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We present a time-dependent localized Hartree-Fock density-functional linear response approach for the
treatment of photoionization of atomic systems. This approach employs a spin-dependent localized Hartree-
Fock exchange potential to calculate electron orbitals and kernel functions, and thus can be used to study the
photoionization from atomic excited states. We have applied the approach to the calculation of photoionization
cross sections of Ne ground state. The results are in agreement with available experimental data and have
comparable accuracies with other ab initio theoretical results. We have also extended the approach to explore
the photoionization from Ne excited states and obtained some results for the photoionization from outer-shell
and inner-shell excited states.
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I. INTRODUCTION

Making use of local potentials and independent-particle
response functions, density-functional theory �DFT� com-
bined with linear response approximation �LRA� �1,2� has
been successfully applied to study dynamic processes, such
as photoabsorption �3–10� and dynamic polarizability
�11–15�, of atomic and molecular systems. The most attrac-
tive features of such an approach are its satisfactory accuracy
and computational simplicity and efficiency. However, since
the conventional DFT using traditional exchange-correlation
�XC� potentials obtained from uniform electron gas, such as
local-density approximation �LDA� �16,17� and generalized
gradient approximation �GGA� �17–19�, is a ground-state ap-
proach, the conventional DFT-LRA approach can only be
used to investigate the dynamic processes associated with the
ground state of a system. Even so, the counterpart of the
DFT-LRA approach for the excited states has not yet been
reported.

The difficulty encountered in the extension of the conven-
tional DFT-LRA approach to the excited states stems from
the XC potential used to characterize the excited states. A
qualified XC potential for the excited states is required to be
symmetry-dependent and self-interaction free and have a
correct long-range behavior. The symmetry �such as elec-
tronic configuration, electron orbital angular momentum, and
electron spin� of the XC potential is used to distinguish a
state from the others, the self-interaction-free property of the
XC potential is used to make the calculation of electron or-
bital energy accurate, and the correct asymptotic behavior of
the XC potential is used to guarantee the Rydberg virtual
orbitals which play a key role in autoionization resonances
�7�.

Recently, a localized Hartree-Fock �LHF� density-
functional approach has been proposed and successfully ap-
plied to the ground-state calculation of atomic and molecular
systems �20�. In this approach, the LHF exchange potential is
self-interaction free and exhibits the correct long-range be-
havior. It only needs occupied orbitals and depends on the
orbital symmetry of the state. More recently, a spin-
dependent localized Hartree-Fock �SLHF� density-functional

approach has been developed for the excited-state calculation
of atomic and molecular systems �21�. This approach to-
gether with Slater’s diagonal sum rule �22� have been suc-
cessfully used to calculate the energies of multiply excited
states of valence electrons of atomic systems �21� and the
energies of inner-shell excited states of closed-shell �23� and
open-shell �24� atomic systems.

In this paper, we present a time-dependent localized
Hartree-Fock density-functional linear response approach for
the treatment of photoionization from atomic excited states
by combining the SLHF DFT with LRA. In this approach,
the SLHF exchange potential is employed to calculate both
the Kohn-Sham �KS� electron orbitals and kernel functions.
This is different from the approach used in Ref. �10� where
the LHF potential was only used to calculate the electron
orbitals. We have applied this approach to the calculation of
photoionization cross sections �PICS� of Ne ground state and
extended it to the computation of PICS of Ne excited states.

II. THEORETICAL METHODOLOGY

A. Linear response approximation of photoionization

Suppose that an atomic system is in a time-dependent
external field along z axis E�t�=E0e−i�t, where E0 is the am-
plitude and � the frequency. In dipole approximation, the
interaction potential of an electron and the external field is
�ext�r , t�=�ext�r ,��e−i�t, where �ext�r ,��=zE0. Presence of
the external field will induce a perturbation to the system and
produce a redistribution of electron density �3�. In the case of
weak field considered here, the dynamic response of the sys-
tem has the same time dependence e−i�t as the field �8� and
thus can be described by the LRA �25�. In frequency domain,
total perturbing potential that an electron experiences can be
expressed, in spin-dependent DFT framework �3,6–8�, as

��
SCF�r,�� = �ext�r,�� + �

��
� K����r,r�������r�,��dr�,

�1�

where, the second term on the right-hand side �RHS� is the
field-induced potential, � is the electron spin ��=↑ for
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spin-up or �=↓ for spin-down�, ����r ,�� is the field-
induced electron density which is the deviation of the per-
turbed electron density from the unperturbed electron density
���r�, and K����r ,r�� is the kernel function

K����r,r�� =
1

�r − r��
+

�Vxc��r�
�����r��

. �2�

Here, the first and second terms on the RHS represent the
field-induced changes of Hartree potential and XC potential
Vxc��r�, respectively.

The field-induced electron density ����r ,�� is related to
the total perturbing potential ��

SCF by

����r,�� =� ���r,r�,����
SCF�r�,��dr�, �3�

where, �� is the complex susceptibility given by

���r,r�,�� = �
i

occ

�
j

all � �i��r,r��� j�
� �r,r��

�� − �	 j� − 	i�� + i


−
�i�

� �r,r��� j��r,r��
�� + �	 j� − 	i�� + i


	 . �4�

Here, �i��r ,r��=�i�
� �r��i��r��, �i��r� is the ith electron spin-

orbital, 
 is a positive infinitesimal, and the notations all and
occ represent that the sums run over all and occupied elec-
tron orbitals, respectively.

