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We present the semiclassical laser-field-induced surface-hopping method for the simulation and control of
coupled electron-nuclear dynamics in complex molecular systems including all degrees of freedom. Our ap-
proach is based on the Wigner representation of quantum mechanics. The combination of the molecular
dynamics “on the fly” employing quantum initial conditions with the surface-hopping procedure allows for the
treatment of the electronic transitions induced by the laser field. Our semiclassical approach reproduced
accurately exact quantum dynamics in a two-electronic-state model system. We demonstrate the scope of our
method on the example of the optimal pump-dump control of the trans-cis isomerization of a prototypical
Schiff base molecular switch. Our results show that selective photochemistry can be achieved by shaped laser
pulses which open new dynamical pathways by suppressing the isomerization through the conical intersections
between electronic states.
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I. INTRODUCTION

The simulation and control of ultrafast laser-driven dy-
namics in complex molecular systems is a challenge due to a
daunting effort needed to solve the time-dependent
Schrödinger equation. In particular, the ultrafast photochem-
istry involves the coupling of electron and nuclear dynamics
leading to the breakdown of the Born-Oppenheimer adiabatic
approximation. In this context, methods employing classical
trajectories propagated in the framework of the molecular
dynamics �MD� “on the fly” using ab initio or semiempirical
quantum-mechanical methods for the electronic structure
represent a viable semiclassical approach �1�. The Wigner
representation of quantum mechanics �2,3� is particularly
suitable for the development of semiclassical methods for
simulation and control of ultrafast processes since it has a
well-defined classical limit. Moreover, nuclear quantum ef-
fects such as, for example, tunneling �4� can be systemati-
cally included.

The control of molecular processes by shaped laser fields
�5–7� opens a perspective for applications in which the light
is used as photonic catalyst in chemical reactions. Following
the theoretical proposal of the “closed loop learning” �CLL�
scheme by Judson and Rabitz �8� numerous experiments
have been realized, in which processes such as molecular
fragmentation �9,10�, isomerization �11�, or ionization �12�
are controlled. The idea of the CLL approach is to use a laser
system with a pulse shaper to produce pulses which in the
interaction with the quantum system initiate desired photo-
chemical or photophysical processes. The shape of these
pulses is optimized using an evolutionary algorithm maxi-
mizing the yield of the desired product or process. The the-
oretical counterpart of this procedure is the optimal control
theory �13,14�, which has provided fundamental understand-
ing of the mechanisms responsible for the control of molecu-
lar fragmentation �10�, ionization �12�, and isotope selection
�15,16�. However, these achievements have so far been lim-
ited to low dimensional systems in which the explicit nu-

merical solution of the time-dependent Schrödinger equation
is feasible.

Recently, the Wigner distribution approach has been de-
veloped and successfully applied to the simulation of time-
resolved pump-probe spectra �1� as well as to the control of
ground-state �17� and excited-state �18� dynamics. However,
due to the fact that the interaction with the laser field has
been described using perturbation theory, the method is lim-
ited only to processes in relatively weak fields. Therefore,
the development of new theoretical methods for the simula-
tion of laser-driven dynamics using moderately strong laser
fields �below the multielectron ionization limit� is particu-
larly desirable. Such fields open a very rich manifold of path-
ways for the control of ultrafast dynamics, e.g., by exploiting
quantum effects such as Rabi oscillations between electronic
states.

In this paper, we present a semiclassical approach for the
simulation and control of the laser-driven coupled electron-
nuclear dynamics in complex molecular systems including
all degrees of freedom. This stochastic “field induced
surface-hopping” �FISH� method is based on the combina-
tion of quantum electronic state population dynamics with
classical nuclear dynamics carried out “on the fly” without
precalculation of potential-energy surfaces. The idea of the
method is to propagate independent trajectories in the mani-
fold of adiabatic electronic states and allow them to switch
between the states under the influence of the laser field. The
switching probabilities are calculated fully quantum me-
chanically. Thus, the purpose of this paper is the presentation
of a generally applicable method for the treatment of the
laser-driven photodynamics and the illustration of its scope.

