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The exploration of a quantum control landscape, which is the physical observable as a function of the control
variables, is fundamental for understanding the ability to perform observable optimization in the laboratory.
For high control variable dimensions, trajectory-based methods provide a means for performing such system-
atic explorations by exploiting the measured gradient of the observable with respect to the control variables.
This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a
general quantum control landscape in the presence of noise. In order to demonstrate the method’s utility, the
experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three
model quantum control problems: spectrally filtered and integrated second harmonic generation as well as
excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three
times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control
optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid

in the continued investigation and understanding of controlled quantum phenomena.
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I. INTRODUCTION

The implementation of quantum control in the laboratory
has been facilitated through the confluence of several tech-
nologies, including high repetition rate ultrafast laser sources
[1], femtosecond pulse shaping technology [2], and practical
high-dimensional learning algorithms [3]. In particular, the
field has effectively employed learning algorithms in a
closed-loop fashion to efficiently search the typically high-
dimensional control spaces intrinsic to these problems [4].

Evolutionary algorithms were originally believed to be
well suited for the optimization of quantum control problems
because their global search capability was thought to be nec-
essary for locating a lone solution in an exponentially large
search space. In addition, the algorithm’s stochastic nature
was also believed to be important for escaping from any
local suboptimal maxima on the underlying search landscape
and handling noise that is inevitably present in a laboratory
setting. Indeed, the mounting successes of evolutionary
algorithm-guided optimizations across a broad range of prob-
lems [5-7] have led to their adoption as a standard tool for
experimental quantum control.

This general success, as well as the relative ease of
quickly locating a family of high-quality robust solutions,
prompted analyses of the underlying quantum control land-
scape, which is defined as the physical observable as a func-
tion of the control field. Intuition had originally surmised
that the highly nonlinear mapping between control variables
and the measured observable would result in an extremely
complex, structurally rich landscape upon which exploration
would best be handled with the machinery of stochastic al-
gorithms. However, recent theoretical analyses have begun to
give insight into the true nature and topology of these search
landscapes [8,9]. In particular, it has been shown that the
landscapes of general quantum observables are not infused
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with suboptimal local maxima and minima as originally be-
lieved but rather only have global maxima (minima) at the
highest (lowest) attainable value of the observable [10,11]; in
certain cases, nontrapping saddle structures may also be
present. Additionally, quantum control problems exhibit a
large solution multiplicity, and repeated optimizations will
often converge to several equally successful unique control
solutions [12,13].

With the current knowledge of the underlying search land-
scape topology, a natural question is whether an optimal al-
gorithm exists that is best suited for maneuvering quantum
control landscapes. The stochastic nature of the genetic algo-
rithm (GA) or other evolutionary algorithms is still attractive
for locating high-quality solutions in the presence of labora-
tory noise. However, given the existence of a large solution
multiplicity and the monotonically increasing nature of the
control landscapes, it is possible that a local search algorithm
is better suited in terms of both efficiency and uncovered
landscape information rather than performing a global search
driven by a stochastic-based algorithm. Although the generic
topology of unconstrained quantum control landscapes is sur-
prisingly simple, little is known about the landscape local
structure, which is likely system dependent. Naturally,
knowledge of a problem’s local structure would be advanta-
geous for uncovering a global nonlinear transformation to
reveal the “proper” curvilinear control variables and possibly
provide mechanistic insights.

One such local algorithm that is particularly amenable to
the topology of unconstrained quantum control landscapes is
gradient ascent. Regardless of the landscape local structural
complexity, the monotonicity of quantum control landscapes
guarantees a successful optimization when operating with
low noise and adequately unconstrained controls. In addition
to providing the direction of steepest ascent, the gradient
provides myopic information about control landscape fea-
tures. Excursions over arbitrarily high-dimensional land-
scapes are only really practical with trajectory-based meth-
ods, and knowledge of the gradient provides an entree into
trajectory-based exploratory techniques, such as observable
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tracking [12,14] and Pareto front exploration [15,16], to not
only climb but also traverse the landscape at will in any
direction and report on identified local features.

It should be noted that trap free landscapes can be envi-
sioned in which a global search algorithm would still be
better suited in terms of efficiency than local algorithms,
including gradient ascent. One such example is a model
landscape described as a high pitch helical structure. Al-
though gradient ascent would likely be less efficient than
global optimization in this case, the curvilinear control field
coordinate transformations intrinsic to the structure of the
landscape would likely only be discovered with a local algo-
rithm. Thus, even for problems in which the gradient may
not be efficient, it is capable of providing detailed knowledge
about a given problem’s underlying local landscape
structure.

