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We investigate exceptional points, which are branch-point singularities of two resonance eigenstates, in
spectra of the hydrogen atom in crossed external electric and magnetic fields. A procedure to systematically
search for exceptional points is presented, and their existence is proven. The properties of the branch-point
singularities are discussed with effective low-dimensional matrix models, their relation with avoided level
crossings is analyzed, and their influence on dipole matrix elements and the photoionization cross section is
investigated. Furthermore, the rare case of a connection between three resonances almost forming a triple
degeneracy in the form of a cubic-root branch point is discussed.
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I. INTRODUCTION

A special type of degeneracy in parameter-dependent
resonance spectra, namely, “exceptional points” �1,2�, has
recently attracted growing attention theoretically �3–9� as
well as experimentally �10–15�. Exceptional points can be
found in systems which depend on at least two real-valued
parameters. They are positions in the parameter space at
which usually two energy eigenvalues pass through a branch-
point singularity; i.e., the two eigenvalues can mathemati-
cally be described by two branches of the same analytic
function and the exceptional point represents the branch-
point singularity. In this case, also the eigenvectors, or wave
functions, pass through a branch-point singularity and,
hence, are identical. The occurrence of a geometric phase
�16� is one of the important consequences of exceptional
points �1�.

Within the framework of the linear Schrödinger equation,
the existence of resonances, i.e., decaying unbound states, is
important for the appearance of exceptional points because
the coalescence of two discrete eigenstates with identical
eigenvectors is not possible in the spectra of Hermitian
Hamiltonians with potentials, which describe bound states.
Here, always a set of orthogonal eigenstates, which never
can become identical, exists. For resonances, the situation is
different. Their eigenstates can become identical. One possi-
bility of obtaining the resonances is the complex-rotation
method �17–19�, which leads to non-Hermitian Hamiltonians
in the spectra of which resonances are uncovered as complex
eigenvalues.

Physical systems in which exceptional points can appear
have to depend on at least a two-dimensional parameter
space. If exceptional points are to be observable it must be
possible to adjust these parameters in a sufficiently wide
range of the parameter space. Furthermore, the complex-
energy eigenvalues, typically the positions �frequencies or
energies� and widths of resonances, must be accessible with
a high precision. Examples are discussed, e.g., for complex
atoms in laser fields �20�, a double � well �21�, the scattering
of a beam of particles by a double barrier potential �22�,

non-Hermitian Bose-Hubbard models �23�, or models used
in nuclear physics �24�. The resonant behavior of atom
waves in optical lattices �25� shows structures originating
from exceptional points �5�, and they can be found in non-
linear quantum systems. The stationary solutions of the
Gross-Pitaevskii equation describing Bose-Einstein conden-
sates exhibit a coalescence of two states due to the nonlin-
earity of the equation, which turns out to be a branch-point
singularity of the energy eigenvalues and wave functions
�26,27�. However, the phenomenon of exceptional points in
physics is not restricted to quantum mechanics. Acoustic
modes in absorptive media �28� represent a mechanical sys-
tem in which branch-point singularities appear. Manifesta-
tions of exceptional points can also be seen in optical devices
�29–32�. The most detailed experimental analysis of excep-
tional points has been carried out for the resonances of mi-
crowave cavities �10,12,14�, which open the possibility of
studying the properties of the complex resonance frequencies
and the wave functions. In particular, the geometric phase
has been demonstrated experimentally �11,13�.

Atoms in static external electric and magnetic fields are
fundamental physical systems. As real quantum systems they
are accessible to both experimental and theoretical methods
and have, e.g., very successfully been used for comparisons
with semiclassical theories �33–36�. They provide a rich va-
riety of physical phenomena such as Ericson fluctuations,
which were discovered in both numerical studies �37,38� and
experiments �39�. Recently, the existence of exceptional
points was reported and a method for detecting them in an
experiment with atoms was proposed �40�. Atoms in external
fields are well suited for study of the signatures originating
from exceptional points in quantum spectra. The electric and
magnetic field strengths span the two-dimensional parameter
space required to provide the branch points.

It is the purpose of this paper to show how exceptional
points can be detected systematically in spectra of the hydro-
gen atom in external fields and to discuss their properties in
detail. Numerically exact resonance energies and eigenstates
are determined by the complex-rotation method �17–19�. The
permutation behavior of the resonances for closed parameter-
space loops is used to unambiguously find and verify the
branch-point singularities. Examples of exceptional points
found in the system are presented. The shapes of the loops of
the complex eigenvalues representing the resonances are ex-*holger.cartarius@itp1.uni-stuttgart.de
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plained with a two-dimensional matrix model. It is shown
that single dipole matrix elements of two states coalescing at
an exceptional point diverge, whereas this behavior does not
carry over to the observable photoionization cross section.

Besides the typical case, where an exceptional point con-
sists of two resonances forming a square-root branch point,
higher degeneracies are possible. In this paper the rare case
of a structure with three resonances almost forming a triple
coalescence in the form of a cubic-root branch point is pre-
sented. It is shown how exceptional points are related to
avoided crossings of the energies or widths of the reso-
nances.

The paper is organized as follows. Section II summarizes
the most important characteristics of exceptional points and
demonstrates them with the help of an illustrative example.
The Hamiltonian of the crossed-field hydrogen atom is intro-
duced in Sec. III, and the method for obtaining the resonance
eigenstates is presented. A procedure for finding exceptional
points in spectra of atoms in external fields is presented and
applied in Sec. IV, in which also examples of branch-point
singularities are given. A two-dimensional matrix model
used to explain the paths of the eigenvalues for parameter-
space loops is introduced and applied in Sec. V. The influ-
ence of exceptional points on dipole matrix elements and the
photoionization cross section is discussed in Sec. VI. Three
resonances almost forming a triple coalescence are presented
in Sec. VII, and the connection between exceptional points
and avoided level crossings is investigated in Sec. VIII. Con-
clusions are drawn in Sec. IX.