From Eqs. �1� and �3�, ��
SCF�r ,�� and ����r ,�� have to

be calculated in a self-consistent field procedure. Applying
Eq. �1� to Eq. �3� and introducing a kernel function

N����r,r�,�� =� ���r,r�,��K����r�,r��dr�, �5�

one obtains an equation for ����r ,��

�
��
� �������r − r�� − N����r,r�,��������r�,��dr�

=� ���r,r�,���ext�r�,��dr�. �6�

The polarizability ���� is the ratio of the induced dipole
moment to the external field strength

���� = −
1

E0
�
�
� z����r,��dr

= −
1

E0
2�

�
� � �ext�r,�����r,r�,����

SCF�r�,��dr�dr .

�7�

The PICS ���� is calculated by

���� =
4
�

c
Im ���� , �8�

where c is the speed of light.
The LRA is usually referred to as a time-dependent

method since it takes the time-dependent field-induced elec-

tron density into account. In contrast, if the field-induced
electron density is neglected in Eq. �1�, one has ��

SCF=��
ext.

In this case, the cross section Eq. �7� is reduced to the result
of independent-particle approximation, which is referred to
as a time-independent method.

B. Electron spin-orbitals

To calculate the occupied electron spin-orbitals we use the
SLHF density-functional approach �21,23,24�. In this ap-
proach, the electron spin-orbital �i��r� and orbital energy 	i�
are calculated from the KS equation

�−
1

2
�2 + V�

eff�r�	�i��r� = 	i��i��r� , �9�

where, V�
eff is the local effective potential given by

V�
eff�r� = −

Z

r
+ �

�
� ���r��

�r − r��
dr� + Vxc��r� . �10�

In Eq. �10�, the spin-dependent electron density is calculated
by ���r�=�i=1

N� ��i��r��2, where N� is the number of electron
with spin �. On the RHS of Eq. �10�, the first term is Cou-
lomb potential, the second term is Hartree potential, and the
third term Vxc��r� is the XC potential. The XC potential can
be decomposed into exchange potential Vx��r� and correla-
tion potential Vc��r�. The SLHF exchange potential Vx�

SLHF�r�
is given by �21,23,24,26�

Vx�
SLHF�r� = −

1

���r�� ���r,r�����r�,r�
�r − r��

dr�

+
1

���r�� ���r,r��Vx�
SLHF�r�����r�,r�dr�

+
1

���r�� � ���r,r�����r�,r�����r�,r�
�r� − r��

dr�dr�,

�11�

where, ���r ,r��=�i=1
N� �i��r ,r��. On the RHS of Eq. �11�, the

first term is Slater potential �22� and the second and third
terms are the corrections to the Slater potential. The Vx�

SLHF�r�
behaves asymptotically as Slater potential and thus ap-
proaches to the correct −1 /r at long range �26�. As for the
correlation effect, the second-order gradient correlation po-
tential and energy functional proposed by Lee, Yang, and
Parr �LYP� �27� can provide an excellent correlation energy
for atomic systems and has been incorporated into the calcu-
lation to estimate the correlation effect in this work.

C. Green’s function

In Eq. �4� the sum over j needs all the �occupied and
unoccupied bound and continuum� electron orbitals. This
makes it extremely difficult to accurately calculate
���r ,r� ,�� directly from Eq. �4�. To circumvent this diffi-
culty, a Green’s function associated with the KS equation has
been introduced to calculate �� �3,6,8�. The Green’s function
G��r ,r� ,E� is calculated by
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�E +
1

2
�2 − V�

eff�r�	G��r,r�,E� = ��r − r�� , �12�

under appropriate boundary conditions. The Green’s function
can be expanded in terms of a complete set of KS electron
spin-orbitals as �3�

G��r,r�,E� = �
j

all
� j�

� �r,r��
E − 	 j� � i


. �13�

Applying Eq. �13� to Eq. �4� one has

���r,r�,�� = �
i

occ

��i��r,r��G��r,r�,	i� + ���

+ �i�
� �r,r��G�

��r,r�,	i� − ���� . �14�

Thus with assistance of the Green’s function, only the occu-
pied orbitals are needed to compute ��.