An outstanding subject concerns the alteration of the ge-
neric quantum control landscape topology in the presence of
constraints (e.g., fixed center wavelength, limited bandwidth
and fluence, and finite pixel resolution), which are inevitably
present in any laboratory situation [17]. Thus, invariably, ex-
perimental landscapes will not exhibit perfect monotonicity.
Yet, implementation of the gradient algorithm is also of in-
terest here since suboptimal convergence indicates a pres-
ence of false traps, and gradient information may reveal the
source of the trap (e.g., improper control field basis, insuffi-
cient energy, etc.) and possible means for escape.

Here we develop a practical laboratory methodology for
obtaining the gradient of an observable with respect to the
control variables in the presence of noise. Rather than ob-
taining the gradient via finite differences, which is known to
suffer inaccuracies due to the presence of noise, a statistical
estimation of the gradient is obtained. A laboratory-based
steepest-ascent algorithm based on this statistically deter-
mined gradient is then implemented for the optimization of
several model quantum control problems, and its perfor-
mance is evaluated in reference to that of a standard GA.

The paper is organized as follows. Section II outlines the
methodology for statistically estimating the gradient in the
laboratory. The nature of this gradient is then explored with a
simple mathematical model and after briefly outlining the
experimental details in Sec. III, its accuracy and convergence
properties are examined for several quantum control systems
in Sec. IV. A steepest-ascent algorithm based on this statisti-
cal gradient is then implemented for three prototypical quan-
tum systems in Sec. V. Finally, a summary of the results and
outlook toward potential applications is presented in Sec. VI.

II. DETERMINATION OF THE STATISTICAL
GRADIENT

Obtaining a high-quality gradient in the presence of labo-
ratory noise is a challenging task since the standard finite
difference technique is especially susceptible to field fluctua-
tions and data errors. Indeed, determination of a gradient
based on finite differences of experimental data often leads
to noise amplification thereby producing inadequate or spu-
rious results. This problem may be somewhat diminished by
first smoothing or filtering the noise, but the results can be
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quite varied. Instead, a statistical, robust method for deriva-
tive estimation is formulated here based on taking first mo-
ments of the data, which are easily measured in the
laboratory.

Consider the first moment of a continuous, differentiable,
multidimensional landscape J(x) function of the control vari-
ables X=(x;,X,, ... ,Xxp) with —0 < x;=<o0, where the expecta-
tion value is performed over a multidimensional probability
distribution P(x) centered about the origin x=0, i.e.,

(X (xXo+x)) = Jm xJ(Xo + X) P(x)dx, (1)

where dx=dx,dx,...dx,. Assuming that the function J(x)
may be Taylor-expanded around the point X, gives
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For small deviations x around the point X [i.e., considering
that P(x) is a sufficiently narrow distribution], this expansion
may be substituted into Eq. (1) to obtain
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It is now assumed that the multidimensional probability dis-
tribution function P(x) is separable and may be written as the
product of D one-dimensional uncorrelated, symmetric prob-
ability distributions p(x;), ie., P(X)=p(x))p(x,)...p(xp),
where p(x;)=p(—x;). While the D probability distributions
need not be identical, it is assumed here for simplicity. With
these assumptions, Eq. (1) becomes
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where u, and pu, are the second and fourth moments of the
probability distribution function p(x), respectively. This
equation may be rearranged to yield
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Note that no assumption has been made as to the nature of
the function J(x) or form of the Hessian, i.e., 157 at the
point X,. By choosing a symmetric probability distribution
function p(x;)=p(—x;), there are no contributions in Eq. (5)
from the first- and third-moment terms in the expansion of
Eq. (3). A

The analysis above shows that the gradient VJ(x) | % of the
landscape function J(x) at a point X, can be estimated from
the first moment (x;J(X,+x)) through locally sampling the
neighborhood of the point x,. The only sampling require-
ments are that the variables x; be drawn from statistically
independent and symmetric distributions. The error implicit
to this statistically estimated gradient may then be written as

(xJ (X + X)) B aJ(x) M
Mo Ix;

€1 Mo€pt 0, (6)

where €; | and ¢; , are comprised of the third derivative terms
on the right-hand side of Eq. (5). Thus, for a narrow sam-
pling distribution (w,— 0 and w4/ u, — 0), the statistical gra-
dient approaches the true gradient. Consequently, for a mod-
est choice of the sampling domain on a slowly varying
landscape, the gradient may be well approximated by the
weighted first moment.