II. METHOD

The laser-driven multistate dynamics can be described us-
ing the semiclassical limit of the quantum Liouville–von

Neumann �LvN� equation i��̇̂= �Ĥ0−�� ·E� �t� , �̂� for the den-
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sity operator �̂. Ĥ0 represents the field-free electronic Hamil-
tonian for a molecular system with several electronic states
in the Born-Oppenheimer approximation and the interaction

with the laser field E� �t� is described using the dipole approxi-
mation. In the Wigner representation, for a system with two
electronic states �e and g�, the commutators in the quantum
LvN equation reduce in the lowest semiclassical limit to the
classical Poisson brackets �3�. The equations for the phase-
space representation in coordinates q and momenta p of the
density-matrix elements �gg�q ,p , t�, �ge�q ,p , t�, and
�ee�q ,p , t� read as

�̇gg = �Hg,�gg� −
2

�
Im��� ge · E� �t��eg� , �1�

�̇ge = − i�ge�ge +
i

�
�� ge · E� �t���ee − �gg� , �2�

�̇ee = �He,�ee� −
2

�
Im��� eg · E� �t��ge� , �3�

where curly braces denote the Poisson brackets, Hg and He
are the Hamiltonian functions for the ground and excited
states. The quantity �ge is the energy gap between the ground
and excited states, �� eg and �� ge denote the transition dipole

moments, and E� �t� is the electric field. In order to calculate
the population transfer between the ground and excited elec-

tronic states induced by the laser field E� �t�, which is reflected
in the change in �ee and �gg, the coherence �ge is needed. It
can be obtained in analytic form by integrating Eq. �2�:

�ge�t� =
i

�
exp�i�egt��

0

t

d� exp�i�eg��

��� ge · E� �����ee��� − �gg���� . �4�

By inserting this expression in Eq. �3� the rate of the change
of the diagonal density-matrix element �̇ee which determines
the population of the excited electronic state becomes

�̇ee = �He,�ee� −
2

�2Re��� eg · E� �t�exp�i�egt�

� �
0

t

d� exp�i�eg���� ge · E� �����ee��� − �gg����	 .

�5�

The time evolution of the phase-space function �ee�q ,p , t�
can be separated into two physical contributions. The term
�He ,�ee� corresponds to the phase-space density flow within
the excited electronic state e, while the second term in
Eq. �5� describes the population transfer between the
electronic states. In our FISH approach we represent the
phase-space functions �ee�q ,p , t� and �gg�q ,p , t� by indepen-
dent trajectories propagated in the ground and excited elec-
tronic states, respectively. Thus, if the finite number of tra-
jectories Ntraj is employed, �ee�q ,p , t� can be represented by
a swarm of time-dependent � functions �ee�q ,p , t�
= 1

Ntraj

i�(q−qi

e�t ;q0 ,p0�)�(p−pi
e�t ;q0 ,p0�), where �qi

e ,pi
e�

represents a trajectory propagated in the excited electronic
state e �1�. The population transfer between the electronic
states is achieved by a process in which the trajectories are
allowed to hop between the states. Notice that this hopping
procedure is related to Tully’s surface-hopping method �20�
which has been developed in order to describe field-free
nonadiabatic transitions in molecular systems. However, in
our case the nonadiabatic coupling between the states is in-
duced by the laser field. The hopping probability Pg→e can
be calculated from the rate of change of the excited-state
population, normalized to the population of the ground state

according to Pg→e=
��̇ee−�He,�ee���t

�gg
. Hence, the probability that

a trajectory which resides in the electronic state g at the time
step t switches to the electronic state e within the time step
�t is given by

Pg→e�t + �t� = −
2�t

�2�gg
Re��� eg · E� �t�exp�i�egt��

0

t

d�

�exp�i�eg���� ge · E� �����ee��� − �gg����	 .

�6�

The simulation of the laser-induced dynamics is performed
in the following three steps: �i� we generate an ensemble of
trajectories by sampling, e.g., the canonical Wigner distribu-
tion function in the ground state. �ii� For each trajectory
which is propagated in the framework of MD “on the fly”,
we calculate the density-matrix elements �ee, �gg, and �ge by
numerical integration. If the initial state is a pure state and
dissipative effects can be neglected, as it is in our case, the
set of Eqs. �1�–�3� is equivalent to the time-dependent
Schrödinger equation in the representation of adiabatic elec-
tronic states:

i�ċi�t� = Ei„R�t�…ci�t� − 

j

�� ij„R�t�… · E� �t�cj�t� , �7�

where ci�t� are the expansion coefficients of the electronic
wave function in the basis of adiabatic electronic states from
which the density-matrix elements can be calculated as
�ij =ci

