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Multichannel coherence in strong-field ionization
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Atomic and molecular ions generated by a strong optical laser pulse are not in general in the electronic
ground state. The density matrix for such ions is characterized by the electronic quantum-state populations and
by the coherences among the electronic quantum states. Nonvanishing coherences signal the presence of
coherent electronic wave-packet dynamics in the laser-generated ions. For noble-gas atoms heavier than he-
lium, the most important channels populated via strong-field ionization are the outer-valence single-hole states
with a total angular momentum of j=3/2 or j=1/2. For this case, we develop a time-dependent multichannel
theory of strong-field ionization. We derive the ion density matrix and express the hole density in terms of the
elements of the ion density matrix. Our wave-packet calculations demonstrate that neon ions generated in a
strong optical field (800 nm) are almost perfectly coherent. In strong-field-generated xenon ions, however, the

coherence is substantially suppressed.

DOI: 10.1103/PhysRevA.79.053402

I. INTRODUCTION

The response of atoms and molecules to strong optical
fields has been the subject of intense research over the last
four decades. Topics studied include nonperturbative multi-
photon ionization [1-16]; above-threshold ionization
[17-26]; nonsequential multielectron processes [27-36];
high-harmonic generation [37-51]; attosecond physics
[52-58]; and ultrafast molecular probing [59-76].

The first step in all strong-field phenomena is the ioniza-
tion of an electron via nonperturbative multiphoton absorp-
tion. The tunneling picture of strong-field ionization suggests
that the ion generated in a strong optical field has a hole in
the orbital with the lowest binding energy. For this reason,
the focus in theoretical studies has been on a single-channel
description of strong-field ionization. The single-channel de-
scription is typically implemented in terms of the so-called
single-active-electron approach [77-84].

Photoelectron spectroscopy reveals that in strong-field
ionization of Xe, for instance, not only the 5p3), ground-state
manifold of the ion is populated, but also the SPT/IZ excited
manifold [85,86]. (The notation nl;l indicates that, relative
to the ground-state configuration of the atom, a hole is
present in the nlj subshell.) Furthermore, the 2j+1 states
associated with the nl;1 configuration of a noble-gas ion are,
in general, not uniformly populated: x-ray-absorption spec-
troscopy of laser-generated Kr ions demonstrated spatial
alignment of the orbital hole [87,88]. Complete ion quantum-
state populations, i.e., the diagonal elements of the ion den-
sity matrix in the ion eigenstate basis, were determined ex-
perimentally and theoretically in Ref. [89] (Xe) and Ref. [90]
(Kr).

An important question is whether the ion density matrix
has any nonzero off-diagonal elements. Are there any coher-
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ences? The presence of coherences would imply that an ion
generated by a strong optical field undergoes coherent elec-
tronic wave-packet dynamics. It is tempting to expect that in
the noble-gas atoms (He excluded), the laser electric field is
so strong that it will, effectively, pull an electron out of the
valence p, orbital, where z indicates the laser polarization
axis. A noble-gas ion with a hole in a p, orbital is not in an
eigenstate, but in a coherent superposition of j=3/2 and j
=1/2 fine-structure states. Thus, if the interaction of the laser
field with the atomic electrons were stronger than the intra-
atomic spin-orbit interaction, essentially perfectly coherent
electronic wave packets would be formed. However, using a
version of the tunneling model including spin-orbit interac-
tion [91], it was found that even at saturation, the laser elec-
tric field is not strong enough to break spin-orbit coupling in
Xe [89] or Kr [90,91].

