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It is well known that a finite level quantum system is controllable if and only if the Lie algebra of its
generators has full rank. When the rank of the Lie algebra is not full, there is a rich mathematical and physical
structure to the subalgebra that to date has been analyzed only in special cases. We show that uncontrollable
systems can be classified into reducible and irreducible ones. The irreducible class is the more subtle and can
be related to a notion of generalized entanglement. We give a general prescription for revealing irreducible
uncontrollable systems: the fundamental representation of su�N�, where N is the number of levels, must remain
irreducible in the subalgebra of su�N�. We illustrate the concepts with a variety of physical examples.
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I. INTRODUCTION

Driving a quantum system through its interaction with a
designed electric field is the essence of quantum coherent
control. A question of both theoretical and practical impor-
tance is whether or not, given an external driving field that
can be shaped at will, a system can be steered from one state
to another. Controllability studies are designed to answer this
question. In the general case, the answer is not obvious.

The mathematical tools of control theory have been har-
nessed in recent years to study quantum systems. A powerful
approach known as geometrical control theory provides a
general framework for determining controllability. In this ap-
proach, controllability is assessed using a criterion based on
the Lie algebra structure of the control Hamiltonians �1–4�.
This criterion, extended in �5�, has been used to determine
the controllability of few-level systems �6,7�. The advantages
of this approach are its automation and complete generality.
However, as is, it fails to provide a physical picture of the
mechanisms at work when full controllability is available.
Conversely, it fails to give insight into what is missing when
full controllability is not present. In the latter case, we would
like to be able to make precise statements about what limited
control is achievable and to find a classification scheme for
uncontrollable systems.

A more physically intuitive approach to controllability re-
lies on the concept of connectivity �8,9�. This approach has
also been reformulated within a Lie algebra framework �10�.
It requires a coupling—possibly an indirect one—that con-
nects any two basis states of the system to be controlled. If
such coupling exists and if there are no degeneracies in the
system �either level degeneracies or level-spacing degenera-
cies� full controllability is ensured. Within this approach, one
has the intuitive result that noncontrollability results from the
absence of coupling between states.

However, when the unperturbed Hamiltonian of the sys-
tem possesses degeneracies, the previous intuitive result does

not hold: connectivity does not guarantee controllability.
This result can also be understood intuitively since level and
transition degeneracies reduce the number of degrees of free-
dom available to manipulate a system. The reduction in con-
trol when degeneracy is present is well attested �7,11�. More-
over, it is known that in such cases, the interplay between the
unperturbed and coupling Hamiltonian plays a critical role in
determining controllability �6–8�. In addition, it has been
shown that in some systems with level-spacing degeneracies,
nontrivial conserved quantities can be an impediment to con-
trollability �8�. Yet, a full understanding of controllability of
degenerate systems and a classification scheme for uncon-
trollable systems has not been published to date. That is the
topic of this paper.

Here we focus on finite-dimensional systems where the
connectivity hypothesis holds and yet controllability fails.
The centerpiece of our analysis is the notion of irreducibility.
Conceptually, irreducibility is extremely close to connectiv-
ity. However, irreducibility provides a more precise criterion
when analyzing degenerate cases. Moreover, irreducibility is
a fundamental tool of group representation theory. It there-
fore allows an analysis of structure of the so-called dynami-
cal group that captures the constraints imposed on the
system.

Our analysis clearly separates two mutually exclusive
sources of uncontrollability. One, intuitive and well known,
is the lack of coupling between states which leads to “dark
spaces.” The dynamics then conserves the mean value of
some Hermitian operators. The other, less well-known source
of uncontrollability, results from a generalized entanglement
symmetry �12,13�. We give a general procedure that reveals
the building blocks of this symmetry and we give explicit
examples of uncontrollable few-level systems that have not
previously been identified.

II. CLASSIFYING UNCONTROLLABLE QUANTUM
SYSTEMS

A. Controllability criteria

Consider an N-level system driven by a time-dependent
Hamiltonian H�t�=H0+�k=1

K uk�t�Hk, where the bare and cou-
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pling Hamiltonians H0 and Hk are fixed and uk�t� are arbi-
trary real-valued functions. The evolution operator, U�t�,
which gives the wave function of the system at time t as a
function of an initial state ���, ���t��=U�t����, evolves ac-
cording to i� dU�t�

dt =H�t�U�t�. Denote the Lie algebra gener-
ated by iH0 , iH1 , . . . , iHK by g and the corresponding Lie
group by G. It is a well-known result that the set A of unitary
transformations U�t�, obtained for t�0 when the control
functions uk are arbitrarily varied, is a semigroup included in
the Lie group G �2�. Without losing generality, one can set
Tr�Hk�=0 for 0�k�K, so that the so-called dynamical
group G sits in SU�N�.