III. COMPUTATIONAL DETAILS

A. Electron spin-orbitals

The electron spin-orbitals of an atomic system can be cal-
culated by using the procedure previously developed in Refs.
�21,24�. In spherical coordinates, the electron spin-orbital
�i��r� is expressed as a product of a radial spin-orbital
Rnl��r� and a spherical harmonic Ylm�� ,��,

�i��r� =
Rnl��r�

r
Ylm��,�� , �15�

where n is the principal quantum number, l is the orbital
angular momentum quantum number, m is the azimuthal
quantum number, and i is a set of quantum numbers except
the spin �. The radial spin-orbital Rnl��r� is calculated from
the radial KS equation �21,24�

�−
1

2

d2

dr2 +
l�l + 1�

2r2 + v�
eff�r�	Rnl� = 	nl�Rnl�, �16�

where, v�
eff�r� is the radial effective potential �21�. To obtain

high-precision electron spin-orbital and orbital energy, we
use generalized pseudospectral �GPS� method �28� to dis-
cretize the radial KS Eq. �16�. The GPS method associated
with an appropriate mapping technique can overcome diffi-
culties due to singularity at r=0 and long-tail at large r of the
Coulomb interaction. It allows for nonuniform and optimal
spatial discretization with the use of only a modest number
of grid points. It has been shown that the GPS method is a
very effective and efficient numerical algorithm for the high-
precision solution of KS equation �21,24,29,30�.

B. Green’s function

In spherical coordinates, the Green’s function can be ex-
panded in terms of partial waves as

G��r,r�,E� = �
LM

YLM
� ��,��GL��r,r�,E�YLM���,��� ,

�17�

where, GL��r ,r� ,E� is the radial Green’s function, which,
with the appropriate boundary conditions, is determined by
an inhomogeneous equation �3,11�

�E +
1

2

1

r2

�

�r
r2 �

�r
−

1

2

L�L + 1�
r2 − v�

eff�r�	GL��r,r�,E�

=
��r − r��

r2 . �18�

Alternatively, the radial Green’s function can also be con-
structed from the solutions of a homogeneous equation

�−
d2

dr2 +
L�L + 1�

r2 + 2v�
eff�r� − k2	uLk��r� = 0, �19�

where, k=
2E. If �Lk��r� is the solution of Eq. �19� being
regular at the origin and �Lk��r� the solution behaving as-
ymptotically as rhL

�1��kr� �where hL
�1� is the spherical Hankel

function of the first kind�, the radial Green’s function can be
calculated by �11�

GL��r,r�,E� =
2

W

�Lk��r���Lk��r��
rr�

, �20�

where, r��r�� refers to the smaller �larger� of r and r� and
W=�Lk��Lk�� −�Lk�� �Lk� is the Wronskian of �Lk� and �Lk�.

C. Absorber

In principle, the boundary conditions at r→� is required
to calculate �Lk��r�. In reality, the boundary cannot be set at
r→�. No matter how far the boundary is, as long as it is
located at finite distance, the outgoing wave function �Lk��r�
with E�0 may reflect on the boundary, making the PICS
oscillating artificially. To remove the reflection we introduce
an absorber for each outgoing wave function. The absorber is
characterized by an absorptive potential with a linear depen-
dence of the radial coordinate

U�r� = �0, 0 � r � ra

− U0
r − ra

rmax − ra
, ra � r � rmax� , �21�

where rmax is the radial coordinate of the boundary; U0 and
ra are two parameters representing the strength and starting
position of the absorber, respectively. Obviously, rmax−ra
represents the width of the absorber. Similar absorbers have
been used in the wave packet method of molecular collisions
�31,32� and photoionization of molecules and atomic clusters
recently �33�.

When taking the absorptive potential into account the out-
going wave function is calculated from an equation obtained
by replacing v�

eff�r� with v�
eff�r�+ iU�r� in Eq. �19�. Since the

behavior of an outgoing wave function depends on electron
spin-orbitals through both v�

eff�r� and k�E� the absorber pa-
rameters may be different for different electron spin-orbitals.
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D. Susceptibility and cross sections

In spherical coordinates, the susceptibility ���r ,r� ,�� can
also be expanded in the partial waves �11�

���r,r�,�� = �
lm

Ylm
� ��,���l��r,r�,��Ylm���,��� . �22�

From Eqs. �14�, �15�, �17�, and �22�, the partial wave suscep-
tibility �l��r ,r� ,�� is calculated by

�l��r,r�,�� =
1

4

�
n�l�

�
L

wn�l��

Rn�l���r�

r

Rn�l���r��

r�
�
l0l�0�L0��2

� �GL��r,r�,	n�l�� + ���

+ GL�
� �r,r�,	n�l�� − ���� . �23�

Furthermore, expanding ����r ,�� in the partial waves
����r ,��=�lm��lm��r ,��Ylm�� ,��, using z=
4


3 rY10�� ,��,
and from Eq. �6�, we obtain

��lm��r,�� = E0
4


3
� �1��r,r�,��r�3dr��l1�m0

+ �
��
� Nl����r,r�,����lm���r�,��r�2dr�,

�24�

where Nl����r ,r� ,�� is the partial wave component
in the partial wave expansion N����r ,r��
=�lmYlm

� �� ,��Nl����r ,r� ,��Ylm��� ,���. Solving Eq. �24�
one obtains the partial wave component ��lm��r ,��. From
Eq. �7�, the polarizability ���� is given by

���� = −
1

E0

4


3 �
�
� ��10��r,��r3dr . �25�

The PICS ���� is calculated from Eq. �8� by using ����.