In practice, the present work will estimate the gradient
from the sampling of N laboratory data points x, according
to

N
aJ(x,) 1 ..
— =2, x.Jx+x,), 7
= e o ) (7)

where the variables x,, are drawn from a Gaussian probability
dens1ty W1th a standard deviation of o, ie., p(x,)

exp[—z—] and the pertinent central moments are u,

oyr and u,=30* Other suitable symmetric distributions
could just as well be employed to estimate the gradient.

In order to illustrate the underlying principles of this
method before considering its performance in the laboratory,
the statistical gradient is evaluated with an analytical, two-
dimensional, nonseparable model landscape,

J(x,y) = exp[— (x* + y* + xy)]. (8)

aJ(x,y

o evaluated at the reference

The true partial derivative
point (xg, o) is

aJ(x,y)

ox —[yo + 2xqlexp[ - (X(z) + y(z) +X0Y0)]s

(x(),)’ 0)
)

and the weighted first moment at the point (x,,y,) may be
exactly calculated,
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FIG. 1. (Color online) Evaluation of the statistical gradient es-
timator on a model two-dimensional landscape. The gradient is es-
timated (blue dashed vector) at the point (xg,yo)=(-1.0,0.75). The
local sampling is drawn from a Gaussian distribution with a width
of 0=0.15 and a modest N=10 points. For comparison, the analyti-
cal gradient is shown (red solid vector).
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where f(o) is a function of ¢ with lim,_,, f(¢)=1 [18]. This
weighted first moment reduces to the true gradient when o
— 0. Importantly, the estimated derivative does not effec-
tively alter the intrinsic topology of the landscape by intro-
ducing or removing couplings between the canonical vari-
ables as may readily be seen by examining the locally

averaged landscape J(x,, o) ={(J(xo+x,yo+)). However, the
local structure is affected since variable couplings are dimin-
ished with increasing o, which effectively transforms the
model ellipsoid into a more circular form.

As an example of statistically determining the gradient,
the estimator is evaluated according to Eq. (7) for N=10
points drawn from a Gaussian distribution (0=0.15) about
the point (xy,y,)=(-1.0,0.75) for the landscape described by
Eq. (8). The strict variate sampling symmetry required for
analytically zero odd-moment terms is abandoned in favor of
increased landscape sampling for a fixed sample size N.
Nonetheless, even with this very modest sampling, Fig. 1
shows that the recovered gradient faithfully approximates the
exact analytical derivative. A step in the direction of this
statistically estimated gradient results in a clear yield
increase.

III. EXPERIMENTAL DETAILS

A commercial Ti:sapphire femtosecond laser system
produces amplified pulses centered at 797 nm with a band-
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FIG. 2. (Color online) Experimentally measured (a) statistical gradient convergence rates and (b) accuracy for D=128 filtered and total
SHG, respectively. Panel (a) displays the 1/ VN convergence rate for various values of the sampling distribution width o for filtered SHG.
This rate is readily fit to the form a+8/VN, and the retrieved 8 values, which describe the sensitivity of the estimated gradient to sample
size N, are shown in the inset. Panel (b) displays the gradient norm deviation for total SHG computed with N=1500 samples for various
values of the sampling distribution width ¢. The computed norm and quadratic fit about =0 for the gradient on an equivalent simulated
noise-free landscape (vertically offset for visualization) is shown for reference. Each curve is normalized to the computed norm deviation at
large o. The shapes of both the experimental and simulated curves agree with the form predicted by Eq. (11) as u,~ 0.

width of AN~10 nm, which gives pulses of A7~100 fs
duration [full width at half maximum (FWHM)]. These
pulses are delivered to a 4—f configuration pulse shaper with
a programmable 128 pixel liquid-crystal spatial light modu-
lator (SLM-256, CRI) for phase-only modulation. Three con-
trol systems are studied with the gradient algorithm.