II. EXCEPTIONAL POINTS

A. Important properties

The typical case of an exceptional point is a position in a
two-dimensional parameter space at which two eigenvalues
pass through a branch-point singularity. This behavior has
important consequences for the associated eigenvalues and
eigenvectors.

If one encircles the exceptional point in the parameter
space, a typical permutation behavior of the eigenvalues can
be observed �2�. The two eigenvalues which represent the
two branches of one analytic function with the singularity are
interchanged after one circle around the exceptional point,
whereas all further eigenvalues do not undergo a permuta-
tion. Away from the exceptional points the branching eigen-
values are different and each of them belongs to a distinct
eigenvector. Accordingly, these eigenvectors undergo the
same permutation as the eigenvalues, and at the exceptional
points they likewise pass through a branch-point singularity
�2�; i.e., there is only one linearly independent eigenvector
for the two degenerate eigenvalues. In a matrix representa-
tion, the eigenvalues and eigenvectors form a normal block
�41,42�, which distinguishes them from ordinary degenera-
cies where two eigenvalues belonging to two different ana-
lytic functions have the same value. Alongside the permuta-
tion of the eigenvectors a geometric phase appears. In the
most common physical situation of a square-root branch
point resulting from a complex symmetric matrix, the geo-
metric phase becomes manifest in the change in sign of one

of the two eigenvectors �1� and can be written in the form

�x1,x2� →
circle

�x2,− x1� ,

where x1 and x2 are the eigenvectors permuted during the
loop around the exceptional point.

It should be mentioned that the occurrence of the phe-
nomenon is not restricted to two dimensions. In higher-
dimensional parameter spaces of complex matrices, an ex-
ceptional “point” is always an object of codimension 2 �42�.
That is, in two dimensions an exceptional point indeed ap-
pears as a point, whereas in three dimensions it is a one-
dimensional object, or line, and in a four-dimensional param-
eter space it has the form of a two-dimensional “exceptional
surface.”

B. Simple example in a non-Hermitian linear map

One of the simplest examples in which an exceptional
point occurs, and which helps to understand many effects
related to it, is described by the two-dimensional matrix �2�

M��� = �1 �

� − 1
� , �1�

with the complex parameter �. The two eigenvalues of the
matrix are given by

�1 = �1 + �2, �2 = − �1 + �2 �2�

and are obviously two branches of the same analytic function
in �. There are two exceptional points in the system, which
appear at the complex-conjugate values ��= � i as can eas-
ily be seen. The eigenvectors which belong to the two eigen-
values are

x1,2��� = � − �

1 � �1 + �2 � . �3�

They also depend on the parameter � and pass through a
branch-point singularity at the exceptional points ��= � i,
where the only linearly independent eigenvector reads
x��i�= ��i ,1�.

The branch-point singularity leads to a characteristic be-
havior of the corresponding eigenvalues under changes in the
parameters. If one chooses a closed loop in the parameter
space and calculates the eigenvalues for a set of parameters
on this loop, the permutation of the eigenvalues can be seen
by plotting their paths in the complex-energy plane. The situ-
ation is illustrated in Fig. 1. Here, a circle ����= i+�ei�

around the singularity �+= i is traversed in the parameter
space, which is shown in Fig. 1�a�. After one revolution, the
first eigenvalue marked by red squares has traveled to the
starting point of the second marked by green diamonds, and
vice versa. As a consequence, the path of each eigenvalue is
not closed if one traversal of the loop in the parameter space
is performed, but the path is closed if the parameter-space
loop is traversed twice. Of course, for the simple model it is
also possible to demonstrate the half-circle structure analyti-
cally. If the parameter-space curve described above is applied
to the eigenvalues �Eq. �2��, one obtains for �	2 the expan-
sion
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�1,2 = � �1 + �i + �ei��2 = � ��ei�/2�2i + �ei�

� � �2�ei
/4ei�/2 �4�

or

�1 = �2�ei�
/4+�/2�, �2 = �2�ei�5
/4+�/2�, �5�

which reproduces the half circles shown in Fig. 1 for a full
parameter-space loop �� �0,2
� correctly.

III. HAMILTONIAN AND MATRIX REPRESENTATION

In this paper the hydrogen atom in static crossed electric
and magnetic fields is investigated from the point of view of
exceptional points. The electric field is assumed to point in
the x direction and the magnetic field is orientated along the
z axis. The Hamiltonian without relativistic corrections and
finite nuclear mass effects �43� reads in atomic Hartree units
as

H =
1

2
p2 −

1

r
+

1

2
�Lz +

1

8
�2�x2 + y2� + fx , �6�

where p is the kinetic momentum of the electron, r is its
distance from the nucleus, and Lz is the z component of the
angular momentum. The magnetic and electric field strengths
are represented by � and f , respectively. The Hamiltonian
contains the Coulomb potential �1 /r, the paramagnetic term
��Lz, the diamagnetic term ��2�x2+y2�, and the potential
due to the external electric field �fx.

For the numerical calculation of the energy eigenvalues in
a matrix representation of the Hamiltonian �Eq. �6��, it is
advantageous to transform the Schrödinger equation into di-
lated semiparabolic coordinates,

 =
1

b
�r + z, � =

1

b
�r − z, � = arctan

y

x
�7�

with r=�x2+y2+z2. For calculating the resonances of the
system the complex-rotation method �17–19� is used as a
powerful tool �37,38,44�. The complex scaling is included
via the dilation parameter b, where the replacement

b2 = 	b2	ei� �8�

entails the complex rotation of the position vector

r → ei�r �9�

and leads to the complex scaled and regularized Schrödinger
equation


− 2H0 + 	b	4ei2���2 + �2�i
�

��
−

1

4
	b	8ei4��22�2�2 + �2�

− 2	b	6ei3�f��2 + �2�cos � + 4	b	2ei� + �2 + �2��
�e−i2�� = 2	b	4E�2 + �2�� , �10a�

with the term

H0 = − 1
2 �� + ��� + 1

2 �2 + �2� , �10b�

where

�� =
1

�

�

��
�

�

��
+

1

�2

�2

��2 , � � �,� . �10c�

Due to the harmonic-oscillator structure of H0, a well-suited
complete basis set is given by the states

	n,n�,m� = 	n,m� � 	n�,m� , �11�

where each of 	n ,m� and 	n� ,m� represents an eigenstate of
the two commuting operators

N = a1
+a1 + a2

+a2, �12a�

L = i�a1a2
+ − a1

+a2� = �q1p2 − q2p1� �12b�

of the two-dimensional isotropic harmonic oscillator with
common eigenvalue m of L. The operators ai and ai

+ are the
familiar ladder operators of the one-dimensional harmonic
oscillator.