G and g are central objects in controllability analysis. The
definition for a system to be wave function controllable is
that given any pair of states ��� and ��� there exists a U in A
such that ����U����=1. It has been shown that wave function
controllability is equivalent to G being SU�N� when N is odd
or G being SU�N� or Sp�N /2� �or anything isomorphic�
when N is even �1,5�. This can be checked directly from the
structure of the Lie algebra, g. Since we focus only on wave
function controllability, we abbreviate it to controllability in
the following.

B. Irreducibility

When the system is not controllable, the set A��� of states
reachable from any state ��� is not the full space of states. To
analyze these cases, we introduce the notion of irreducibility.
Consider a set � of linear operators operating on a finite-
dimensional Hilbert space H. A subspace H� of H is said to
be invariant under � when �H��H� for all � in �. It is easy
to check that the subspaces 	0
 and H are always invariant.
H is said to be irreducible for � when no subspaces other
than these two are invariant �14–16� under �. Otherwise, H
is said to be reducible.

Irreducibility is a fundamental notion in group represen-
tation theory. We now reformulate irreducibility in our con-
text to highlight its relevance for our control problem. Let H
be the Hilbert space supporting our N-level system. Thus
H=CN, and H is the vector space upon which the fundamen-
tal representation of SU�N� acts. We prove that H being
irreducible for A is equivalent to �necessary and sufficient
for� the following nonzero overlap condition: for any pair of
states ��� and ���, a U in A exists such that ���U����0.

The proof of necessity is as follows. Assume the nonzero
overlap condition is met. Consider a nontrivial subspace H�
of H invariant under A. If its orthogonal complement, H��,
is nontrivial consider ��� in H� and ��� in H��. A U in A
then exists such that ���U����0. But this contradicts
AH��H�, so H��= 	0
, i.e., H�=H. Because any nontrivial
A-invariant subspace of H is H itself, H is irreducible for A.

�
We now prove sufficiency. Assume that two states ��� and

��� exist such that ���U���=0 for all U in A. Consider the
subspace H��� spanned by elements of A���. Any state ��� in
H��� takes the form ���=� jajUj��� where the sum is finite; aj
are complex coefficients and the Uj are in A. Because A is a
semigroup, H��� is invariant under A. For any ��� in H���,
�� ���=� jaj���Uj���=0. So H��� has a nonzero orthogonal

complement. H��� is a nontrivial proper invariant subspace of
H. This shows that H is reducible for A. Equivalently, if H
is irreducible for A, the nonzero overlap condition is met. �

When the system is reducible, H decomposes uniquely
into irreducible orthogonal proper subspaces Hl invariant un-
der A: H= � l=1

L Hl. This decomposition of H into invariant
irreducible subspaces is identical for A, G, or g. This leads to
an important second characterization of reducible systems:
the system is reducible if and only if a nonzero traceless
Hermitian operator commutes with the dynamical algebra g.

The proof is as follows. If the system is reducible, H
admits an orthogonal decomposition H= � l=1

L Hl into proper
subspaces invariant under g. Any operator of the form c=
� l=1

L clIdHl
with �l=1

L cl dim�Hl�=0 is a traceless Hermitian
operator commuting with g.

If the system is irreducible, by Shur’s lemma, operators
commuting with g must be proportional to the identity and
such nonzero traceless operators do not exist. �

C. Irreducibility and connectivity

The nonzero overlap condition shows that irreducibility is
a necessary condition for controllability. It is instructive to
compare irreducibility to the previously introduced notion of
connectivity �8�, another necessary criterion for controllabil-
ity. If a basis 	�i�
1�i�N of H is fixed, and if the basis is
chosen so that H0 is diagonal, connectivity requires the ex-
istence of a nonzero overlap �i�U�j� between any pair of
states �i�, �j� in the basis for some U in A �17�. The two
notions are obviously very close. However, they differ.

Although irreducibility implies connectivity, the converse
is not true: a connected system might be reducible. The dif-
ference between connectivity and irreducibility is relevant
only when H0 possesses degeneracies. Then, a basis change
that does not affect H0 can still possibly modify the structure
of the couplings: connectivity then becomes basis dependent.
Intuitively, irreducibility is a basis-independent criterion that
requires connectivity in every possible basis. It is therefore
more demanding than connectivity. As a result, it provides a
more accurate criterion to characterize uncontrollability.