�cj for i, j=e, or g. Notice that the adiabatic state en-
ergy is parametrically dependent on the nuclear trajectory
R�t�. Equation �7� is solved numerically using the fourth-
order Runge-Kutta procedure. The nuclear trajectories R�t�
are obtained by solution of Newton’s equations of motion
using the Verlet algorithm �21�:

MR̈�t� = − 

i

	i�t��RVi�R�t�� . �8�

In Eq. �8� 	i�t� represents a parameter which has a value of
one for the state in which the trajectory is propagated at the
given time and zero for all other states and Vi�R�t�� is the
adiabatic potential energy of the electronic state i. The forces
acting on the nuclei ��RVi�R�t��� are calculated “on the fly”
when they are needed and not from previously parametrized
analytic functions. The solution of Eq. �8� provides continu-
ous nuclear trajectories which reside in different electronic
states according to the quantum-mechanical occupation
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probabilities given by �ee and �gg. Once they are obtained,
these trajectories enter the electronic Schrödinger Eq. �7�
only as time-dependent continuous parameters. �iii� In order
to determine in which electronic state the trajectory is propa-
gated we calculate the hopping probabilities from Eq. �6� and
decide if the trajectory is allowed to change the electronic
state by using a random number generator. Notice that while
the trajectories jump between the electronic states at a given
time, all density-matrix elements are propagated continu-
ously over the entire time according to Eq. �7� or Eqs.
�1�–�3�. Although the individual trajectory is allowed to
jump, the total number of trajectories in a given state repre-
senting �ee or �gg is also a continuous function of time. The
phase of the electronic wave function is preserved, and our
procedure gives rise to the full quantum-mechanical
coherent-state population. Therefore our approach is able to
mimic laser-induced processes such as coherent Rabi oscil-
lations between the electronic states. In order to illustrate this
we present first a comparison of our approach and the full
quantum-mechanical treatment of laser-induced dynamics in
a two state harmonic oscillator model system. Figure 1
clearly demonstrates the coherent Rabi oscillations which are
in perfect agreement with the full quantum-mechanical treat-
ment. Notice that the ability to describe the coherent elec-
tronic state dynamics is inherent to our approach and does
not depend on the chosen model system. Consequently, the
presented FISH procedure represents a general approach for
the simulation of laser-induced dynamics in complex mo-
lecular systems. In particular, it can be combined with the
optimal control theory in order to steer molecular processes.
For this purpose the electric field entering Eq. �6� can be
iteratively optimized using, e.g., evolutionary algorithms
�17,22�.

III. RESULTS

In order to demonstrate the accuracy of our FISH method
we first present the comparison of full quantum-mechanical
and our semiclassical treatments of the optimal control of
wave-packet localization in a two-electronic-state model sys-
tem. The ground electronic state is represented by an asym-
metric double-well potential, while for the excited electronic
state a Morse potential is used �cf. Fig. 2�. In order to selec-
tively transfer the population from the left part of the double
well to the right part, we employ the pump-dump �23� opti-
mal control. The laser pulse is analytically parametrized ac-

cording to E�t�=
iEi exp�−
�t−ti�2

2
i
2 �sin���i+�i�t− ti���t− ti��.

All pulse parameters are iteratively optimized using a genetic
algorithm with binary coding of parameters and the usual
selection, crossover, and mutation operations �22�. Notice
that the pulse optimization using genetic algorithms is a
common technique also used in optimal control experiments
�8�. Therefore our optimized pulses are suitable for direct
comparison with experiment. We optimize the pulse fully
quantum mechanically and apply it subsequently to the sys-
tem using our semiclassical FISH approach. Alternatively,
the pulse can be optimized using the FISH approach first and
then applied in a full quantum-mechanical simulation. Both
of these approaches yield the same pulse form and optimiza-
tion efficiency. The quantum mechanically optimized pulse
shown in the upper part of Fig. 2�b� consists of two well-
separated portions which can be identified as the pump and
dump pulses, respectively. This pulse was subsequently used
to drive the dynamics of the system by employing our FISH
approach. The laser-induced electronic state population dy-
namics shown in the lower part of Fig. 2�b� for both elec-
tronic states demonstrates an excellent agreement between
the quantum and FISH simulations. Moreover, the compari-
son between the snapshots of the wave packets at different
times presented in Fig. 2�c� shows that the propagated en-
semble of classical trajectories very closely approximates the
quantum wave-packet dynamics. Notice that while the coher-
ence between electronic states is exactly included, the FISH
method does not account fully for nuclear coherence, and
therefore it cannot describe nuclear wave-packet interfer-
ence, which is not needed for pump-dump control. There-
fore, our approach describes accurately the laser-driven ul-
trafast dynamics and can be used to simulate and control the
dynamics in complex systems, where full quantum dynami-
cal simulations are not feasible.