The matrix representation of the Schrödinger equation
�Eq. �10�� is non-Hermitian and has the form

A��, f�� = 2b4EC� , �13�

where A�� , f� is a complex symmetric matrix and C is real
symmetric positive definite. Resonances are uncovered as
complex-energy eigenvalues E, where the real and imaginary
parts represent the positions and the widths �=−2 Im�E�,
respectively.

The Hamiltonian has two constants of motion, namely, the
energy and the parity with respect to the �z=0� plane. The
latter symmetry opens the possibility of classifying eigen-
states by their z parity and considering the associated sub-
spaces separately. The examples discussed in this paper are
given for even z parity.

The computation of the eigenvalues was performed using
the ARPACK library �45�. For typical calculations, the number
of basis states was on the order of 10 000–12 300. The exact
determination of the positions of exceptional points up to
four valid digits often required larger matrices with up to
17 300 states. If the matrices A and C are built up appropri-
ately, they possess a band structure, which was exploited in
the numerical diagonalizations.

0.99994

1.00000

1.00006

-0.00006 0.00006

Im
(κ

)

Re(κ)

(a)

-0.012

-0.006

0.000

0.006

0.012

-0.012 0.000 0.012

Im
(λ

)

Re(λ)

(b)

FIG. 1. �Color online� �a� Circle in the parameter space � with
the exceptional point �+= i as center point for the simple model �Eq.
�1��. �b� Eigenvalues �1,2 calculated for the parameter values from
�a� indicated by red squares and green diamonds, respectively. In
this case each of the two eigenvalues traverses a semicircle. In �a�
and �b� the filled symbols represent the first parameter value �0 and
the corresponding eigenvalues �1,2��0�, respectively. The arrows
point in the direction of progression.
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IV. EXCEPTIONAL POINTS IN SPECTRA OF THE
HYDROGEN ATOM IN EXTERNAL FIELDS

A. Identification of exceptional points

The Hamiltonian in the Schrödinger equation �Eq. �10a��
is non-Hermitian. Two parameters, viz., the strengths of the
external electric and magnetic fields, are available to influ-
ence the positions of the resonances. Thus it should be pos-
sible to produce degeneracies of the complex resonance en-
ergies. Exceptional points do exist in atomic spectra if the
fields can be chosen in such a way that a coalescence of two
states occurs. The crossed-field hydrogen system fulfills all
necessary conditions for the appearance of exceptional
points. However, one has to find them in the spectrum to
really prove their existence.

A successful procedure for searching exceptional points
can be found if one exploits their properties. The permutation
of the two eigenvalues involved in the singularity provides a
clear signature which can be used to detect exceptional
points. A good choice for a closed loop is a “circle” in the
parameter space of the two field strengths with a radius �
�1 chosen relative to a center ��0 , f0�,

���� = �0�1 + � cos ��, f��� = f0�1 + � sin �� . �14�

It opens the possibility of scanning a larger area of the pa-
rameter space, namely, the complete circular area, at once. A
fundamental advantage of the method is that it allows for
automatizing the procedure up to a certain extent. If the steps
on the circle are chosen small enough, the resonances of two
consecutive steps can be assigned to each other unambigu-
ously, and their motion in the complex-energy plane can be
traced. Eigenvalues which do not return to their starting
point once the circle in parameter space is closed but are
interchanged with a further resonance are a proof of the ex-
istence of an exceptional point. The exact position of the
degeneracy can be determined by minimizing the distance of
the two eigenvalues. After the degeneracy has been found
numerically, a last circle with a small radius �typically �
�10−12� around the parameter point at which the degeneracy
occurs is used to decide whether or not the branch-point
singularity structure is present and the degeneracy found is
an exceptional point.

The geometric phase appearing with exceptional points is
accessible through the eigenvectors representing the reso-
nances in the numerical calculations, and provides a further
possibility of verifying their existence �40�. As was also
shown in Ref. �40�, the permutation of the complex reso-
nance energies opens the possibility of detecting exceptional
points in experiments with atoms once the complex energies
have been extracted from the photoionization cross section.

B. Examples

With the method described above, exceptional points have
been found in spectra of the hydrogen atom in static external
fields �40�. Table I lists 17 examples. In the calculations the
relative difference 	E1−E2	 / 	E1	 of the two eigenvalues could
be reduced down to 10−13. However, this is only the result for
a single matrix representation. What is more crucial is the

influence of the complex rotation on the matrix with finite
size. Using up to 17 300 states the convergence of typically
three to four valid digits in the parameters as well as in the
energies can be achieved. The convergence was checked
with the stability of the results against changes in the matrix
size and the complex parameter b.

As an example Fig. 2 shows a typical result obtained in a
numerical calculation for the exceptional point labeled 14 in
Table I. The squares and the diamonds represent each of the
eigenvalues at different field strengths. In this example, using
20 steps on the circle in the parameter space has been suffi-
cient to obtain a clear signature of the branch-point singular-
ity. The “radius” of the circle according to Eq. �14� was �
=0.01.