D. Examples of reducible vs irreducible uncontrollable
systems

To illustrate the difference between connectivity, irreduc-
ibility, and controllability, we now consider some degenerate
three-level systems.

Example 1: For the level-degenerate system shown in Fig.
1�a�, the bare and coupling Hamiltonians read

����

���� ����

���

��� ���

� �
�� 	�

�����
�

FIG. 1. �Color online� The three-level system shown in �a� is
connected in the 	�i�
 basis. However, because of the degeneracy
one cannot a priori say that the system is controllable. �b� The same
system expressed in the primed 	�i��
 basis shows that invariant
subspaces exist that prevent controllability.
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H0 = �− 1 0 0

0 1/2 0

0 0 1/2
�, H1 = �0 	 


	 0 0


 0 0
� .

This system is connected in the 	�i�
1�i�3 basis but an-
other orthogonal basis exists where it is not. Using the
primed basis �1��= �1�, �2��=cos����2�+sin����3� and �3��
=sin����2�−cos����3� with cos���= 	

	2+
2 and sin���= 

	2+
2 ,

H0 remains unchanged due to degeneracy but the coupling
Hamiltonian now takes the form

H1� = 	2 + 
2�0 1 0

1 0 0

0 0 0
� ,

as illustrated in Fig. 1�b�. Connectivity does not hold in the
primed basis: the system is reducible and therefore uncon-
trollable, independent of the coupling values 	 and 
.

Uncontrollability could also have been inferred from the
algebra g generated by iH0 and iH1: g=u�1� � su�2� is a
proper subalgebra of su�3�. The su�2� part of g corresponds
to the generators steering the �1�� , �2�� two-level system,
while the one-dimensional u�1� factor commutes with it. Re-
ducibility, which is already apparent in the block-diagonal
form of H1�, can also be seen in the conservation of the popu-
lation of state �3��.

Example 2: For the transition-degenerate system shown in
Fig. 2, the bare and coupling Hamiltonians read

H0 = �− 1 0 0

0 0 0

0 0 1
�, H1 = �0 	 0

	 0 


0 
 0
� .

This system is irreducible. This can be checked by look-
ing for operators commuting with both H0 and H1. Because
H0 is nondegenerate, operators commuting with H0 must be
diagonal in the basis diagonalizing H0. Such operators that
furthermore commute with H1 are necessarily proportional to
the identity.

This system is not necessarily controllable. Although the
algebra g generated by iH0 and iH1 is the full su�3� algebra
when �	�� �
�, when �	�= �
�g is only a so�3� subalgebra of
su�3�, which leads to an uncontrollable system.

These two simple examples are known �8�, and a detailed
study of their density matrix decomposition has been given
in �18�. The first example shows that when the system pos-

sesses level degeneracies, connectivity might be basis depen-
dent. In such cases, irreducibility allows one to better char-
acterize noncontrollable systems. The second example shows
that irreducibility is not sufficient to ensure controllability.

III. GENERAL TREATMENT OF IRREDUCIBLE
UNCONTROLLABLE SYSTEMS

When the system is reducible, uncontrollability follows
from forbidden transitions between invariant subspaces; the
signature of these invariant subspaces is the existence of op-
erators that commute with the entire dynamical algebra. Ir-
reducible cases do not satisfy such a constraint. Although
irreducibility insures a light version of controllability—any
initial state can be steered so as to partially overlap with any
target state—it does not necessarily lead to a controllable
system. Our second example above suggests that transition
degeneracies combined with particular values of the coupling
constants lead to irreducible but uncontrollable systems. We
now turn to the task of identifying such irreducible and un-
controllable systems.

A. Irreducible dynamical algebras

The irreducibility of H under the algebra g imposes a
specific structure on both g and H. Recall that elements of
g�su�N� are traceless skew-Hermitian operators on H hav-
ing the form iH with H Hermitian. Because g is invariant
under Hermitian conjugation, it is reductive �19�, i.e., it takes
the form g=z�g� � gss, where z�g� is the center of g and gss
= �g ,g� is a semisimple Lie algebra �20�. By definition, ele-
ments of the center commute with the whole algebra:
�z�g� ,g�=0. From the second characterization of irreducibil-
ity, z�g�=0. It follows that g is semisimple, i.e., g= �g ,g�.
This has two consequences. First, the semisimplicity of g

implies that G is compact �21� and this implies that A=G �2�.
Second, g admits a unique decomposition g= �m=1

M
gm, where

gm’s are simple Lie algebras, orthogonal with respect to the
trace induced Hermitian product, which furthermore satisfy
�gm ,gm�=gm and �gm ,gn�=0 when m�n.