First, the total second harmonic generation (SHG) signal
is observed by focusing amplified pulses onto a 100 wum
type-I B-BaB,0O, (BBO) crystal, and the spectrally integrated
SHG signal is recorded with a photodiode and boxcar inte-
grator [13]. For the second case of filtered SHG, unamplified
seed pulses are focused onto a 100 um type-I BBO crystal,
and the resultant upconverted light is analyzed with a spec-
trometer [19]. The filtered SHG signal is recorded at 398.35
nm (i.e., N\g/2) with a spectral window of AX~0.06 nm.
The 80 MHz repetition rate of the oscillator guarantees a
high signal-to-noise ratio. For the third system of atomic
rubidium, amplified pulses with an energy of 135 wJ are
delivered to a 75 mm vapor cell containing atomic rubidium
maintained at 100 °C. The shaped pulses induce 5§— 5P
— 5D transitions [20]. The atomic 5D state decays radia-
tively to the 6P state, which then undergoes further radiative
decay to the ground state by emitting an observed 420 nm
photon. No selection is made based on spin-orbit coupling,
and the visible 6P — 55 fluorescence is collected in a direc-
tion orthogonal to the incident laser beam.

IV. STATISTICAL GRADIENT ACCURACY AND
CONVERGENCE

Prior to implementing a gradient-based laboratory algo-
rithm to climb the landscapes, a thorough understanding is
necessary with regard to the accuracy and convergence prop-
erties of evaluating the statistical gradient. Since the statisti-

cal gradient is based on a weighted first moment, its rate of
convergence is expected to scale as 1/\VN, where N is the
number of locally sampled points on the control landscape
[21]. Additionally, the accuracy of the technique is assessed
by monitoring the gradient norm as the standard deviation o
of the landscape sampling distribution is increased. The ex-
pected accuracy is understood by computing a norm from
Eq. (6) (where it is assumed here for simplicity that uy
=3 ,u% in keeping with the use of Gaussian sampling distribu-
tions),

(X (xp + X))
M2

- VJ(5) | = polé

; (11)

where nonlinear terms in u, are discarded and |€| includes
third derivative terms. Thus, the norm of the statistical gra-
dient deviation from the true gradient is expected to vary
quadratically with the local sampling domain o (i.e., w,
~a?).

The convergence is carefully assessed by experimentally
measuring the gradient at a fixed location on the quantum
control landscape for filtered SHG [22]. A negative quadratic
phase is applied to the pulse shaper in order to obtain a yield
of $;~0.5 [#(Q)~-4.5-10° fs* O?]. The underlying quan-
tum control landscape is then locally sampled about ¢({2) in
an unrestricted fashion with points drawn from a Gaussian
distribution.

The measured convergence properties for the statistical
gradient are shown in Fig. 2(a). The D=128 dimensional
gradient is estimated by Eq. (7), where the sampling width o
of a phase variable x; is a fraction of the total spectral phase
domain ¢(w;) €[0,27] (e.g., 0=0.1 corresponds to a spec-
tral phase space sampling width of 0.63). There is no loss of
generality in defining the spectral phase domain to be [0,277]

053417-4



GRADIENT ALGORITHM APPLIED TO LABORATORY ...

as integer multiples of 27 may always be added to the con-
trol variable without altering the physical control field; there-
fore, constraint of the shaper pixels to lie in this domain does
not affect convergence of the integrals defined over —»=y;
=o. The experimentally computed gradient norms exhibit
the expected 1/VN convergence for all tested values of o.
These norms also agree with the trends expected from Eq.

(11) in that the norm varies nonlinearly with . Each of these
EETTN)

convergence curves may be fit to the form | N
The fit parameter 8 describes the sensitivity of the computed
norm to the number of sampled data points N, and the re-
trieved values are shown in the inset of Fig. 2(a). For the
purpose of optimization, a high-quality gradient is desired
while also operating with minimal sampling. A good com-
promise between these two conflicting objectives is obtained
in this case with a sampling width of 0=0.05.

In order to establish the accuracy of the method, the re-
covered statistical norms calculated with a fixed sample size
of N=1500 for total SHG (D=128) are shown in Fig. 2(b).
As expected, the norm deviates nonlinearly with increasing o
and approaches zero at small ¢. In order to confirm the qua-
dratic deviation predicted by Eq. (11), the computed gradient
and quadratic fit for the equivalent gradient on a simulated
noise-free total SHG landscape is shown for reference. Good
agreement with experimental values is obtained, and the de-
viation is quadratic and well-predicted by Eq. (11) for a spec-
tral phase sampling domain size of =<10%. The stabilization
of the error curves in Fig. 2(b) at large o is due to the influ-
ence of higher order terms in Eq. (6)

The convergence behavior for the statistical gradient will
be dependent on the quantum system under study, the loca-
tion of the sampling on the control landscape, and the oper-
ating conditions, including available shaper resolution and
existing laser noise. However, the above measured conver-
gence results qualitatively represent what may be reasonably
expected of the statistical gradient on a quantum control
landscape. Additionally, each individual system will have its
own set of optimal sampling parameters, including a suffi-
cient sample size N and o value. Experience will aid in es-
timating N and o, which should benefit from quantum con-
trol landscapes possessing inherently bounded (modest)
slopes [10,11].