IV. RESULTS AND DISCUSSION

A. Photoionization from the ground state of Ne

To test the approach developed in the preceding sections
we first apply it to the calculation of PICS from the ground
state of Ne. The total PICS is plotted in Fig. 1, where the
solid and dashed lines are the results of time-dependent spin-
dependent localized Hartree-Fock �TDSLHF� and time-
independent spin-dependent localized Hartree-Fock �TIS-
LHF� methods, respectively. Also plotted in this figure are
recent experimental data �34,35� for comparison. It is shown
that the TISLHF PICS are substantially larger than the ex-
perimental results in a broad range of lower photon energy.
The maximum deviations to the experimental results in Ref.
�34� and Ref. �35� are 35.9% and 31.3% before the resonance
region and 33.0% and 24.6% after the resonance region, re-
spectively. The TDSLHF cross sections, however, are much
closer to the experimental results and show significant im-
provement in spite of the underestimate near the ionization
threshold �IT� of 2p electron. Apart from the energy region
adjacent to the IT of 2p electron where the maximum devia-

tions are 31.0% and 32.4%, the discrepancies to the experi-
mental results in Ref. �34� and Ref. �35� are not more than
20.0% and 20.0% before the resonance region and less than
19.9% and 6.1% after the resonance region, respectively. In
the range of photon energy shown in Fig. 1, except a small
stepwise enhancement due to the contribution of 2s electron
photoionization at the IT energy of 2s electron 46.405 eV, the
TISLHF PICS are structureless and decrease monotonically
above the IT of 2s electron. The TDSLHF PICS, however,
appear a series of sharp resonances in the energy region from
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FIG. 2. �Color online� Autoionization resonances in the total
photoionization cross sections near the ionization threshold of 2p
electron: �a� The results of TDSLHF method and �b� the results of
TDSLHF method with the 2s electron orbital energy being replaced
by the experimental value. The resonance peaks 1 to 8 are produced
by the transitions 2s→np with n=3 to 10, respectively. The open
circles are the numerical results and the solid lines are the fitted
results to the Fano profile.
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FIG. 1. �Color online� Total photoionization cross sections from
the ground state of Ne: the solid and dashed lines are the results of
TDSLHF and TISLHF methods, respectively. The open and solid
circles are the experimental data of Chan et al. �34� and Samson et
al. �35�.
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43.0 to 46.4 eV. In the higher energy region, both TDSLHF
and TISLHF results are getting closer and approach to the
experimental results.

The sharp resonances in the PICS are produced by the
resonant transitions 2s→np from the ground state 1s22s22p6

to autoionization states 1s22s2p6np with n=3 to 10. In Fig.

TABLE I. Profile parameters of the autoionization resonances produced by the transitions from the ground
state of Ne to the Rydberg series 1s22s2p6np with n=3 to 8.

Resonant transition Approach
�0

�Mb�
�

�meV� q �2
Er

�eV�

2s→3p TDSLHFa 8.34 12.80 −4.03 0.551 43.358

S-TDSLHFb 8.40 15.23 −3.40 0.619 45.447

S-EXX+ALDAc 8.09 17.9 −3.18 0.547 45.438

S-TDLSDAd 8.28 18.04 −2.40 0.764 45.453

TDLDAe 8.18 13.90 −3.69 0.514 46.253

R matrixf 34.9 45.534

Expt.g 8.6�0.6 13�2 −1.6�0.2 0.70�0.07 45.546�0.008

2s→4p TDSLHFa 8.12 3.89 −4.35 0.543 45.028

S-TDSLHFb 8.15 4.55 −3.74 0.606 47.115

S-EXX+ALDA c 7.89 5.5 −3.35 0.528 47.093

S-TDLSDAd 8.06 5.14 −2.62 0.783 47.098

TDLDAe 7.98 3.86 −3.95 0.505 47.397

R matrixf 6.65 47.111

Expt.g 8.0�0.6 4.5�1.5 −1.6�0.3 0.70�0.07 47.121�0.005

2s→5p TDSLHFa 8.05 1.55 −4.47 0.537 45.625

S-TDSLHFb 8.06 1.81 −3.85 0.600 47.713

S-TDLSDAd 7.91 2.20 −2.72 0.783 47.683

TDLDAe 7.91 1.62 −4.05 0.502 47.814

R matrixf 2.47 47.692

Expt.g 8.2�0.6 2�1 −1.6�0.5 0.70�0.14 47.692�0.005

2s→6p TDSLHFa 8.00 0.89 −4.57 0.539 45.901

S-TDSLHFb 8.00 1.04 −3.94 0.601 47.989

R matrixf 1.28 47.967

Expt.g 47.967�0.006

2s→7p TDSLHFa 7.99 0.43 −4.99 0.555 46.075

S-TDSLHFb 8.01 0.59 −3.88 0.585 48.163

R matrixf 0.73 48.119

Expt.g 48.116�0.006

2s→8p TDSLHFa 7.94 0.37 −4.54 0.534 46.171

S-TDSLHFb 7.96 0.42 −3.92 0.605 48.258

R matrixf 0.46 48.211

Expt.g 48.207�0.006

aTDSLHF results.
bTDSLHF results with the experimental 2s electron orbital energy.
cEXX+ALDA results with the experimental 2s electron orbital energy �10�.
dTDLSDA results with the experimental 2s electron orbital energy �6�.
eTDLDA results �7�.
fR-matrix results �38�.
gExperimental results �37�.
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2�a� we show the details of the resonances in open circles. To
quantitatively analyze the resonances and estimate the auto-
ionization widths we fit the resonances to the Fano profile
�36�

���� = �0��2 �q + ��2

1 + �2 − �2 + 1	 , �26�

where �=2��−Er� /�, Er is the resonance position, q is the
profile index, � is the linewidth of the resonance profile, �2

is the correlation coefficient, and �0 is the cross section with-
out correlation. In Fig. 2�a� we show the fitted resonances in
the solid line. The fitted resonance profile parameters are
given in Table I in the rows with TDSLHF and shown in Fig.