The purpose of this paper is to investigate the density
matrix of an ion generated in a strong optical field using a
treatment based on the numerical solution of the time-
dependent Schrodinger equation. We use a multichannel
method that is similar to the time-dependent configuration-
interaction-singles method discussed in Ref. [92]. However,
we neglect electronic channel coupling and focus on the im-
pact of the spin-orbit coupling in the ion. In Sec. II, we
derive multichannel equations of motion; determine and ana-
lyze the ion density matrix; and express the hole density
[93,94] in terms of the ion density matrix. In Sec. III, we
present numerical results for Ne and Xe. Among the stable
noble-gas species (He again excluded), Ne has the highest
ionization potential and displays the smallest fine-structure
effects; Xe has the lowest ionization potential and displays
the strongest fine-structure effects. These differences have a
substantial impact on the properties of the respective ion
density matrix—and thus on the time evolution of the hole
density. Conclusions are drawn in Sec. IV. Atomic units are
used throughout, unless otherwise noted.
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II. THEORY

A. Equations of motion

The following discussion focuses on an atom with a
closed-shell ground state. Let |<pp) stand for the eigenstates

(spin orbitals) of the selected one-particle Hamiltonian ﬁo
(the index p denotes spatial and spin degrees of freedom),
i.e.,

holey) = &,]@,)- (1)

The g, are the orbital energies. In the language of second
quantization [95,96], the laser-free ground state of an
N-electron closed-shell system may be written as

N
|o) =11 ¢]]0), (2)
i=1

where |0) is the vacuum state and &1 creates an electron in
spin orbital |g,), i.e., c”;|0)=|<pp>. The one-particle Hamil-
tonian in the absence of the laser field reads

Hy= 2 (@,lhole)éle, = 2 £,61¢,, (3)
p.q p
so that
Ho|®o) = {E 8i}|®0>~ (4)

Here and in the following, indices i,j,k,[,... are used for
spin orbitals that are occupied in |®,). Unoccupied (virtual)
orbitals are symbolized by indices a,b,c,d,..., whereas for
general orbitals (occupied or unoccupied) indices
p,q.r,s,... are employed.

Let the N-electron system be subject to a laser field [field
strength &(r)] linearly polarized along the z axis. Within the
electric dipole approximation, the time-dependent Hamil-
tonian can be written as

H(t)=Hy- Ey— EO)Z—inW. (5)

A constant energy shift has been introduced to render subse-
quent equations more compact. The energy shift is chosen as
the ground-state energy of the N-electron system [cf. Eq.

@)]:
Ey= 2 g (6)

The dipole operator, shown here in the length form, is a
one-body operator,

z=2 qué;éq’ (7)
P

where the dipole matrix elements in terms of spin orbitals
(two-component spinors) are defined as

Zpg= f Pxe)(x)z¢,(x). (8)

The last operator in Eq. (5), —inW:—inquwpqé;éq, is a
complex absorbing potential (CAP) [97-101]. The CAP ab-
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sorbs the strong-field-ionized electron and renders the asso-
ciated wave function square integrable. The real, non-
negative parameter 7 is the CAP strength. The local one-
electron potential w(r) is chosen here as

0=r<c

— 0’
wlr) = (r=c¢)*, r=c. ©)

Inside a sphere of radius ¢, the CAP vanishes. The sphere
must be chosen large enough such that electron trajectories
leading to electron-ion recollision remain unperturbed. Thus,
the CAP acts only near the end of the radial grid. In particu-
lar, we can ensure that CAP matrix elements involving one
or more occupied orbitals vanish, i.e., w,=0, w;,=0, and
w;;»=0. This is exploited in the following.

The time evolution of the N-electron system under the
influence of the laser field is governed by the time-dependent
Schrodinger equation,

i%|\lf,t> =H()|V,1). (10)

The laser field couples the ground state |®,) to excited-state
configurations. Taking into account only single excitations
with respect to |®,), the many-electron wave packet may be
written as

[W.1) = ag(n)| @) + 2 2 af (e M@ (11)

The basis vector
|®f) = &lé;| D) (12)

describes the excitation of an electron from |¢;) to |¢,). The
assumption made here is that the laser field does not excite
more than one of the initially occupied orbitals. This is a
single-active-electron picture allowing for the inclusion of
several one-hole ionization channels.

