg-
Landau theory. The coefficients in the Ginzburg-Landau
equation are more complicated than those given by Eq. �36�,
and fluctuations of the order parameter cannot be simply
treated by the Bogoliubov’s theory. Moreover the wave-
vector cutoff 2 /as vanishes in the unitary region where a
more subtle renormalization scheme is required. These prob-
lems will be explored in our future work. The situation is
simpler again on the other side, in the weakly interacting
BCS limit, where the fluctuation of the order parameter is
strongly damped. In this limit, the mean-field theory is accu-
rate and the fluctuation of the order parameter is less impor-
tant.

V. CONCLUSION

In conclusion, we have derived the Ginzburg-Landau
theory of a trapped Fermi gas with a BEC-BCS crossover.
Two equations including the standard Ginzburg-Landau
equation and the density equation are obtained to describe
the order-parameter distribution and the density profile. In
the weakly interacting BEC limit, the Ginzburg-Landau
equation is equivalent to the GP equation. The fluctuation of
the order parameter is strong in this limit, which can be
treated by the Bogoliubov’s theory. Compared to mean-field
results, both the density and the molecule-molecule scatter-
ing length are renormalized, in agreement with the few-body
and NSR theories.
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FIG. 1. The molecule scattering length ab vs the cutoff �. Dot-
ted lines are �=2 /as and ab=0.56as, which is very close to the
result ab�0.6as from the few-body calculation �15�. At �=0, the
mean-field result ab=2as is recovered.

FIG. 2. Density ratios of a homogeneous Fermi gas in the
weakly interacting BEC limit as functions of temperature. Solid line
is the mean-field density given by Eq. �32� divided by the total
density. For comparison, the dashed line is the ratio of the super-
fluid density to the total density.
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