3 with open squares. Also listed in Table I and shown in Fig.
3 are the available experimental results �37� and the theoret-
ical results of the time-dependent density-functional method
employing exact exchange-only KS potential and adiabatic-
local-density-approximation exchange-correlation kernel
with shifted 2s orbital energy �S-EXX+ALDA� �10�, time-
dependent local spin-density approximation with shifted 2s
orbital energy �S-TDLSDA� �6�, time-dependent local-
density approximation �TDLDA� �7�, and R-matrix method
�R matrix� �38�, for comparison. Figure 3�a� shows that for
the cross section �0 the TDSLHF results are in good agree-
ment with the experimental values and overall a little bit
better than the other theoretical results. The deviations to the
results of S-EXX+ALDA, S-TDLSDA, TDLDA, and ex-

7.0

7.5

8.0

8.5

9.0

9.5

1

10

42

44

46

48

50

52

-8

-6

-4

-2

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2s-8p2s-7p2s-6p2s-5p2s-4p

TDSLHF
S-TDSLHF
S-EXX/ALDA
S-TDLSDA
TDLDA
Expt

σ 0
(M
b)

Resonant transition

2s-3p

(a)

2s-8p2s-7p2s-6p2s-5p2s-4p

TDSLHF
S-TDSLHF
S-EXX/ALDA
S-TDLSDA
TDLDA
R-matrix
Expt

Γ(
m
eV
)

Resonant transition

2s-3p

(b)

2s-8p2s-7p2s-6p2s-5p2s-4p

TDSLHF
S-TDSLHF
S-EXX/ALDA
S-TDLSDA
TDLDA
R-matrix
Expt

E
r
(e
V
)

Resonant transition

2s-3p

(e)

2s-8p2s-7p2s-6p2s-5p2s-4p

TDSLHF
S-TDSLHF
S-EXX/ALDA
S-TDLSDA
TDLDA
Expt

q

Resonant transition

2s-3p

(c)

2s-8p2s-7p2s-6p2s-5p2s-4p

TDSLHF
S-TDSLHF
S-EXX/ALDA
S-TDLSDA
TDLDA
Expt

η²

Resonant transition

2s-3p

(d)

FIG. 3. �Color online� Profile parameters of autoionization resonances: �a� cross section �0, �b� linewidth �, �c� profile index q, �d�
correlation coefficient �2, and �e� resonance position Er.
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periments are less than 3.1%, 1.8%, 2.0%, and 3.0%, respec-
tively. For the linewidth � shown in Fig. 3�b� the TDSLHF
results are close to the TDLDA results and better than those
of S-EXX+ALDA, S-TDLSDA, and R matrix compared to
the experimental results. The maximum deviations of the re-
sults of TDSLHF, S-EXX+ALDA, S-TDLSDA, TDLDA,
and R matrix to the experimental results are 22.5%, 37.7%,
38.7%, 19.0%, and 168.5%, respectively. For the line profile
index q in Fig. 3�c�, all the theoretical results are much
smaller than the experimental results and the TDSLHF re-
sults are close to those of TDLDA. The maximum discrep-
ancies of the results of TDSLHF, S-EXX+ALDA,
S-TDLSDA, and TDLDA to the experimental results are
179.4%, 109.4%, 70.0%, and 153.1%, respectively. For the