Assuming that before the laser pulse the atom is in its
ground state, the expansion coefficients aq(r) and «f(f) in
Eq. (11) must satisfy the initial conditions

ay(t —-2)=1, (13)

(1 — —0) = 0. (14)

Inserting Eq. (11) into Eq. (10), projecting the resulting ex-
pressions onto |®y) and |D¢), respectively, and exploiting the
rules for evaluating matrix elements with respect to Slater
determinants [102], the equations of motion for the expan-
sion coefficients a; and o can be derived:

idg=—E(1) D, ale ey, | (15)

id =— E(t) e ®a®)'z,,; — 0> a?'ei(sﬂ_sa')’zaa,
’

a

—inY, a?lei(%_sa’)’waar ) (16)
u’

Diagonal dipole terms z; and z,, vanish for atomic systems
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and have been omitted. Also not shown are matrix elements
of the form z;., since we are interested here in ionization
from the outer valence shell only. All spin orbitals associated
with the outer valence shell have the same parity (fixed [), so
that it =0.

B. Ion density matrix

An important quantity that may be calculated within this
framework is the reduced density matrix of the residual ion
produced in the excitation (ionization) process. Let

pt) = [V, 0,1

(17)

denote the density operator of the N-electron system. It fol-
lows from Egs. (5) and (10) that, because of the CAP, tr[p]
=(W,t|W,1) is not conserved:

V.iy=-2792, a?*al-“’e"(sﬂ_sﬂ')‘waar. (18)

I
a,a’,i

d
—(W,t
dt

Therefore, care must be taken in order to construct an ion
density matrix with a norm that remains conserved after the
laser pulse. If we followed the standard strategy in Hermitian
quantum mechanics [103], matrix elements of the reduced
density matrix of the residual ion would be defined as

P (0= ZADp(0)|@7) = T e (19)

After the laser pulse, the time dependence of the ion density-
matrix element should be fully contained in the factor
expli(e;—e;)t]. In other words, the ion density matrix in the
interaction picture should be stationary for sufficiently large
t. Using Eq. (16), one may derive an equation of motion for
Eaa?a?,*. From this it follows that the correct ion density
matrix in the presence of the CAP is given by

pE;?n)(Z) = pleieit E a?(t)a?,*(l)

a

'
+ 27]] dr’ 2 af’ (t’)af,*(t’)e’(%—sa')’ Waar

(20)

A formally equivalent expression obtained from the equation
of motion for X,afaf,” is

tooE)

pl (1) = efereint f dt’—l, {aé(t’)z al(1")e'Ered" 7,
a

_ ao(t,)z af,*(tr)ei(ea—ei)t’zai}. 1)

This shows explicitly that the ion density matrix becomes
stationary after the laser pulse. In addition, since Eq. (21)
does not depend on a double sum over virtual orbitals, it is
computationally more advantageous than Eq. (20).

The ion density matrix can be used to explore whether—
and to which degree—the strong-field ionization process es-
tablishes coherences among the one-hole ionization chan-
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nels. With the help of Egs. (13)—-(15) and (21), we find that

o] + 2 ™ (1) = 1. (22)

Thus, the diagonal element pgon)(t) may be interpreted as the
probability of forming a hole in orbital |@;).

C. Atomic Hamiltonian

We employ the atomic one-electron Hamiltonian

. 1 1 ,1dVyg
hy=-— EVZ + Vius(r) + Ea2;7l .S, (23)

The effective one-electron potential Vyg is calculated using
the Hartree-Fock-Slater [104,105] code written by Herman
and Skillman [106]. Vg describes the Coulomb interaction
of an electron with the nucleus and with the mean field gen-
erated by the other electrons [107-110]. For a neutral atom
of nuclear charge +Z, Vyq satisfies

Vas(r) = =2Zir, r—0, (24)

and

Vius(r) — = 1/r, r— o, (25)
The operator in Eq. (23) depending on the scalar product of
the electron’s orbital angular momentum / and spin s de-
scribes the spin-orbit interaction [111] (« is the fine-structure
constant). It will be assumed that the spin-orbit interaction
affects only occupied orbitals. This means that the ionization
potential I;=—¢; associated with the production of a hole in
|@;) reflects the fine structure of the ionic eigenstates. The
dynamics of the excited electron is assumed to be unaffected
by the spin-orbit interaction. This allows us to reduce the
complexity of the wave-packet propagation problem.