Having demonstrated the convergence properties of the
method, an example of the recovered gradient form is pre-
sented. The spectral phase space for the filtered SHG land-
scape is sampled about a fixed phase function [H(Q2)=-3.7
X 10° fs> O?] with a sample size of N=50 and a domain of

0=2.5% of 2. The statistically recovered gradient % is
shown in Fig. 3 along with its theoretically predicted form
[23]. Tt is readily observed that addition of the computed
gradient to the original quadratic phase (scaled by a suitable
step size) results in a spectral phase of decreased magnitude
and, consequently, a higher filtered SHG signal.

The first-moment technique reproduces the gradient quite
accurately, and it is especially useful to note that the gradient
is estimated with a sample size smaller than the problem
pixel dimension D=64. As discussed in th£ Appendix, the
recovered gradient precision increases as VN, and enhanced
precision may be required for demanding applications such
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FIG. 3. (Color online) Recovered statistical gradient (solid line/
blue line) for a point (i.e., reference spectral phase) on the filtered
SHG landscape: N=50, D=64, and 0=2.5% of 2. The theoretical
gradient form (dotted line/red line) is shown for comparison along
with the reference spectral phase (dashed line/green line).

as utilization of the gradient as a myopic spy to discover
landscape structure.

V. CONTROL LANDSCAPE GRADIENT ASCENT
ALGORITHM

A straightforward application of the measured gradient is
implementation of a steepest-ascent algorithm to optimize
quantum control problems. Climbing of the landscape is ac-
complished simply by proceeding in the steepest direction of
the statistically determined gradient, i.e.,

#0270 4 50 % V()0 (12)

where x*) is the landscape position at the ith iteration and 8
is a scalar adjustable step size. For the presently considered
systems, the control variables are represented by discrete val-
ues of the spectral phase, i.e., x;= ¢(w;). At a given point on
the quantum control landscape, the gradient is approximated
with Eq. (7), where the variables x; are drawn from indepen-
dent Gaussian distributions.

Naturally, a given sampling size N gives sparse coverage
as the dimensionality of the problem D increases; hence,
there is an intrinsic trade-off between gradient accuracy and
the efficiency of its measurement. However, landscape ascent
is forgiving to gradient inaccuracy as any reasonable esti-
mate of the gradient will likely result in taking an ascending
step ahead. For the quantum control optimizations consid-
ered here, a sample size of N=15 is chosen, which provides
a sparse sampling for the utilized pulse shaper dimensional-
ity of D=64 pixels; however, even with this reduced sam-
pling, rapid ascent is observed.

Generally, each problem will also have its own optimal
sampling domain size o, which must result in measurable
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FIG. 4. (Color online) Experimental gradient and GA optimization of three model quantum systems: total SHG, filtered SHG, and atomic
rubidium. Panel (a) displays the gradient (orange) and GA (black) optimization curves for total SHG. The two curves are averages of n
=14 individual runs for each algorithm. Panel (b) displays the efficiency factor in terms of performed experiments (GA/grad) as a function

of yield for each of the considered model quantum systems.

signal variations above the background noise fluctuations
(see Appendix for general sampling domain considerations).
For all problems treated here, the observed signal-to-noise
ratio is quite high [24], and a sampling distribution standard
deviation of =0.05 is chosen, which corresponds to varia-
tions in the spectral phase domain ¢(w;) of 0.314. The opti-
mization is conducted in a spectral phase domain of ¢(w;)
€[0,27] with these boundary conditions imposed by a
phase wrapping operator. As mentioned earlier, no conver-
gence difficulties are experienced since all sampling of the
spectral phase is performed over an infinite domain and is
only later constrained within this equivalent finite domain for
experimental ease. Each variable ¢(w,) is allowed to vary
continuously (within the resolution of the pulse shaper) and
the achieved resolution is limited only by noise. Every opti-
mization run, including those of the GA, begins at a random
initialization point in the D=64 dimensional spectral phase
space. The iteration dependent step size 8 for the gradient
is chosen by means of a simple one-dimensional bracketed
line search using the golden ratio [21].