V. DESCRIPTION OF THE RESONANCE ENERGIES
IN THE VICINITY OF EXCEPTIONAL POINTS

A. Effective two-dimensional matrix

The most common case of an exceptional point consists
of two resonances forming a square-root branch point, whose
effects on the spectrum appear in close vicinity of the critical
parameter values. There, only the two resonances involved in
the branch-point singularity are important if they are suffi-
ciently separated from all further resonances, which in gen-
eral can be realized since only a narrow region of the
complex-energy plane around two almost degenerate eigen-
values must be taken into account. In this case, one can re-
strict the discussion to the subspace spanned by the two rel-
evant eigenvectors close to the exceptional point, which
leads to effective two-dimensional matrix models. Indeed,

TABLE I. Examples of exceptional points in spectra of the hy-
drogen atom in crossed magnetic ��� and electric �f� fields. All
values are in atomic units. The numbers are used as labels to iden-
tify the exceptional points.

� f Re�E� Im�E�

1 0.002335 0.0001177 −0.01767 −0.000103

2 0.002575 0.000117114 −0.015067 −0.0000823

3 0.002752 0.0001298 −0.015714 −0.00022637

4 0.0030152 0.0001231 −0.01209 −0.000099

5 0.003045 0.0001332 −0.015812 −0.0001896

6 0.0030460 0.000127302 −0.017624 −0.000087

7 0.0037915 0.0001535 −0.01240 −0.000164

8 0.004604 0.0002177 −0.022135 −0.00006878

9 0.004714 0.00021529 −0.01394 −0.00010

10 0.00483 0.000213 −0.01255 −0.00030

11 0.00529 0.0002011 −0.0150 −0.000136

12 0.00537 0.000214 −0.01884 −0.0000679

13 0.005388 0.0002619 −0.02360 −0.00015

14 0.00572 0.000256 −0.01984 −0.000258

15 0.00611 0.000256 −0.01593 −0.00024

16 0.00615 0.000265 −0.0158 −0.000374

17 0.00776 0.000301 −0.0179 −0.000756
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two-dimensional models with only one complex parameter
similar to the model introduced in Sec. II B yield a good
description of the two complex eigenvalues in the vicinity of
exceptional points �1�, and they can also provide good results
for the resonances of the hydrogen atom in external fields.
However, for some effects the actual matrix structure, which
includes the two real field strengths � and f , has to be taken
into account. We introduce a model adequate for describing
the physical crossed-field system. It is given by a matrix,
whose elements have the form

Mij = aij
�0� + aij

����� − �0� + aij
�f��f − f0�, i, j � �1,2 .

�15�

This two-dimensional matrix is still a very simple model
because it includes only the two states merging at the excep-
tional point and ignores couplings to other levels. Further-
more, a linear dependence of the matrix elements on the two
field strengths is assumed, which is certainly only true for
small distances to the center point ��0 , f0�. In contrast with
the simple model used in Sec. II B it includes two real pa-
rameters with complex prefactors aij

�0�, aij
���, and aij

�f� and cor-
rectly reproduces the matrix shape of the full Hamiltonian to
lowest order. In a power-series expansion its eigenvalues ful-
fill the relations

�1 + �2 = tr�M� = A + B�� − �0� + C�f − f0� , �16a�

��1 − �2�2 = tr�M�2 − 4 det�M� = D + E�� − �0� + F�f − f0�

+ G�� − �0�2 + H�� − �0��f − f0� + I�f − f0�2,

�16b�

with new coefficients A, B, C, D, E, F, G, H, and I. Since the

eigenvalues do not change under a similarity transformation
of the matrix M and the explicit choice of the matrix is not
relevant, the representation �Eqs. �16a� and �16b�� is more
suitable than Eq. �15�, in which more coefficients appear.
The coefficients can be determined by a fit of the exact quan-
tum energies to Eqs. �16a� and �16b� in a region of the pa-
rameter space in which only two resonances are relevant. A
fit for six different parameter sets yields the nine coefficients
A– I and, thus, determines completely the two eigenvalues of
model �15� in dependence of the deviations from the center
point ��0 , f0�. Six differences �1−�2 are required to deter-
mine D, E, F, G, H, and I. Three of the same parameter sets
can be used to determine A, B, and C from the sum �1+�2.

B. Shapes of the eigenvalue loops

As can be seen in Fig. 2 the shape of the paths covered by
the two energy eigenvalues differs considerably from the
semicircle form obtained for a small loop in the simple two-
dimensional matrix model in Fig. 1�b�. A good description of
the complicated behavior is possible with the model �Eqs.
�16a� and �16b��. The results of a more detailed investigation
of the phenomenon with the matrix model are shown in
Fig. 3.

A circle around the exceptional point, which is always
located exactly at the center of each figure, is performed for
three different radii. For radii �=0.03 and �=0.01 �see Figs.
3�a� and 3�b��, the complicated structure already known from
Fig. 2�a� appears. The deformations of the eigenvalue paths
can be reproduced with matrix �15�. The lines in Figs. 3�a�
and 3�b� represent the positions of the two model eigenval-
ues �1 and �2 for the same parameter-space circle which was
used for the exact quantum resonances. The very good agree-
ment demonstrates that it is possible to describe the local
structure of the resonances at an exceptional point with a

-0.00040
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-0.00025

-0.00020
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-0.00010
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(E

)
[a

.u
.]

Re(E) [a. u.]

0.00025

0.00026

0.0056 0.0058

f[
a.

u.
]

γ [a. u.]

FIG. 2. �Color online� Paths of the two eigenvalues �represented
by squares and diamonds� which degenerate at the exceptional point
labeled 14 in Table I in the complex-energy plane �40�. Each point
of one eigenvalue belongs to a different set of parameters. The path
in the field strength parameter space is a circle defined in Eq. �14�
with �=0.01 �see inset�. The initial set of parameters and the cor-
responding eigenvalues are represented by filled starting points. The
arrows indicate the direction of progression. The filled triangle
marks the position of the exceptional point in the parameter space
and the corresponding complex energy of the degenerate
resonances.

-0.00050

-0.00005

-0.0203 -0.0195

Im
(E

)
[a

.u
.]

Re(E) [a.u.]