It should be pointed out that if we wanted to include spin-
orbit coupling for the virtual orbitals, we should, in principle,
also take into consideration the tensorial interaction between
the excited electron and the ion core. (A noble-gas ion with
an np~! configuration has an electric quadrupole moment in
its 2P, states, but not in its 2P, states.) The analysis of the
np~'n'p configuration presented in the book by Condon and
Shortley [112] suggests that the anisotropic contributions to
the electrostatic interaction between the excited electron and
the ion core are as important as spin-orbit coupling for the
virtual orbitals. Both effects are relatively small and are ne-
glected here.

In practice, we solve the radial eigenvalue problem

1d I(I+1)
{_ 247 + 2 + VHs(r)}un,l(r) =E, u,[r), (26)

subject to the boundary conditions u,;(0)=0 and u, (r.)
=0, where r=r,, signals the end of the radial grid employed
in the numerical calculation. Thus, for the virtual orbitals

@, (x)= (,D,(jfl)’ml’ms(x) we have
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(v)
soff}m,m<x>:—>—”’”(r)Y1m,(e ¢)< . ) (27)
n—1/2

Here, Yl,ml(ﬁ, ¢) is a spherical harmonic. The energies of
virtual orbitals are taken directly from Eq. (26); i.e., we set
e,=e")=E"). Treating spin-orbi ling within the n,!
wi=E g spin-orbit coupling within the n,
subshell in the standard way using degenerate state perturba-
tion theory, the occupied orbitals ¢;(x)= qpn, ]m(x) are given

by

(0)4 (x) 5101)(}”)( C(l,s,j;m— 1/2,1/2,m)Y,,m_1/2(¢97¢) )
mlojom Cs,jsm+1/2,~1/2,m)Y | 012(6, )
(28)

r

In this expression, C(l,s,j;m;,mg,m) (s=1/2) is a Clebsch-
Gordan coefficient [113]. For the energies of occupied orbit-
als, we take experimental ionization potentials /,;; and set

_o0) _
=€, 1= nl

D. Symmetry analysis

The matrix elements needed for the evaluation of Egs.
(15) and (16) are now easily determined:

24 = <(p£:jl))ml |z|<pn, 1y = CW s, j3mymg,m)

20" +1
X \|——Cc',1,l;m;,0,m;)C(l',1,1;0,0,0)
20+ 1

Xfrm dru®? (r)ru(o,)l,(r), (29)

0

aa' = <¢£llfl),m] mg |Z|(P i m m > mlm 6mvm;

A 41 ,
X el c(',1,l;m,0,m)C(I',1,1;0,0,0)
<)
0

— {0 @) —
aa' = <an1m] mg |W|QD rr m[’,m£> = 5’"1”"[, 5ms,m; 51,1’

dru(”)(r)ru(v,)l,( r, (30)

and

x f w7, (31)

0

We focus on active occupied orbitals ¢°); (x) with fixed

n,lj,m
n=n, and /=[,. Only j and m are allowed to vary. In the

following we employ the notation o= aZ b lm’]”f,f Hence, Egs.
(15) and (16) may be written as

idy=— 5([)2 E an Im,m _"(Eifl)”nn,lo,j)t

Jom n,lmymg
K o - (32)
QDno,lo,],m < QDn,I,mI,mS

and
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TABLE I. Classes of excited-state expansion coefficients
,'io],'(')”]'zj required for constructing the N-electron wave function
V.0
J m my mg
3/2 +3/2 +1 +1/2
372 +1/2 +1 -1/2
3/2 +1/2 0 +1/2
1/2 +1/2 +1 -1/2
12 +1/2 0 +1/2

ianllmlms_—g(t)(l’ ez(En,+1" L)X <(P(v) |Z|(P(0) Y

JJn n,l,m,,mx no,lo,j,m

1o Lo(v) V)
—E() 2 @) ) T Enr "
olods
n'l'

(v)
X <¢Slljl),m[ m, |Z|<D v’ N RLRES >

_”72 an lm,m z(E”)—E 3 )t

X <QDnlfl,ml,m | |(Pn’ lmlm > (33)

From Egs. (13), (14), (29), and (33) it follows that a/"/":"s
=0 unless m;+m,=m. As a consequence, the ion densitgf ma-
trix [cf. Egs. (20) and (21)] is diagonal with respect to m. We
therefore write the elements of the ion density matrix as ps';'?
(n, and 1, are fixed).