correlation coefficient �2 shown in Fig. 3�d�, the TDSLHF
results are very close to those of S-EXX+ALDA and
TDLDA but smaller than the S-TDLSDA results and experi-
mental data. The maximum discrepancies of the TDSLHF
results to those of S-EXX+ALDA, S-TDLSDA, TDLDA,
and experiments are 2.8%, 31.4%, 7.5%, and 22.4%, respec-
tively. As for the resonance position Er in Fig. 3�e�, all the
resonances in TDSLHF PICS are about 2 eV shift to the
lower photon energy with respect to the experimental data.
Similar phenomena were also found in Refs. �6,10�. This
discrepancy mainly stems from the deviation of the 2s elec-
tron orbital energy from the experimental value �6�. For dem-
onstration, we notice that the 2s electron orbital energy from
the TDSLHF calculation is −1.707 a.u. which is about 2.04
eV higher than the experimental value −1.782 a.u. �39�. To
explore influence of the orbital energy to the PICS and reso-
nance profiles we have also performed a TDSLHF calcula-
tion with the 2s electron orbital energy being replaced by the
experimental value in the calculation of the Green’s function.
The calculated and fitted PICS in the resonance energy re-
gion are shown in Fig. 2�b� in the open circles and solid line,
respectively. The fitted resonance profile parameters are
listed in Table I in the rows with S-TDSLHF and shown in
Fig. 3 with open circles. It is shown that with the 2s electron
orbital energy replaced by the experimental value the reso-
nances shift to the higher photon energy about 2 eV and the
calculated resonance positions Er are in very good agreement
with the experimental results. When using the theoretical
value of the 2s electron orbital energy, the maximum dis-
crepancies of the TDSLHF results to those of S-EXX
+ALDA, S-TDLSDA, TDLDA, R matrix, and experiments
are 4.6%, 4.6%, 6.3%, 4.8%, and 4.8%, respectively. While
when using the experimental value of the 2s electron orbital
energy, the maximum deviations of the S-TDSLHF results to
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outer-shell excited state 1s↓1s↑2s↓2s↑2p↓
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those of S-EXX+ALDA, S-TDLSDA, TDLDA, R matrix,
and experiments are reduced to 0.05%, 0.06%, 1.74%,
0.19%, and 0.22%, respectively. In addition, all the other
resonance profile parameters, particularly � and �2, are also
significantly improved and closer to the experimental values.
The maximum deviations of the S-TDSLHF results to the

experimental results are reduced to 2.3%, 17.2%, 140.6%,
and 13.4%, respectively, for �0, �, q, and �2.

B. Photoionization from outer-shell excited states of Ne

For the photoionization from Ne excited states, particu-
larly for those with autoionization resonances, both experi-

TABLE II. Autoionization resonance peak positions �in eV� for the photoionizations from Ne outer-shell
excited states �1s↓1s↑2s↓2s↑2p↓

32p↑
2�nl↑ with n=3–4 and l=0–2.

Resonant transition

Initial states

� �a3s↑ � �3p↑ � �3d↑ � �4s↑ � �4p↑ � �4d↑

2p↑→3s↑ 23.829 26.150 23.527 24.863 26.509

4s↑ 24.526 26.738 29.139 27.693 29.554

5s↑ 25.383 27.630 30.153 26.839 28.581 30.452

6s↑ 25.759 28.014 30.575 27.206 28.972 30.896

7s↑ 26.013 28.221 30.803 27.405 29.175 31.119

8s↑ 28.406 30.928 27.549 29.293 31.250

9s↑ 31.043 29.386 31.334

10s↑ 31.416

3d↑ 24.855 27.078 29.565 26.371 28.060 30.001

4d↑ 25.516 27.769 30.330 26.999 28.730 30.670

5d↑ 25.826 28.085 30.670 27.290 29.046 30.986

6d↑ 26.066 28.264 30.850 27.453 29.217 31.173

7d↑ 30.961 27.590 29.320 31.282

8d↑ 29.410 31.358

2p↓→3s↓ 29.984 30.382 30.656 30.594 30.587 30.643

4s↓ 35.446 36.948 38.389 38.224 38.302 38.559

5s↓ 36.809 38.447 40.406 40.463 40.722 41.081

6s↓ 42.194 42.635

3d↓ 36.036 37.378 38.327 38.161 38.213 38.412

4d↓ 37.018 38.580 40.479 40.406 40.697 41.021

5d↓ 41.693 41.995 42.423

2s↑→2p↑ 22.994 23.032 23.032 23.048 23.081 23.056

3p↑ 46.964 49.187 51.685 48.719 50.243 52.129

4p↑ 48.510 50.798 53.310 50.044 51.767 53.682

5p↑ 49.075 51.381 53.960 50.572 52.352 54.265

6p↑ 49.359 51.659 54.260 50.833 52.630 54.577

7p↑ 49.623 51.835 54.420 50.986 52.782 54.745

8p↑ 52.036 54.532 51.136 52.883 54.845

9p↑ 54.654 52.978 54.923

10p↑ 53.098 55.013

11p↑ 55.114

2s↓→3p↓ 56.790 57.457 57.892 57.786 57.797 57.911

4p↓ 59.650 61.242 62.926 62.818 62.940 63.218

5p↓ 60.817 62.458 64.412 64.404 64.747 65.147

a� �=1s↓1s↑2s↓2s↑2p↓
32p↑

2 is the abbreviation of the core electron configuration.
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mental data �40,41� and theoretical results �41–45� are
scarce. One of the advantages of the proposed approach is
that it can be used to the calculation of the photoionization
from excited states of atomic systems. Such kind of calcula-
tion can provide insight to interchannel interference and or-
bital relaxation in the photoionization processes from the ex-
cited states. We first apply the proposed approach to the
computation of PICS of Ne outer-shell excited states. In Fig.
4, we show, in the solid and dashed lines, the total PICS of
TDSLHF method and TISLHF method for the photoioniza-
tion from the outer-shell excited state 1s↓1s↑2s↓2s↑2p↓