The performance of the steepest-ascent algorithm is com-
pared to that of a traditional GA with bitstring representation
of 6 bit resolution per pixel. The GA employs a fixed popu-
lation size of 30 individuals, 2 crossover points, a mutation
probability of p,,=0.005, and the selection mechanism is to
keep the better half of the population while the single best
individual is always retained (elitism). These parameters
were collectively chosen to permit achievement of high-
quality solutions with fast convergence.

A comparison between the standard GA and steepest-
ascent efficiencies is made by recording the total number of
necessary function evaluations for each algorithm, including
those required for the bracketing routine. Here a function
evaluation refers to the performance of an experiment with a
new setting of the phase mask, and every function evaluation
consisted of averaging over 500 single laser shots. In order to
provide statistically meaningful results, a minimum of n
=12 runs of each algorithm on a problem was completed,

and all comparison-based inferences are drawn from the re-
sultant collective behavior of the algorithms.

A representative comparison between the gradient and
GA performances is shown in Fig. 4(a) for total SHG. As
evident from the learning curves, the gradient achieves rapid
ascent from the onset and performs at a rate approximately
three times that of the standard GA [Fig. 4(b)]. The margin of
its efficiency increase over that of the GA begins to decrease,
however, in the yield range of ~70—80 %. This decrease is
likely due to several coordinated factors, including a de-
crease in the actual magnitude of the gradient as the maxi-
mum on the landscape is approached; additionally, the signal
variation AJ for a given sampling domain size o decreases

with the gradient magnitude, ie., AJ=|VJ(¥)|o. Conse-
quently, the precision of the measurement decreases as these
variations approach the level of background noise fluctua-
tions, and the number of samples N must be increased to
maintain the same level of precision (see Appendix). None-
theless, even with this observed decrease in convergence
rate, the gradient algorithm converges to a maximum yield
with ~1/2 of the function evaluations required by the GA.

The steepest-ascent performance may also be compared
for the filtered SHG and rubidium model systems. For the
former, an efficiency trend similar to total SHG is observed,
namely, a saving of ~2.5 until the yield reaches ~75% at
which point the final efficiency gain is ~1.5. In the case of
rubidium, an initially modest efficiency gain of <2 is ob-
served until ~70%, at which point the algorithm performs on
par with the GA.

The average yields obtained for each algorithm are shown
in Table I. Although slower than the gradient, the GA is
reliable and tends to obtain a slightly higher final yield.
While the slowly varying landscape in the neighborhood of a
maximum is an effective bottleneck for the gradient, the
GA’s stochastic nature is able to effectively maneuver this
area in the presence of noise. Indeed, the majority of the
gradient’s gains are achieved in the first ~75% of the opti-
mization. Thus, a natural course would be the marriage of
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TABLE 1. Performance analysis of the statistical steepest-ascent and GA learning algorithms on model quantum control problems. For
each of the three systems, the average final yield and number of evaluations required to reach both 90% and 70% yields (the yield standard
deviations are given in parentheses) are listed for both the gradient and GA. Yields for both total SHG and filtered SHG are defined in terms
of the transform-limited pulse; yields for rubidium are normalized to a single optimal solution and thus are able to vary slightly about 1.0.
These mean values are determined from an ensemble of n algorithmic runs. The experimental efficiency factors at 90% and 70% yields,
defined by the ratio of GA to gradient evaluations, are shown for each system.

Total-SHG (n=14)

Filtered-SHG (n=12)

Rubidium (n=13)

Method Avg. yield Evalgy, Evaly, Avg. yield Evalg, Evaly, Avg. yield Evalg, Evaly,
GA 0.95(0.03) 5160 1740 0.96(0.03) 4620 1530 1.05(0.08) 3510 1530
Gradient 0.95(0.04) 2599 577 0.92(0.09) 3269 626 0.95(0.09) 3440 1323
Efficiency 1.99 3.02 1.41 2.44 1.02 1.16

deterministic and stochastic algorithms; the gradient could be
utilized while the landscape is rapidly varying and large
yield gains are possible, while a stochastic algorithm could
be effective near the minimum and maximum of the land-
scape where the signal variations approach the noise limit.
The gradient algorithm may also prove useful for optimiza-
tion of short-lived systems (e.g., fragile biological systems or
systems that bleach over time) when large gains are required
in short time intervals. The observed algorithmic acceleration
could also permit an increase in control dimension D for
problems in which system degradation precludes the long
optimizations required of a high-dimensional GA.