We may further conclude from Egs. (13), (14), (29), and
(33) that

an,l,—rrfl,—mx — (_ 1)]0+s—jan,1,ml,‘ms (34)
n[),lo,j,—m nU,lo,j,m .

Using Egs. (20) and (34), we find that the ion density matrix
satisfies the following symmetry property:

P = (= 1y o, (35)

We are interested here in ionization from the outer va-
lence shell of noble-gas atoms such as Ne or Xe, so that [,
=1. Thus, exploiting Eq. (34), there are five classes of

excited-state expansion coefficients that have to be calcu-
lated. These are listed in Table I.

E. Hole density
Let

po(x) = (Do| ¢ (x) ih(x) | D) = E@(x)%(x) (36)

denote the electron density of the neutral atom in its ground
state. In Eq. (36),

#x) =2 ¢, (x)¢, (37)
P

and
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Jx) =2 glx)e) (38)
P

are field operators; zsz(x) 12f(x) is the electron-density operator
[95,96]. Employing the reduced density operator of the ion,

A(lon)(t) 2 |q)0>P IOH)(t)<(I)0|C ', (39)

ll

the time-dependent electron density of the laser-generated
ion is obtained as

pl(x, 1) = Tr[ pA (1) () ihlx) ]
= 2 p(m“)(t)z @1 () @y (x)

Edmo f(x) @i (x). (40)

We thus define the hole density as

00x,0) =[1 = a0 Tpo(x) - px.)
=PI (1) gl () gy (), 1)

o
i,i

where we made use of Egs. (22), (36), and (40). The total
hole charge is

f EPxQx,)=1- (42)

i.e., it equals the total excitation (ionization) probability.
Equation (41) generalizes the definition of the hole density
given in Refs. [93,94]. The definition employed here takes
into consideration the formation of the hole. Moreover, Eq.
(41) anticipates that the ionization by the strong laser field
may not necessarily be completely saturated. In the case that
ionization is saturated [ a,(£)=0], our definition is identical to
the one adopted in Refs. [93,94].

Considering the formation of a hole in an occupied np
subshell (the outer valence shell of Ne or Xe, for instance),
the hole density [Eq. (41)] may be written as

0(x,1) = p) (N[ 3p52 2(1)sin> 0+ 1p812 (1) (cos® 6+ 1)

3P11/£2{/2(f) +12 Re{Pgl/f{/z(t)}(i — Cos 0)]’
(43)

where we exploited the properties of the ion density matrix
(cf. Sec. I D) and the definition of the spherical harmonics.
In Eq. (43), we introduced the total electron density in the
closed np subshell of the neutral atom in its ground state,

u)(r
<">()— { ()} (44)

r

The angle 6 in Eq. (43) is the polar angle with respect to the
laser polarization axis. The hole density is azimuthally sym-
metric.

PHYSICAL REVIEW A 79, 053402 (2009)

III. CALCULATIONS
A. Numerical implementation

We typically require angular momentum quantum num-
bers up to /=30 in order to get converged results for the ion
density matrix. The radial eigenfunctions u,, ,(r) for a given [
[see Eq. (26)] are calculated by a generalized pseudospectral
method [114-117]. In this method, the radial interval
[0, 7max] is mapped onto the interval [—1,1] by the mapping
function [114,116]

r(x) = Li , (45)
1-x+¢
where {=2L/r,. The grid points x of the mapped domain
are chosen as the collocation points of a Gauss-Lobatto
quadrature. Thereby, a nonequidistant mesh spacing is
achieved. By varying the parameter L, the point density near
the origin can be altered, i.e., a higher mesh-point density
near the Coulomb singularity at the origin can be achieved,
while still having enough grid points available to describe
the long-range part of the Coulomb potential. We obtain con-
vergence for the ion density matrix of Ne using 700 radial
grid points, r,, =120, and {=31; for Xe we use 1000 radial
grid points, r,,,=200, and {=35. The CAP strength in our
calculations is =107, The parameter ¢ in Eq. (9) is 80 in
the case of Ne (¢c=150 for Xe).
The multichannel wave function is propagated in time
employing the second-order finite difference scheme

;;l;"zj",;(wm ;l,mg’”,,,(t Ar)
—2iAtflay(r), @ L], (46)

1l ysjm

where f[---] denotes the right-hand side of Eq. (33). The
same strategy is applied to the propagation of the ground-
state coefficient:

ay(t + Ar) = a1 — Ar) = 2iAay(1), (47)

where Ay () stands for the right-hand side of Eq. (32). The
size of the time step is Ar=0.000 95 a.u.