The structure of g, in turn, induces a parallel structure on
H. Because H carries an irreducible and faithful representa-
tion of g= �m=1

M
gm, it has the Hilbert space structure of a

multipartite system, i.e., H= �m=1
M Hm, where each Hm carries

an irreducible representation of gm �22� gm does not affect
Hn for n�m. Such a situation, where a tensorial decompo-
sition of H emerges from a given set of operators, has been
described previously �13,23�. Because the gm algebras com-
mute with each other, they appear as sets of independent
degrees of freedom manipulating the system. The decompo-
sition H= �m=1

M Hm is especially relevant because it is the
finest possible tensorial decomposition of H for which G
transforms product states into product states �see Appendix�.
This follows from the simplicity of the gm algebras, i.e., the
fact that they cannot be further decomposed into a direct sum
of commuting algebras.

B. Algebraic criterion for irreducible uncontrollable systems

We now use the structure of g to assess controllability. We
separate the M =1 case, where g is simple, from the case

���

���

���

�

�

FIG. 2. �Color online� The transition-degenerate three-level sys-
tem shown in the figure is irreducible for any nonzero values of the
	 and 
 coupling constants. The system is uncontrollable when
�	�= �
�.
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where M �2, where g is semisimple but not simple. When
M �2, independent of the nature of the gm algebras, the sys-
tem is not controllable. Intuitively, entangled states relative
to the decomposition of H cannot be reached from product
states. When M =1, the nature of g dictates controllability:
the system is controllable if g is su�N� or sp�N /2� �5�, and
otherwise it is uncontrollable.

Proceeding further, we now identify the admissible dy-
namical algebras for the irreducible M =1 cases. This is fun-
damental since it also applies to the general case: if M is
arbitrary, these algebras give the possible factors in the de-
composition of g= �m=1

M
gm into simple Lie algebras. The

general criterion for an irreducible uncontrollable system is
that the fundamental representation spanned by su�N� re-
mains irreducible in the subalgebra of su�N� spanned by the
generators. Limiting ourselves to N�9, in the following
table we tabulate simple subalgebras of su�N� for which the
fundamental representation of su�N� remains irreducible
�24�. These algebras organize into the following chains of
simple Lie subalgebras:

N = 2 su(2)

N = 3 so(3) ⊂ su(3)

N = 4 su(2) ⊂ sp(2) ⊂ su(4)

N = 5 so(3) ⊂ so(5) ⊂ su(5)

N = 6

� so(6) ⊂
su(2) ⊂ sp(3) ⊂ su(6)

su(3) ⊂
N = 7 so(3) ⊂ g2 ⊂ so(7) ⊂ su(7)

N = 8

� su(2) ⊂ sp(4) ⊂
so(7) ⊂ so(8) ⊂ su(8)

su(3) ⊂
N = 9 so(3) ⊂ so(9) ⊂ su(9).

If the system is irreducible and if its dynamical algebra is
simple �M =1�, then this algebra is to be found in the given
list. The semisimple �but nonsimple� dynamical algebras of
irreducible systems are not listed. For instance, for N=4, we
do not include the su�2� � su�2� subalgebra of su�4� that pre-
serves irreducibility. This case is easy to see however be-
cause N=4=N1�N2=2�2 and su�4� is an admissible irre-
ducible algebra for both dimensions N1 and N2. �There is
also a reducible imbedding of su�2� � su�2� in su�4�.� For N
prime, H cannot be given a tensor product structure. Thus
the algebra chains given for N=3, 5, and 7 completely list
the dynamical algebras of irreducible systems.

Among the subalgebras on this list, only sp�N /2� and
su�N� give rise to controllable systems. The remainder of the
subalgebras corresponds to irreducible uncontrollable sys-
tems. Their irreducibility implies that some nonzero overlap
can be achieved between any initial state and any final state,
but their uncontrollability implies that in general an overlap
with absolute value of unity cannot be attained.

Although the dynamical algebra reflects the internal struc-
ture of the controls, this mere structure does not determine
how the controls steer the system. Both the three-level sys-
tem examples have a dynamical algebra based on su�2� or the
isomorphic algebra so�3�. However, one system is reducible
and the other is not. One must therefore distinguish between
dynamical algebras having the same structure but leading to
inequivalent physical situations.