The intent of this work was not the development of a
polished gradient algorithm for quantum optimal control but
rather to present a proof of principle that the gradient can be
measured and utilized. Thus, the chosen algorithmic param-
eters are not necessarily optimal, and numerous future im-
provements may be made. For example, incorporation of a
state-of-the-art adaptive step-size mechanism specifically de-
signed for handling noise [25] may significantly increase
gradient performance. Moreover, one could use this method-
ology for implementation of a conjugate gradient algorithm
in an attempt to attain further acceleration.

VI. SUMMARY AND OUTLOOK

As attention is increasingly turning toward the underlying
fundamental quantum control landscapes [22,26,27] dictating
experiment performance, it is necessary to develop reliable
exploratory tools able to discern and navigate landscape
structure in search of level sets [13], robust solutions [28],
Pareto fronts [16,29], etc. The gradient flow, perhaps the
most natural measure of landscape structure, provides insight
into curvilinear control variable coordinate transforms, the
source of constraints producing suboptimal traps, robustness
to noise, and mechanistic insight. As such, the gradient is a
myopic landscape spy, capable of reporting a number of ex-
perimental control properties desirable for analysis and com-
prehension of the optimization process.

To illustrate one such potential use of the gradient flow, a
steepest-ascent algorithm for optimization of laboratory
quantum control problems was implemented. Despite the
fact that deterministic algorithms typically perform poorly in
the presence of noise, evaluation of the gradient here is based

on a robust stochastic technique; the gradient is measured by
computing a weighted first moment from a local sampling of
the landscape. Accordingly, the steepest-ascent algorithm
displayed acceleration up to ~3 over that of the GA for
yields up to ~70-80 % of the maximum. This reliable in-
crease in convergence speed is a promising tool for future
laboratory experiments, and extraction of underlying land-
scape trajectories may provide information about the particu-
lar optimization mechanisms.

The introduction of deterministic search would also allow
an examination of the role that noise plays on the repeatabil-
ity of quantum control optimizations. For instance, the
steepest-ascent algorithm may be repeatedly run from a fixed
starting point on the landscape; divergence from a prior tra-
jectory may provide valuable information on the immunity
or susceptibility of a quantum system and experimental setup
to noise and day-to-day conditional fluctuations.

The mounting successes of quantum control experiments
have begun to be explained in terms of the topology and
structure of the underlying quantum control landscape, over
which optimization algorithms operate, and knowledge of
the gradient opens the door to a multitude of trajectory ex-
cursions over these landscapes, including exploration of
level sets [12] and Pareto fronts [16]. This paper introduces a
practical, easily implementable statistical method for obtain-
ing the gradient on a general quantum control landscape. The
introduction of this promising tool should aid in the contin-
ued navigation of quantum control landscapes in the labora-
tory with a goal of uncovering the properties that have made
them so amenable to experimental optimization.
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APPENDIX

A brief analysis of the relevant signal-to-noise ratio issues
pertinent to evaluation of the statistical gradient is given be-
low. This analysis is meant to be neither comprehensive nor
rigorous, but rather to provide appropriate estimates of the
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necessary quantities. As such, laser noise is included as an
additive scalar to the pulse intensity.

1. Sampling limits and statistical gradient accuracy for
m-photon process

For a m-photon process, the observed signal J" may be
approximately written as J" o', where I is the laser tem-
poral intensity. Laser fluctuations may be taken into account
by writing the measured signal as J" = (I+ )", where I, is
the unperturbed intensity and the additive factor & is used to
describe the laser noise. For convenience, the fluctuations &
are drawn from a normal distribution with mean zero and
standard deviation of o, i.e., ~N(0,d?2). The observed sig-
nal may then be written to first order in the noise & as J
~I(m)+m51(’" D: the standard dev1at10n of this m-photon sig-
nal is given by " =me, "V, where (8*)=0" has been
used. Thus, the m-photon 51gnal -to-noise ratio may be writ-
ten as S/N(’")=[S/N(1)]/m, where S/N is the one-photon
signal to noise, i.e., S/INV=Iy/0,.

a. Sampling lower bound

The signal variations AJ™ intentionally induced by sta-
tistically sampling the variate x must therefore be greater
than the m-photon noise variation, i.e., AJ" > ¢ How-
ever, a small statistical sampling of the variate x affects the
intensity in a linear fashion, i.e., I(x) =1+ %x, and is there-
fore considered to propagate through Schrédinger’s equation
in a similar manner as the laser noise J. Essentially, the
variate sampling can be viewed as a controlled introduction
of “noise” and is accordingly considered as such. Conse-
quently, the lower bound for the intentional sampling domain
is the level of existing laser noise, i.e., 0= 0.