32p↑
23s↑

of Ne, respectively. In Fig. 5 we show the details of autoion-
ization resonances in the total PICS. It is shown that the total
PICS can be divided into five regions A–E. They are sepa-
rated by the steps at ITs in the TISLHF PICS. The first region
A starts from the IT of 3s↑ electron and ends at the IT of 2p↑
electron followed by two series of sharp autoionization reso-

nances in the TDSLHF PICS. These two series of resonances
are produced by the transitions of a 2p↑ electron to the higher
bound s↑ and d↑ orbitals, respectively, and thus converge to
the IT of 2p↑ electron, as shown in Fig. 5�a�. Unlike the PICS
of the ground state which increase with photon energy near
the IT of 2p electron, the PICS of the excited state decrease
with photon energy near the IT of the 3s↑ electron. The sec-
ond region B starts from the IT of 2p↑ electron and ends at
the IT of 2p↓ electron. In this region there are also two series
of sharp resonances in the PICS, as shown in Fig. 5�b�. They
are induced by the transitions of a 2p↓ electron to the higher
bound s↓ and d↓ orbitals, respectively, and converge to the IT
of 2p↓ electron. The third region C starts from the IT of 2p↓
electron and ends at the IT of 2s↑ electron followed by a
series of sharp resonances produced by the transitions of a
2s↑ electron to the higher bound p↑ orbitals, as shown in Fig.
5�c�. Note that one resonance produced by the transition
2s↑→2p↑ in this series is located in the lower energy region
A in Fig. 5�a�. The fourth region D starts from the IT of 2s↑
electron and ends at the IT of 2s↓ electron. This region con-
sists of a series of sharp resonances produced by the transi-
tions of a 2s↓ electron to the higher bound p↓ orbitals as
shown in Fig. 5�d�. The last region E covers the energy re-
gion from the IT of 2s↓ electron to the maximum energy
shown in Fig. 4. In this region the PICS are structureless
since the next autoionization resonances occur at very high
energy region when a 1s↑ electron is resonantly pumped to
the higher bound p↑ orbitals. We have also performed the
calculation of PICS from other outer-shell excited states of
Ne. The total PICS have the similar structures as those from
the excited state 1s↓1s↑2s↓2s↑2p↓

32p↑
23s↑ shown in Fig. 4.

Interchannel interference has a significant impact on the
autoionization resonances in the photoionization from ex-
cited states. Due to the interference of autoionization chan-
nels, the profiles of autoionization resonances, particularly
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inner-shell excited state 1s↑1s↓2s↑2p↑
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33s↓: the solid and dashed

lines are the results of TDSLHF and TISLHF methods, respectively.
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those produced by the transitions from the same electron
orbital such as those shown in Figs. 5�a� and 5�b�, are no
longer the standard Fano profile. Thus it is impossible to
accurately evaluate autoionization resonance profile param-
eters by fitting the resonances to Fano profile. However, we
can still estimate the peak position for each autoionization
resonance very well. In Table II, we list the peak positions of
autoionization resonances for the photoionization from Ne
outer-shell excited states 1s↓1s↑2s↓2s↑2p↓

32p↑
2nl↑ with n

=3–4 and l=0–2, where � �=1s↓1s↑2s↓2s↑2p↓
32p↑

2 is the ab-
breviation of the core configuration.

One of the important physical processes during the photo-
ionization is orbital relaxation �44�. Due to the orbital relax-
ation the peak position of an autoionization resonance is dif-
ferent from the orbital energy difference between the two
unperturbed electron orbitals involved. For example, for the
excited state 1s↓1s↑2s↓2s↑2p↓

32p↑
23s↑, the orbital energy dif-

ference between the unperturbed 2p↑ and 2s↑ electron orbit-

als is 23.484 eV while the peak of the autoionization reso-
nance produced by the transition 2s↑→2p↑ is located at
22.994 eV. This peak shifts about 0.490 eV toward the lower
energy with respect to the unperturbed orbital energy differ-
ence. Our calculation shows that for an autoionization reso-
nance produced by the transition from an inner-shell electron
orbital to an autoionization electron orbital, the deeper of the
inner-shell electron orbital and the lower of the autoioniza-
tion electron orbital, the larger of the relaxation effect.

C. Photoionization from inner-shell excited states of Ne

As another application we extend the proposed approach
to the calculation of PICS of Ne inner-shell excited states.
In Fig. 6 we plot the total PICS of TDSLHF and TISLHF
methods in the solid and dashed lines, respectively, for the
photoionization from Ne inner-shell excited state
1s↑1s↓2s↑2p↑

32p↓
33s↓. The PICS can be divided into four re-

TABLE III. Autoionization resonance peak positions �in eV� for the photoionizations from Ne inner-shell
excited states �1s↑1s↓2s↑2p↑

32p↓
3�nl↓ with n=3–4 and l=0–2.