(a)
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-0.000270
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FIG. 3. �Color online� Paths of the two eigenvalues considered
in Fig. 2 for different radii of parameter-space circle �14�, where the
center ��0 , f0�= ���EP� , f �EP�� was always chosen to be exactly the
exceptional point. �a� �=3�10−2; �b� �=10−2; �c� �=10−4. The
position of the resonances at ���EP� , f �EP�� is marked by a triangle in
each figure. The squares and diamonds represent the exact quantum
resonances. The lines represent the eigenvalues of the two-
dimensional matrix model �Eq. �15��, whose coefficients have been
fitted to the numerical results of the exact quantum calculations.
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simple two-dimensional model that ignores the influence of
further resonances even if complicated structures in the ei-
genvalue paths appear.

Figure 3�c� shows a circle around the same exceptional
point for the much smaller radius �=10−4, where the shape
of the paths becomes more similar to the semicircle known
from Fig. 1�b�. The exceptional point marked by the triangle
in Fig. 3�c� now is located at the center of the enclosing
eigenvalue trajectories. However, the loop still is not a per-
fect semicircle. This effect is a result of the dependence on
two real parameters with two complex prefactors as intro-
duced in model �15�. While the models using one complex
parameter �cf. Sec. II B� lead to a perfect semicircle, as was
demonstrated with power-series expansion �4�, this is not the
case for description �15�. A short calculation shows that a
fractional power-series expansion similar to Eq. �4� for the
model �Eqs. �16a� and �16b�� to lowest order reads

�1,2 = �
A

2
�

1

2
�U

2
��1 +

V

U
e−i2�ei�/2 if 	V	 � 	U	

A

2
�

1

2
�V

2
��1 +

U

V
ei2�e−i�/2 if 	V	 � 	U	 ,�

�17�

with U=E�0+Ff0, and V=E�0−Ff0. The second term under
the second square root is large enough to have a considerable
influence and leads to the modulation of the radius during the
traversal of the semicircle evident in Fig. 3�c�. Again, the
model fitted to the numerical data, and rendered by the con-
tinuous lines in the figure, perfectly reproduces the exact
behavior.

Intersections of an eigenvalue path with itself are ob-
served, which means that the eigenvalue can have the same
complex energy for two different parameter sets. In Fig. 3�a�
one can even see that the position of the exceptional point
lies outside the area enclosed by the two eigenvalue paths.
This is possible if one of the two eigenvalues �in this ex-
ample obviously the resonance denoted by red squares� has
the same complex energy as the one at the exceptional point
for a second parameter set. The crossing of an eigenvalue
path with the position of an exceptional point in the
complex-energy plane is shown in Fig. 4. The parameter-
space circle labeled 1 in Fig. 4�a� is chosen such that it
passes directly through the point ��1 , f1� at which one of the
resonances returns to its initial position at the exceptional
point as can be seen in Fig. 4�b�. Additionally, the straight
line labeled 2 in Fig. 4�a� is traversed. For this line one
observes that both resonances leave the position of the ex-
ceptional point. The resonance denoted by the solid red line
returns to its original position on the same path as can be
seen in the magnified illustration in Fig. 4�c�.

VI. DIPOLE MATRIX ELEMENTS AND THE
PHOTOIONIZATION CROSS SECTION

AT EXCEPTIONAL POINTS

In the correct inner product, which has to be used for the
complex-rotated states, no complex conjugation of the fac-

tors ei� �cf. Eq. �9�� may be performed �17�. Only the intrin-
sic complex parts of the wave functions are complex conju-
gated. An important consequence is that resonance wave
functions normalized with respect to this inner product di-
verge at the branch points, which is typical of exceptional
points �1�. In the simple two-dimensional matrix model in-
troduced in Sec. II B that behavior can be observed directly
for the normalized eigenvectors

x1,2��� =
1

��2 + �1 � �1 + �2�2
� − �

1 � �1 + �2 � �18�

at the exceptional points �= � i.
One may wonder whether or not the diverging behavior

carries over to measurable physical quantities. In particular,
the photoionization cross section is important for the obser-
vation of resonances in experiments. For example, in Ref.
�40� it was proposed to measure the photoionization cross
section for parameter sets located on a closed curve and to
extract the complex energies of the resonances from the
cross section with the harmonic-inversion method. This pro-
cedure allows for searching the permutation behavior in ex-
perimental data.

As presented by Rescigno and McKoy �46� the dipole
matrix elements

Pj�E� = ��0	D�r�	� j���� �19�

and the photoionization cross section
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FIG. 4. �Color online� �a� A circle in the parameter space �la-
beled 1� is chosen such that it passes through the parameter set
��1 , f1� at which one of the energy eigenvalues is identical with its
position at the exceptional point. A straight line �labeled 2� connects
the parameters of the exceptional point and the parameter set
��1 , f1�. �b� Paths of the two numerically exact complex energies
for the circle and the straight line described in �a�. �c� Magnification
of the path of the eigenvalue denoted by the red solid line in �b� for
the parameter line labeled 2 in �a�. The eigenvalue departs from the
point of degeneracy �circles� and returns to its initial value �plus
symbols�.
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��E� = 4
�elm�E − E0�Im��
j

��0	D	� j����2

Ej − E � , �20�

can straightforwardly be calculated once the energies ob-
tained from the complex-rotated Hamiltonian and the corre-
sponding eigenvectors are at hand. In Eq. �20� D is the dipole
operator in atomic units for a given direction of polarization
and �elm is the fine-structure constant. The bound state,
whose energy E0 is supposed to be known, is represented by
�0. The ionized states are labeled � j, where the rotated
eigenfunctions calculated by the complex-rotation method
are used. In converged spectra, the result is independent of �.

Due to the dependence of Eqs. �19� and �20� on the reso-
nance wave functions � j, a remarkable behavior at excep-
tional points occurs. The diverging behavior of the wave
functions must carry over to the dipole matrix elements. In-
deed, the numerical results show that the resonance wave
functions obtained by the complex-rotation method lead to
diverging dipole matrix elements. This is, however, not an
observable physical property because the single dipole ma-
trix elements of the two identical wave functions at an ex-
ceptional point are not accessible. In particular, the photoion-
ization cross section behaves regularly and does not diverge
at an exceptional point as will be shown below.