The applicability of our method to the control of laser-
driven dynamics in complex molecular systems will be illus-
trated on the example of the optimal pump-dump photo-
isomerization of the prototype Schiff base molecular switch
N-methylethaniminium �N-MEI� with the chemical compo-
sition �CH3NH=CHCH3�+. Such switchable molecules are
used by nature as photoreceptors in the vision process and
can be also employed as building blocks for molecular elec-
tronic devices. Thus, the control and the mechanism of se-
lective photoswitching by tailored laser fields represents a
challenge. The N-MEI has two isomers in the ground elec-
tronic state. Its global minimum structure is the trans isomer
while the energy of the cis isomer is 0.13 eV higher. In order
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FIG. 1. �Color online� Population dynamics in a two-electronic-
state harmonic model system. The ground state is given by
Vg�q�=0.5q2 and the excited state by Ve�q�=0.5q2+40. The states
are coupled by a resonant electric field with E�t�=4 sin�40 t�, the
transition dipole moment is �ge=1.0. �a� Semiclassical populations
of the ground �black/dark� and excited �red/light� states. �b�
Quantum-mechanical populations of the ground �black/dark� and
excited �red/light� states. For quantum dynamics grid based numeri-
cal solution of the Schrödinger equation �19� was employed.
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to control the trans-cis isomerization we employ the semi-
empirical AM1 configuration interaction �CI� method �24�
for the description of the electronic states and for propaga-
tion of trajectories without precalculation of potential-energy
surfaces accounting for all 30 degrees of freedom. Inclusion
of all degrees of freedom in molecular dynamics is of con-

ceptual importance even in the cases that few degrees of
freedom might appear to dominate the dynamics. This is
warranted by MD on the fly. The AM1 CI method reproduces
reasonably accurately both the spectroscopic properties as
well as the shape of the potential-energy surfaces of small
Schiff base molecules �25�. In order to selectively populate
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FIG. 2. �Color online� �a� Schematic of the two-electronic-state model system. The double-well potential for the ground
state is given by Vg�q�=0.025789�exp�−1.52�q+1.63��−1�2+0.022513�exp�−1.56�1.63−q��−1�2+0.022513 and the Morse potential for the
excited state by Ve�q�=0.09�exp�−0.12q�−1�2+0.06. The two lowest vibrational eigenfunctions of the ground-state potential are shown
�red/light curves�. �b� �Upper panel�: optimized laser field; �middle panel�: quantum �blue, dashed line� and FISH �red, full line� populations
of the ground electronic state; �lower panel�: quantum �blue, dashed line� and FISH �red, full line� populations of the excited electronic state.
For quantum dynamics grid based numerical solution of the Schrödinger equation �19� was employed. �c� Snapshots of the quantum
wave-packet dynamics, and �d� snapshots of the FISH propagated ensemble of 400 trajectories represented by circles for the ground state and
squares for the excited state. Continuous distributions are obtained by convoluting each trajectory with a Gaussian function and are
represented by red �light� curves for the sake of comparison with �c�.
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the cis isomer, we have optimized the analytically para-
metrized laser field with a genetic algorithm using the same
parametric pulse form as in the model example above. This
was achieved by minimizing the target functional J�tf�
= �180− ���tf���+500 Ekin�tf� accounting both for a maximal
torsion angle � and a minimal kinetic energy of the mol-
ecule, preventing thermal back isomerization. The ensemble
for the pulse optimization consisted of 30 trajectories
sampled from a 10 K canonical Wigner distribution. The
convergence has been tested by applying the optimal pulse to
an ensemble of 100 trajectories. The optimal pulse shown in
the upper part of Fig. 3�a� consists of two parts which are
nearly overlapping. The maximum intensity of the optimal
pulse is 1.7�1014 W cm−2 which is in the regime of strong
but not ultrastrong fields. The temporal structure of the opti-
mal pulse obtained by the Wigner-Ville transformation �cf.
bottom part of Fig. 3�a�� shows that the pump subpulse has
constant energy centered around 6.6 eV while the dump
pulse is linearly down chirped. The energy of the dump pulse
varies from 6 eV to less than 2 eV in the time interval be-
tween 50 and 100 fs �cf. Fig. 3�a��. Such large bandwidth has
been recently realized by white light continuum pulse shap-