Resonant transition

Initial states

� �a3s↓ � �3p↓ � �3d↓ � �4s↓ � �4p↓ � �4d↓

2p↓→3s↓ 21.655 23.821 21.478 22.681 24.128

4s↓ 22.188 24.648 26.738 25.356 27.086

5s↓ 23.026 25.595 27.742 24.626 26.245 27.973

6s↓ 23.394 25.998 28.167 24.994 26.656 28.403

7s↓ 23.644 26.215 28.381 25.187 26.866 28.629

8s↓ 26.411 28.509 25.328 26.988 28.756

9s↓ 28.624 25.499 27.094 28.841

10s↓ 28.768 27.224 28.947

3d↓ 22.488 24.923 27.141 24.163 25.739 27.508

4d↓ 23.143 25.720 27.908 24.784 26.398 28.150

5d↓ 23.453 26.060 28.248 25.073 26.730 28.493

6d↓ 23.686 26.254 28.427 25.233 26.907 28.678

7d↓ 26.444 28.542 25.369 27.015 28.790

8d↓ 28.654 25.543 27.118 28.866

9d↓ 28.801 27.249 29.048

2p↑→3s↑ 30.711 30.942 31.198 31.122 31.135 31.201

4s↑ 36.393 37.647 39.089 38.904 39.002 39.263

5s↑ 37.780 39.152 41.141 41.176 41.440 41.821

6s↑ 42.937 43.440

3d↑ 36.994 38.088 39.037 38.842 38.918 38.108

4d↑ 37.987 39.288 41.206 41.127 41.421 41.750

5d↑ 42.412 42.390 42.725 43.190

2s↑→3p↑ 57.854 58.344 58.768 58.638 58.676 58.785

4p↑ 60.815 62.154 63.862 63.729 63.865 64.151

5p↑ 61.998 63.375 65.351 65.337 65.686 66.107

a� �=1s↑1s↓2s↑2p↑
32p↓

3 is the abbreviation of the core electron configuration.
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gions A–D. Each region starts from the IT of an electron
orbital and ends at the IT of next lower-energy electron or-
bital. It is shown that the TISLHF PICS are structureless
apart from a stepwise enhancement at each IT. The TDSLHF
PICS, however, contain several series sharp autoionization
resonances, as shown in Fig. 7.

The region A starts from the IT of 3s↓ electron and ends at
the IT of 2p↓ electron followed by two series of autoioniza-
tion resonances, as shown in Fig. 7�a�. The two series reso-
nances are produced by the transitions of a 2p↓ electron to
the higher bound s↓ and d↓ orbitals and converge to the IT of
2p↓ electron. The cross sections near the IT of 3s↓ electron
again decrease with photon energy. The region B starts from
the IT of 2p↓ electron and ends at the IT of 2p↑ electron. In
this region there are also two series of autoionization reso-
nances. They are produced by the transitions of a 2p↑ elec-
tron to the higher bound s↑ and d↑ orbitals and converge to
the IT of 2p↑ electron, as shown in Fig. 7�b�. The region C
begins with the IT of 2p↑ electron and ends at the IT of 2s↑
electron. In this region, there is a series of autoionization
resonances induced by the transitions of the 2s↑ electron to
the higher bound p↑ orbitals, as shown in Fig. 7�c�. The last
region D starts from the IT of 2s↑ electron and ends at the
maximum energy shown in Fig. 6. In this region, the PICS
are structureless since the autoionization resonances will oc-
cur at very high energy.

We have also estimated the peak positions for the auto-
ionization resonances. In Table III, we list the peak positions
of autoionization resonances for the photoionization from Ne
inner-shell excited states 1s↑1s↓2s↑2p↑

32p↓
3nl↓ for n=3–4 and

l=0–2. Our calculation shows again that for an autoioniza-
tion resonance due to the transition from an inner-shell elec-
tron orbital to an autoionization electron orbital, the deeper
of the inner-shell electron orbital and the lower of the auto-
ionization electron orbital, the larger of the relaxation effect.

V. CONCLUSION

In this paper, we propose a time-dependent localized
Hartree-Fock density-functional linear response approach for

the treatment of photoionization of atomic systems. In this
approach, the occupied electron orbitals are calculated by
solving the KS equation with SLHF exchange potential, the
complex susceptibility is calculated by using the occupied
electron orbitals and corresponding Green’s functions, and
the PICS are calculated by using the susceptibility. The re-
laxation of electron orbitals is taken into account through the
Green’s functions. To remove the possible reflection of the
wave function on the boundary an absorber is imposed for
each outgoing wave function in the calculation. The absorber
is characterized by an absorptive potential with a linear de-
pendence of coordinates. Since the SLHF exchange potential
has a correct long-range behavior and can be used to accu-
rately calculate the electron orbitals of atomic excited states,
the proposed approach is suitable for the calculation of
photoionization from excited states of atomic systems. We
have applied this approach to the calculation of PICS of Ne
ground state. The results are in agreement with available
experimental and have comparable accuracies with other ab
initio theoretical results. We have also extended this ap-
proach to the computation of PICS of Ne excited states. The
total PICS can be divided into several regions. Each region
starts from the IT of an electron orbital and ends at the IT of
the next lower-energy electron orbital. In each region there is
one or two series of autoionization resonances produced by
the resonant transitions of an electron from inner-shell elec-
tron orbitals to autoionization electron orbitals with higher
energies. For the autoionization resonances produced by the
transitions from inner-shell electron orbitals to autoionization
electron orbitals, the deeper of the inner-shell electron orbit-
als and the lower of the autoionization electron orbitals, the
larger of the orbital relaxation effect.
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