Again, a two-dimensional matrix model helps in under-
standing these effects. To keep the discussion transparent, the
simplest example, namely, the symmetric matrix model in-
troduced in Sec. II B, is used. The results, however, are valid
for all complex symmetric matrices. Note that in particular
there is no difference visible in the behavior of the eigenval-
ues between the lowest-order power-series expansions �Eqs.
�4� and �17�� if only the distance � �or �� is varied and the
angle � is kept constant. The normalized eigenvectors, which
correspond to the resonance wave functions � j, in this
model are given by Eq. �18�. The form of the dipole matrix
elements �Eq. �19�� is represented by a product P1,2=y ·x1,2
of the eigenvectors x1,2 with an arbitrary vector y= �y1 ,y2�. If
the squares of the dipole matrix elements, which are required
for the photoionization cross section, are calculated for a
small complex deviation � from one of the two exceptional
points, �= i+�, a fractional power-series expansion shows
that the single contributions

P̄1,2
2 = �y · x1,2�2

= �
ei3
/4

2�2

�y1 + iy2�2

��
+

1

2
�y1

2 + y2
2�

�
ei5
/4

8�2
�y1

2 − 6iy1y2 − y2
2��� + O��� �21�

diverge as 1 /��. It is interesting to note that the sum of both
contributions always has the exact value

�y · x1�2 + �y · x2�2 = y1
2 + y2

2, �22�

independent of the parameter �, i.e., of the presence of the
exceptional point, and of the matrix used. What is more in-
teresting, however, is the sum

�̄ =
�y · x1�2

�1 − E
+

�y · x2�2

�2 − E
, �23�

which describes the contribution of the two resonances to the
photoionization cross section with eigenvalues �2� and a real
variable E representing the energy. Here, one can also look at
the contributions of the single eigenvalues, and obtains in a
fractional power-series expansion around the branch point

�̄1,2 =
�y · x1,2�2

�1,2 − E

= �
ei7
/4

2�2

�y1 + iy2�2

E��
+ f1�E,y�

� f2�E,y��� + f3�E,y�� + O��3/2� , �24�

with rather complicated expressions f1�E ,y�, f2�E ,y�, and
f3�E ,y� which do not depend on �. These parts diverge.
However, �̄1 and �̄2 alone are not observable. The sum con-
tributes to the photoionization cross section, and, in particu-
lar, at the exceptional point ��=0� the two resonances over-
lap. For the sum one finds

�̄ = 2f1�E,y� + 2f3�E,y�� + O��2� . �25�

That is, the photoionization cross section converges linearly
to a constant value at the branch point.

Numerical calculations for the hydrogen spectra discussed
in this paper demonstrate the applicability of the simple
model. For this purpose, the square modulus of the dipole
matrix elements �Eq. �19�� and the photoionization cross sec-
tion �Eq. �20�� are calculated on a straight line of form �14�
for a constant angle � and variable distance � from the ex-
ceptional point ��0 , f0�= ���EP� , f �EP��. The results have been
verified for different angles �. Figure 5 shows the squares of
the two isolated dipole matrix elements for the resonances
which form the exceptional point labeled 12 in Table I. Both
matrix elements behave as predicted by approximation �21�
of the simple two-dimensional model. The single terms 	P1	2
and 	P2	2 diverge in the form of a reciprocal square root of �,
which is shown by a fit of the numerical results to the func-
tion

Pfit��� =
a
��

+ b . �26�

Excellent agreement can be observed. Additionally, the real
and imaginary parts of the sum P1

2+ P2
2 are plotted. As ex-

pected from Eq. �22� for the two-dimensional model, this
sum has a constant value.

The photoionization cross section �(Re�E�EP��) evaluated
at the real part of the energy E�EP� at the exceptional point
according to Eq. �20� is shown in Fig. 6 as a function of the
distance parameter �. As can be seen directly in the figure the
numerical data points �red points� converge linearly to a con-
stant value for �→0. The red line represents a fit to the
function
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�fit„Re�E�EP��… = a + b� , �27�

whose form is expected from power-series expansion �25� of
the two-dimensional model. The comparison shows excellent
agreement.

VII. STRUCTURES WITH THREE RESONANCES

Beyond the typical square-root branch-point behavior
studied in most physical examples, higher branch points con-

necting more than two eigenvalues are possible. In particular,
the possibility of a cubic-root branch point in a three-
dimensional symmetric matrix is the topic of current studies
�47�. For a complex symmetric matrix a coalescence of N
levels requires �N2+N−2� /2 real parameters �47�. Thus, for
N=3 five parameters are necessary. For the hydrogen atom
this means that additional to the two field strengths � and f ,
three further parameters have to be introduced. Locating ex-
ceptional points in a five-dimensional parameter space is ex-
pected to be a laborious task considering the difficulties en-
countered already for two parameters. However, as will be
shown below, a combination of three resonances strongly
related to a cubic-root branch point is observable in spectra
of the crossed-field hydrogen atom. In particular the permu-
tation behavior of a cubic-root branch point, where three
resonances are permuted and three circles in the parameter
space are required to restore the original situation, can be
found.