The following criterion can be used to distinguish equiva-
lent from inequivalent physical systems. Two systems with
dynamical algebras g and g� are equivalent if a T in SU�N�
exists such that g�=TgT†. Then, up to a basis change given
by T, the two algebras are the same set of matrices. Not only
does this imply that g and g� have the same structure but also
that g and g� have exactly the same irreducibility properties.
This equivalence is well known and corresponds to the
equivalence between representations of algebras. In particu-
lar, reducible and irreducible cases are inequivalent. Equiva-
lence classes of irreducible representations of all simple
compact Lie algebras are known and classified. From this
classification, one can obtain g explicitly as matrices.

C. Examples of building blocks of irreducible systems

In Figs. 3–6, the generators of the irreducible dynamical
algebras of the list above are shown as energy diagrams.
Degenerate frequency transitions are indicated by arrows of
the same color. Their coupling strengths are in a fixed ratio;
this is indicated by identical Greek letters. Transition fre-
quencies corresponding to different colors are free param-
eters in the H0 bare Hamiltonian. Each different Greek letter
also corresponds to a nonzero free parameter in H1. For each
given diagram, the algebra generated by iH0 and iH1 is the
same irreducible algebra for all values of the parameters,
except for some exceptional values which correspond to an
additional symmetry.

���

���
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���

�

�
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���
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���

���

�
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���
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�� ���

FIG. 3. �Color online� Energy levels and couplings for the series
sp�N /2��su�N� �N even� and so�N��su�N� �N odd�. The coupling
strengths and degeneracies are organized in a symmetric chain.
These systems are controllable for N even and uncontrollable for N
odd. sp�4� and so�9� symmetry cases are not shown; they have a
similar structure. The su�2��su�4� embedding shows up as a spe-
cial case of the sp�2��su�4� symmetry when an extra symmetry is
present.
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The given diagrams therefore depict only the generic case
of a given symmetry. In fact, all cases where an additional
irreducible symmetry exists can be directly seen from the
chain structure of our subalgebra list. But additional symme-
tries might also lead to reducible systems.

Because several coupling schemes can lead to the same
dynamical algebra, presenting each case in the form of an
energy diagram is necessarily arbitrary. As a rule, we give
the minimum number of couplings such that if one of them is
removed the system becomes reducible. Also, we choose the
couplings to highlight connections between symmetries of
the same chain and regularities in the coupling structure that
appear for similar types of dynamical algebras.

Indeed, regardless of N, some subalgebra types always
appear, for example, the embeddings sp�N /2��su�N� for N
�4 �even� and so�N��su�N� for N�3 �odd�. Although, un-
like the so�N� embeddings, the sp�N /2� embeddings lead to
controllable systems, these two types of algebras lead to a
similar coupling structure, as shown in Fig. 3. su�2� also
appears for every N as a subsymmetry of the previous cases:
su�2��sp�N /2� for N is even and so�3��so�N� for N is odd.

so�N��su�N� for N�4 even is another series. It gives
rise to an algebra chain different from the one of sp�N /2�. As
shown in Fig. 4, their coupling structure extends the so�4�
=su�2� � su�2��su�4� symmetry type.

The embeddings in our list not falling into these schemes
are su�3��su�6�, g2�so�7�, so�7��su�8� and su�3��su�8�.
They are shown in Figs. 5 and 6.

IV. CONCLUSION

Uncontrollable finite-dimensional quantum systems are
scarce: among all systems, controllable systems are an open
and dense subset �10�. This theoretical claim also has nu-

merical support �17�. In other words, the generic N-level
system is controllable. Such a result could make the investi-
gation of singular uncontrollable systems endowed with ex-
ceptional symmetries seem pointless. There are several rea-
sons why this is not the case:

�1� For systems lying close to these symmetric excep-
tions, the control may be theoretically attainable but experi-
mentally demanding, possibly making these systems experi-
mentally uncontrollable for all practical purposes.

�2� Important model systems, such as the harmonic oscil-
lator, spin, or effective-spin systems �6� and multipartite sys-
tems, owe their specific properties to symmetry. This very
same symmetry renders them uncontrollable, suggesting that
symmetric singular cases are not minor exceptions but im-
portant cases.