We keep track of the norm of the N-electron wave packet
|'W,t) by applying the second-order finite difference scheme
to Eq. (18). In order to improve the numerical stability of our
wave-packet propagation calculation, we renormalize the
N-electron wave packet after each time step using the norm
obtained from Eq. (18). We note that for the numerical pa-
rameters employed here, Egs. (20) and (21) for the calcula-
tion of the ion density matrix give virtually identical results.

B. Ion density matrix

Figure 1 shows calculated ion density matrix data for Ne
exposed to an 800-nm four-cycle laser pulse. The laser elec-
tric field is illustrated in Fig. 1(b). (A Gaussian pulse enve-
lope gives qualitatively similar results, which are not shown
here.) For our calculation on neon, we assume a field ampli-
tude of 0.245 a.u. Before the laser pulse, the atom is assumed
to reside in the electronic ground state. The tlme evolution of
the ion quantum-state populations p;’;‘)+pj 7 2pj(-f;’) [cf. Eq.
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FIG. 1. (Color online) Time evolutions of the ion density-matrix
elements of neon in the presence of an 800-nm four-cycle laser
pulse. The laser electric field amplitude is 0.245 a.u.

(35)] is plotted in Fig. 1(a). By the time the laser pulse is
over, the sum over the ion quantum-state populations is
unity; i.e., the neutral ground-state population is zero. The
j=3/2 level is highly aligned. The population in the j=3/2,
m=*1/2 states is about 60% and is much higher than the
population in the j=3/2, m= %£3/2 states. About a third of
the total population is in the j=1/2, m=*1/2 states.

In view of the symmetry properties of the ion density
matrix (see Sec. II D), there can be only four nonzero off-
diagonal matrix elements:

(1/2) (12) \* _

(=12
P32, 1/2—(P1/2,3/2 =

1/2)
P3/21/2— (P1/23/2 . (48)
(1/2)

In the following we simply refer to py57,, as the coherence.
For a pure state,

(1/2) 12y (12

|P3/2,1/2| =\P3232P112,172+ (49)

Hence, the maximum degree of coherence we may expect,
based on the populations in Fig. 1(a), is |p3}/22{ 1»|=0.22. The
actual time evolutions of the real and imaginary parts of the
coherence are shown in Fig. 1(b). We find that at the end of
the laser pulse |pé}/22{/2 =0.18, which is quite close to the
maximum value.

The calculated ion quantum-state populations and coher-
ence for Xe are displayed in Fig. 2. As in the case of neon, an
800-nm four-cycle laser pulse is assumed [see Fig. 2(b)]. Our
calculation on xenon assumes a field amplitude of 0.09 a.u.,
which is chosen such that the time evolution of the total ion
yield is similar to the total ion yield for neon at a laser field
amplitude of 0.245 a.u. This corresponds to the matched field
amplitude conditions defined in Ref. [48]. In the case of Ne,
the electron binding energy for the j=3/2 channel is 21.6 eV
[118]; for Xe, the electron binding energy for the j=3/2
channel is 12.1 eV [119]. Therefore, the field amplitude re-
quired to saturate ionization of Xe is lower than for Ne.