An example where three resonances come into play is
given in Fig. 7. In Fig. 7�a� obviously a permutation of three
eigenvalues indicated by points with three different symbols
and colors can be observed for a closed loop in the parameter
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FIG. 5. �Color online� Squares P2 of the dipole matrix elements
between a wave function corresponding to a bound state and the
two states evolving from the exceptional point labeled 12 in Table I
at field strengths according to form �14� with the constant angle �
=0.7 and ��0 , f0�= ���EP� , f �EP��. � is the distance from the critical
values of the exceptional point. For both states the square modulus
diverges in the form of a reciprocal square root of the distance. A fit
of the data points to a function of the form a /��+b, which is
expected from Eq. �21�, is shown by the solid red and dashed green
lines. The real and the imaginary parts of the sum P1

2+ P2
2 are also

drawn.
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the exceptional point. The numerical data �dots� converge linearly
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FIG. 7. �Color online� Illustration of a structure in the vicinity of
two exceptional points in which three resonances are involved.
Each of the resonances is denoted by a different symbol and color.
The inset of �a� shows the three parameter-space loops �circles� and
the position of the two exceptional points �up triangles�. In �a� the
parameter-space loop �indicated by dots� is chosen such that both
exceptional points are located within the circular area. The reso-
nance marked by down triangles forms a branch-point singularity
with two further states at two different parameter values, which is
shown by two additional parameter-space loops �small circles in the
inset� in whose circular area only one of the two exceptional points
is located ��b� and �c��. The solid lines mark the eigenvalues of the
three-dimensional model �Eqs. �28b�–�28d�� fitted to the numerical
data.
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space. From that behavior one might assume that indeed an
exceptional point consisting of three resonances, which form
a cubic-root branch-point singularity, was detected. A more
detailed analysis shows, however, that this is not the case.
But there is a close relationship with a triple coalescence.
There are two exceptional points located in the circular area
of the parameter-space circle of type �14� used in Fig. 7�a�.
This can directly be shown if one chooses two different pa-
rameter loops with two different center points ��0 , f0� and
smaller radii �, which is done in Figs. 7�b� and 7�c�. Then
one observes that there are two exceptional points at which
two of the three resonances form a square-root branch point.
The resonance denoted by down triangles in Fig. 7 is in-
volved in both exceptional points. For the large parameter-
space circle used for Fig. 7�a�, the two different exceptional
points cannot be resolved and the eigenvalue paths form the
permutation of three resonances which looks like a triple
coalescence in the form of a cubic-root branch point. Al-
though no exact triple coalescence was found, the finding of
the situation depicted here is already a remarkable result.
Two exceptional points located close to each other in the
parameter space are required. Furthermore, only three reso-
nances may be connected with these exceptional points, i.e.,
one of them must be connected with both branch points. If
three additional parameters were available, a coalescence of
both exceptional points would be possible or, in other words,
the additional parameters would be necessary to shift the
three resonances such that they form a cubic-root branch
point in the five-dimensional parameter space.

Of course, it is not possible to describe a behavior of this
kind with the two-dimensional matrix models used so far. At
least a three-dimensional model is required to simulate three
energy eigenvalues connected with each other. Indeed, it can
be shown that it is possible to reconstruct the structures
shown in Fig. 7 by a three-dimensional matrix model. Simi-
lar to ansatz �15� we expand the matrix elements in a power
series in the two field strengths � and f around a center point,
and specifically assume the matrix to be symmetric. To
model the behavior of its eigenvalues �, we fit the coeffi-
cients of the characteristic polynomial

�3 + a�2 + b� + c = 0 �28a�

to the exact numerical results. Note that one has the familiar
relations

a = − ��1 + �2 + �3� , �28b�

b = �1�2 + �1�3 + �2�3, �28c�

c = − �1�2�3. �28d�

For the discussion in Fig. 7 a power-series expansion of the
coefficients a, b, and c up to third order in both field
strengths was included, which leads to 30 terms for all three
coefficients; i.e., 10 combinations of field strengths are re-
quired to obtain 10 triples of eigenvalues for relations
�28b�–�28d�. The eigenvalues in the three-dimensional ma-
trix model are shown as solid lines in Figs. 7�a�–7�c� and
agree very well with the numerically exact resonances. This
shows that it is sufficient to only take the three resonances

into account to explain their behavior. The influence of fur-
ther resonances can be ignored in the investigation of the
threefold permutation. The model can even be used to predict
the positions of the two exceptional points located within the
parameter-space loop. For the case shown in Fig. 7�a� the
model predicts the positions of the two exceptional points
labeled 15 and 16 in Table I at ��1=6.12�10−3 , f1=2.53
�10−4� and ��2=6.15�10−3 , f2=2.68�10−4�, respectively,
which well approximates the results of the full quantum
treatment.

VIII. CONNECTION WITH AVOIDED LEVEL CROSSINGS

There is a close relation between avoided level crossings
of the real energies of bound states and exceptional points.
As has been demonstrated, the level repulsions of bound
states of a Hermitian Hamiltonian which depends on one real
parameter are associated with an exceptional point if the pa-
rameter is continued into the complex plane �1,3�. A similar
effect appears with resonances of open quantum systems.
Here one can observe crossings or avoided crossings of ei-
ther the positions or the widths of the resonances for lines in
the parameter space which do not run over the exceptional
point. This behavior has, e.g., been discussed for the reso-
nances in microwave cavities �11�.

Avoided level crossings of the energies or widths can also
be observed in spectra of the hydrogen atom in external
fields. Figure 8 shows the real part of the complex energy as
a function of a parameter � which defines a straight line of
the form

� = 0.805 16 � 10−2� , �29a�

f = 0.321 69 � 10−3� , �29b�

-0.019

-0.018

-0.017

-0.016

-0.015

-0.014

-0.013

-0.012

-0.011

-0.010

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e(

E
)

[a
.u

.]

α

FIG. 8. �Color online� Real part of the complex energy as a
function of the one-dimensional parameter �, �=0.805 16�10−2�,
f =0.321 69�10−3�, defined in Eqs. �29a� and �29b�. The blue
circle marks an exceptional point. Avoided crossings �marked by
blue squares� appear, which are related to exceptional points. Only
resonances with 	Im�E�	�0.0005 are drawn so as to not overload
the figure. The black frame marks the region investigated in detail
in Fig. 9�a� to demonstrate how an avoided crossing leads to an
exceptional point if the parameters are varied.
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�/f = 25.03 �29c�

in the �� , f� space. The line is chosen such that it passes
directly through the exceptional point labeled 12 in Table I.
The position of the exceptional point is marked by the blue
circle in the figure. In the vicinity of the parameter-space
line, further exceptional points are located. Since the line
does not pass through these critical parameter values, the
exceptional points only manifest themselves by avoided
crossings in the energies or the widths. The avoided energy
�real part� crossings are shown in the figure. They are
marked by blue squares. The close connection between
avoided crossings and branch-point singularities of excep-
tional points can be shown very directly. In all cases marked
in Fig. 8 it is possible to vary the parameters � and f such
that a coalescence of the two eigenvalues forming the
avoided crossing is achieved. That is, all avoided crossings
shown in the diagram are associated with exceptional points
of the corresponding resonances. In all cases where the de-
scription of the energy range under consideration is possible
with model �15�, i.e., always if only two resonances are in-
volved, the adjustment of the parameters � and f leads to a
branch point. In other words, exceptional points are indeed
found to be the origin of narrow avoided level crossings.