�3� In practice, complete controllability might be too de-
manding. Sometimes, only limited control is desired, for ex-
ample, driving a specific initial state to a specific target. In
other cases, one might want to restrict the family of control
fields to avoid reaching a particular intermediate state. This
corresponds to deliberately seeking uncontrollability of a
particular kind �25�. These examples motivate the study of
partially controllable systems and the analysis of the physical
basis for their uncontrollability.

In our investigation of uncontrollability, the notion of ir-
reducibility plays a central role. We showed that when the
system is degenerate or has degenerate transitions, irreduc-
ibility has an advantage over the previously introduced no-
tion of connectivity: it distinguishes reducible systems that
are always uncontrollable from irreducible ones that may or
may not be controllable, without any hypothesis on degen-
eracy.

Because irreducible systems might also be uncontrollable,
irreducibility allows one to distinguish between different
types of uncontrollable systems. Using the fact that irreduc-
ibility is a fundamental notion of representation theory, we
fully exploited the structure of the dynamical algebra and
showed that irreducible systems are characterized by a semi-
simple dynamical algebra and a Hilbert space carrying an
irreducible representation of this algebra. As a consequence,
uncontrollable irreducible systems are generalized entangled.
Among these systems, those having a simple dynamical al-

�
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�����
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�

�

� ���
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�
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� ���
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� ���
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� ��������

�����
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�

���

���

FIG. 6. �Color online� �a� The g2 symmetry appears as a par-
ticular case of so�7� symmetry of the seven-level system �see Fig. 3�
and contains a so�3� spin-3 symmetry as a particular case. ��b� and
�c�� The so�7� and su�3� symmetries of the eight-level system ap-
pear as additional symmetries of the so�8� case �see Fig. 4�

�
�

�
�

�����

�
�

�
�

�

�

�����

�
�

�
�

�

�

�

�

�����

FIG. 4. �Color online� Energy levels and couplings for the series
so�N��su�N� for N even. These irreducible and uncontrollable sys-
tems appear for all even N. The nonsimple case so�4�=su�2�
� su�2� is included to show the similarity of its coupling structure.
The so�N� �N�6 even� symmetries thus appear as extensions of the
so�4� case.
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� ���

� ���

�����

FIG. 5. �Color online� su�3��su�6� not belonging to the sp�3�
or so�6� subalgebra chains. It exhibits a different structure.
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gebra appear as fundamental building blocks upon which all
irreducible systems are based. We showed low-dimensional
systems having these simple dynamical algebras.
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APPENDIX: H FINEST TENSORIAL DECOMPOSITION

We assume that g= �m=1
M

gm is the unique decomposition
of g into simple Lie algebras. H is irreducible for g. It has a
corresponding unique tensorial product decomposition
H= �m=1

M Hm. We will show that H= �m=1
M Hm is the finest

tensorial decomposition of H for which G conserves product
states. More precisely, we show that if G conserves the

product states of some tensorial product decomposition
H= � p=1

P Hp�, then necessarily, Hp�= �mp�Mp
Hmp

where
	Mp
1�p�P is a partition of 	1, . . . ,M
. The proof is as
follows. g is semisimple and G preserves product states,
so g� � p=1

P su�Hp��. We therefore have that g= � p=1
P

gp�
with gp�=g�su�Hp��. For each p, gp� is an ideal of g.
Indeed, �gp� ,g�= 	g�su�Hp�� , � p�=1

P �g�su�Hp�
� ��
 but

�su�Hp�� , su�Hp�
� ��=p,p�su�Hp�� so �gp� ,g�� �g�su�Hp�� ,

g�su�Hp����gp�.
Ideals of g are of the form �m�Mgm, where M is a subset

of 	1, . . . ,M
. For each p then, gp�= �mp�Mp
gmp

with Mp as a
subset of 	1, . . . ,M
. Because g= �m=1

M
gm= � p=1

P
gp�= � p=1

P

�mp�Mp
gmp

, it follows from the uniqueness of the decompo-
sition of g into simple algebras that 	Mp
1�p�P is a partition
of 	1, . . . ,M
.

Hp� is irreducible for gp�. If not, this contradicts the fact
that H is irreducible for g. Applying our theorem, Hp�
= �mp�Mp

Hmp
� , where Hmp

� is irreducible for gmp
. Finally, H

= �m=1
M Hm= � p=1

P Hp�= � p=1
P

�mp�Mp
Hmp

� are two tensorial de-
compositions of H adapted to g= �m=1

M
gm. This decomposi-

tion is unique so Hmp
� =Hmp

and Hp�= �mp�Mp
Hmp
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