b. Sampling upper bound

An upper bound for the variate sampling is established by
requiring that the first-moment term dominates the Taylor
expansion of Eq. (5). Consequently, it is required that

m)(x0) _ &d3f(m)(xo)
de 6 4

M2 (A1)

Use of the m-photon model described above along with the
assumption of a Gaussian sampling distribution (i.e., u,

=0? and u,=30") reduces this expression to
21
<0 (A2)
(m=1)(m-2)

If the sampling domain o is expressed as a fraction « of the
laser noise o, i.e., 0= a0, this upper bound may be written
as

_ 2sND 2N
“m-1)(m-2) m

= \2S/N™ . (A3)

Thus, in order to maximize the accuracy of the first-moment
method for estimating the gradient of a m-photon model, the
fractional sampling domain « is constrained by the following
bounds:
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1= a= \25/N™. (A4)

Hence, a high m-photon signal-to-noise ratio guarantees that
the gradient is efficiently approximated with the statistical
first-moment method and will not be severely contaminated
by the landscape third derivatives.

c. Statistical gradient error

A lower bound for the fractional error intrinsic to the sta-
tistical gradient of a quantum control process may be derived
from Eq. (6) to have a form

<x.]("1)(x0 + x)> dj(m)(xo) dSJ(m)(xo)
a-zn dx aﬁ dx®
) S mg - (AS)
dJ"™(xp) 2 dJ"(x)
dx dx

With the m-photon model described above, this lower bound

simplifies to

M (xo+x))  dI"™(x)
o dx

2 2 2

m 0'
n —1 2
4" (xp) = = Dim=2)= 2P
dx
1/ 1 \?
=—(—]. A6
2<S/N<'">) (A6)

Thus, the gradient inaccuracy increases as m” for a fixed
sampling domain o. The error intrinsic to the statistical gra-
dient is limited by the signal-to-noise ratio at a particular
location on the quantum control landscape.

It is worth noting that a more general model of the form
J = (1), where f involves an unknown functional depen-
dence, yields similar results and reduces to the above form
when f(10")=10",

2. Statistical gradient precision of a m-photon process in the
presence of noise

al
The estimator for the derivative % is given by
1

N Sy J(xg+x,) and its mean value (% ) W(Xoﬂ» in the

limit that 0—0. Hence, the estimator is unblased [ie.,
<( dJ(XO) < ﬁJ(XU)

grven by

»)=0], and the mean-squared error (Eyg) is

([ 30) [ 3(xo) \
per{ (22 (2520

By using the above mentioned form of the gradient estima-
tor, the mean-squared error (Eyg) reduces to

(A7)

2
Oy

—=. (A8)
M22N

Eys=

where o7, is the variance for the distribution of xJ(x+x).
Using the simple m-photon model discussed above, the mea-
sured signal in the presence of noise is written to first order

as J(x) =1y +mI{"D(x+6). The variance o7, may then be
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expressed in terms of the sampling domain o and experimen-

tal noise o, as
we( )],
; 207

The use of this variance in Eq. (A8) leads to a root mean-
squared error of

= 1P {

JE 15" | 2 ( L ) (A10)
= —_ + + .
Y eIV I 207

It is convenient at this point to write a relative root mean-
squared error to describe the gradient precision,

Eys 1 2 o
VEws _ r\/1+ " (1+ ) (A11)
(J(x))  oVN I 20°

As expected and demonstrated in Fig. 2, the statistical gra-

dient converges as 1/ VN. Interestingly, when the ratio i is
below a certain threshold, the statistical gradient precision

PHYSICAL REVIEW A 79, 053417 (2009)

(i.e., number of requisite experiments) is independent of pho-
ton order m. This threshold is rou hly established by requir-
ing that the term /1 2 ”2(1 +55 ) not deviate from a value
of 1.0 by more than 10% ie.,
2m’a? O'i
1(2) (1 + 202) =0.2.

If the sampling domain standard deviation o is again written
as o=aao,, this expression simplifies to

(A12)

1 ——
SIND = 2 = 111002 + 5.

gy

(A13)

For a reasonable choice of @=2, the demand on single pho-
ton signal to noise becomes /N =6.7m, which is certainly
realizable for even high photon numbers m [24]. In this cir-
cumstance, the statistical gradient precision is not limited by
the photon order m but only by the number of performed
experiments N.
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