A more detailed illustration is given in Fig. 9. The region
marked by the black frame in Fig. 8 is magnified in Fig. 9�a�.
Three of the avoided level crossings are included and, in
addition, the imaginary part of the resonances is shown. The
encounter of two resonances marked by the arrow labeled 1
shows an avoided crossing in the real part and a crossing in
the imaginary part. Arrow 2 exhibits avoided crossings in the

real as well as in the imaginary part. The encounter marked
by arrow 3 shows an avoided crossing of the real part which
is accompanied by a crossing in the imaginary part. Its be-
havior changes on a neighboring line in the parameter space
defined by

� = 0.653 78 � 10−2��, �30a�

f = 0.282 13 � 10−3��, �30b�

�/f = 23.17. �30c�

Now the avoided energy crossing is changed into a crossing,
which can be seen in Fig. 9�b�. Line �30a� and �30b� runs
exactly through the corresponding exceptional point. As a
consequence the avoided crossing is transformed into a
branch-point degeneracy at which both the real and imagi-
nary parts are identical, whereas the other two encounters do
not form a degeneracy. They belong to different exceptional
points which are not hit by the line. The encounter labeled by
arrow 2 forms, again, an avoided crossing both in the real
part and in the imaginary part. The third encounter, which is
marked by arrow 1, has inverted its behavior. Now, it forms
a real part crossing and an avoided crossing of the imaginary
part.

The connection between avoided crossings and excep-
tional points provides an additional possibility of detecting
the branch-point singularities in spectra of the hydrogen
atom in external fields. Exceptional points can be found by
plotting the real part of the complex resonance energies as a
function of one parameter, similar to � in Eqs. �29a� and
�29b�. If avoided crossings of the energy are found, the iden-
tification of the exceptional point can be performed by the
method presented in Sec. IV A.

IX. CONCLUSION AND OUTLOOK

Exceptional points are a feature that can emerge in
parameter-dependent open quantum systems with decaying
unbound states. They are branch-point singularities at which
two eigenstates of a non-Hermitian Hamiltonian coalesce.
The topic of this paper was to investigate these exceptional
points in the spectra of atoms in external fields. It has been
shown that the branch-point singularities can be found by the
permutation of two eigenvalues when an exceptional point is
encircled in the parameter space. This method works reliably.

The effects of exceptional points on spectra of the hydro-
gen atom in external fields have been analyzed in detail. In a
close region around the branch points, it is possible to de-
scribe the two branching eigenstates by 2�2-matrix models
and to explain the structure of the loops the eigenvalues
traverse for closed paths in the parameter space. The study of
dipole matrix elements in the vicinity of branch points has
revealed remarkable properties. While single dipole matrix
elements diverge in the presence of exceptional points, this is
not the case for observable physical quantities such as the
photoionization cross section. Both behaviors can be ex-
plained by a simple matrix model, which provides an excel-
lent qualitative description of the properties in the local vi-
cinity of the branch-point singularity.
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FIG. 9. �Color online� �a� Detailed illustration of the region
marked by the black frame in Fig. 8. Three avoided energy cross-
ings are present. In addition, the imaginary part is shown, which
exhibits two crossings �arrows 1 and 3� and one avoided crossing
�arrow 2�. �b� The same region is shown for the field strengths
varied on the line �=0.653 78�10−2��, f =0.282 13�10−3��
given by Eqs. �30a� and �30b�. One of the three exceptional points
is located on this line and the corresponding avoided energy cross-
ing marked by arrow 3 has been transformed into a branch-point
singularity, where both the real and imaginary parts are identical.
The other two encounters show at least one avoided crossing in the
real or in the imaginary part.
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Beyond the typical square-root branch points, the spectra
of the hydrogen atom exhibit structures in which three reso-
nances are connected via two exceptional points. One of the
three resonances is involved in both branch points. This find-
ing is especially important because it is closely related to a
cubic-root branch point, at which all three resonances coa-
lesce. The direct adjustment of such a cubic-root branch
point would require five external parameters and therefore is
not possible in the system investigated here. Furthermore,
the close relation of avoided level crossings and exceptional
points could be confirmed in the resonances of the hydrogen
atom in external fields.

As an outlook, it should be possible to extend the two-
dimensional matrix model introduced in this paper to de-
velop a further, and possibly very fast, method for determin-
ing the exact position of an exceptional point. Once its
existence has been detected by the permutation of two eigen-
values, the fit to the two-dimensional matrix model can be
used to predict the position of the degeneracy in parameter
space by solving Eq. �16b� for �1=�2, which is a very easy
task. The improved position of the exceptional point can be

used to perform a smaller parameter-space circle and to ap-
ply the procedure iteratively.

With the procedure proposed in Ref. �40�, it should be
possible to verify experimentally the effects of exceptional
points on the spectra of atoms in external fields discussed in
this paper. In particular, the permutation behavior to prove
their existence, the influence on the photoionization cross
section, and the close relation to avoided level crossings
should be observable.

A similar system is the hydrogen atom in parallel electric
and magnetic fields, which also fulfills the necessary condi-
tions for the occurrence of exceptional points and, in addi-
tion, shows cylindrical symmetry, which would render calcu-
lations even more simple. It will be interesting to search for
branch-point singularities also in that configuration.
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