ing �26�. The laser-induced population dynamics presented in
Fig. 3�b� shows that the pump pulse depopulates the ground
state after �20 fs. During the subsequent 100 fs the popu-
lations of the ground and excited states exhibit Rabi oscilla-
tions around the average value of 50%. Within this period,
the dump pulse successively depopulates the excited elec-
tronic state before the energy gap closes and the conical in-
tersection is reached, steering the dynamics toward the cis
isomer. Since during the excited-state dynamics the energy
gap between the excited and the ground electronic state be-
comes smaller as the system performs the rotation around the
C=N bond �cf. Fig. 3�c�� the energy of the dump pulse de-
creases with time �down-chirp� in order to satisfy the reso-
nance condition. The selectivity of the isomerization process
is reflected in the time-dependent population of the cis and
trans isomers �cf. Fig. 3�b�� giving rise to the final occupa-
tion of the cis isomer of �75%. The occupation of the cis
isomer is not 100% due to competing pathways through the
conical intersection which start to dominate after the pulse
terminates. This is the reason why the population of the cis
isomer changes after the laser pulse has been switched off.
Notice that excitation with an unshaped pump pulse and sub-
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FIG. 3. �Color online� �a� �Upper�: optimal pump-dump pulse driving the trans-cis isomerization of N-MEI, �lower�: Wigner-Ville
transform of the optimal pump �left� and dump �right� pulse showing the temporal distribution of the pulse energies. The intensity is
represented by a color bar. The Wigner-Ville transform is defined as W�t ,��=2 Re
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d� e−i��E��t+� /2�E�t−� /2�. �b� Time-dependent
populations of the S0 �black� and S1 �red� electronic states. For the ground state, also the populations of the trans �green� and the cis �blue�
isomers are shown. The Rabi oscillations are present during first 100 fs. �c� Snapshots of the laser-induced dynamics �green, blue, and gray
circles label C, N and H atoms, respectively�.
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sequent field-free isomerization through the conical intersec-
tion between the first excited singlet state and the ground
state leads to the cis isomer with the yield of only �30%.
The snapshots of the laser-controlled dynamics shown in Fig.
3�c� illustrate the mechanism of the control involving the
rotation around the C=N bond and clearly demonstrate that
the cis isomer is optimally reached within 160 fs, suppress-
ing the pathway through the conical intersection. Thus, the
optimal pump-dump control can be used to efficiently drive
the selective photoisomerization of molecular switches.

IV. CONCLUSIONS

In summary, we have presented the semiclassical FISH
method for the simulation and control of ultrafast laser-
driven coupled electron-nuclear dynamics involving several
electronically excited states in complex molecular systems.
This approach combines classical MD simulations with the
field-induced surface hopping for the electronic state popu-
lation dynamics. It can be used to simulate spectroscopic
observables as well as to control the dynamics employing

shaped laser fields. For the propagation of classical trajecto-
ries, the whole spectrum of methods ranging from empirical
force fields, semiempirical, to ab initio quantum chemical
methods can be employed, opening the possibility of broad
applications. Therefore, the FISH method offers a powerful
tool for the analysis and control of laser-driven excited-state
dynamics in complex molecular systems in the gas phase as
well as interacting with different environments such as sol-
vent, bioenvironment, surfaces, or metallic nanostructures. In
particular, due to the density-matrix formulation of the
method, dissipative effects for nuclear and electronic motion
can be taken into account. This should in the future give an
impetus for the application of the optimal control to manipu-
late the functionality of complex systems.
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