As may be seen in Fig. 2(a), the j=3/2 level of Xe*
strongly aligned along the laser polarization axis. This is
qualitatively similar to neon. The population of the j=1/2

FIG. 2. (Color online) Time evolutions of the ion density-matrix
elements of xenon in the presence of an 800-nm four-cycle laser
pulse. The laser electric field amplitude is 0.09 a.u.

level of Xe* is smaller than the population of the j=1/2 level
of Ne*. This is easily understood: in Ne* the j=1/2 level is
only 0.1 eV higher than the j=3/2 level [120], whereas in
Xe* the j=1/2 level is 1.3 eV higher than the j=3/2 level
[121]. In addition, under matched field amplitude conditions,
the laser electric field amplitude for Ne is higher than for Xe.

Using Eq. (49) in combination with the ion quantum-state
populations in Fig. 2(a), we expect that the maximum degree
of coherence is | pgl,/zzl 1»/=0.19. This maximum value is quite
similar to what we obtained for neon. However, it may be
concluded from the real and imaginary parts of the coherence
shown in Fig. 2(b) that at the end of the laser pulse
|p(3%21 1»|=0.04. The coherence in the laser-generated Xe ion

is thus suppressed by almost a factor of 5.

C. Hole density

The ion quantum-state populations at the end of the laser
pulse [Figs. 1(a) and 2(a)] imply that generally the hole den-
sities of Ne™ and Xe™, respectively, are not spherically sym-
metric. The fact that there is a nonzero coherence [Figs. 1(b)
and 2(b)] means that the hole density is not stationary. The
laser-generated ions undergo electronic wave-packet dynam-
ics driven by spin-orbit coupling. This is illustrated in Figs. 3
and 4 for Ne* and Xe*, respectively.

We exploit that the ratio between the hole density Q(x,?)
[Eq. (43)] and the electron density p (r) [Eq. (44)] depends
only on the polar angle 6 with respect to the laser polariza-
tion axis. In Figs. 3 and 4, we show this ratio in a polar plot
as a function of . The vertical axis in these figures corre-
sponds to the laser polarization axis.

The spin-orbit period 75% in Ne* is 42.7 fs; 759 in Xe*
is 3.2 fs [91]. In order to facilitate the comparison between
Ne* and Xe*, we have introduced in Figs. 3 and 4 the phase

lend
where 1.,4 is the time at which the laser pulse ends. Hence,
x=2m, for example, indicates the completion of a full spin-
orbit cycle after the end of the laser pulse.
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FIG. 3. Time evolution of the hole density of laser-generated
Ne*. Polar plots are shown for nine different time delays after the
end of the laser pulse.
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A comparison between Figs. 3 and 4 shows clearly that
the hole dynamics is much more pronounced for Ne* than for
Xe*. Ne* evolves from an oval, prolate shape (x=0) into an
oblate shape (y=m/4 and y=/2). Later, at y=57/4 and
x=3m/2, the hole density of Ne* resembles the density one
would obtain for a pure 2p, hole. In contrast, the hole density
of Xe* has a peanutlike shape throughout. The hole density
of Xe* undergoes relatively weak modulations as a function
of time. This is a direct consequence of the suppressed co-
herence in laser-generated Xe*.

IV. CONCLUSIONS

We have developed a theoretical description of multichan-
nel strong-field ionization. Within this description, we deter-
mined the reduced density matrix of the laser-generated ions.
We analyzed the time-dependent hole density and expressed
it in terms of the ion density matrix. Extensive wave-packet
calculations on neon and xenon under matched field ampli-
tude conditions reveal that the quantum-state populations in
the two noble-gas species are qualitatively similar, whereas
the coherences are substantially different.

In order to populate the ionization channels in a coherent
fashion, the time scale on which the channel wave packets in
the j=3/2 and j=1/2 channels are formed has to be short in
comparison to the spin-orbit period. In Ne, this criterion is
approximately satisfied. Ionization of Ne is saturated before
significant spin-orbit dynamics occurs. The two spin-orbit
channels are thus populated in phase. Effectively, this leads
to the periodic formation of a Ne* state that is close to a pure
2p. hole.

The spin-orbit period of Xe, however, is comparable to
the period of an optical cycle. In particular, even at the high
field amplitude assumed here, it takes several field cycles to

PHYSICAL REVIEW A 79, 053402 (2009)

x=0 /4 /2
3n/4 b Sm/4
3n/2 Tn/4 2n

FIG. 4. Time evolution of the hole density of laser-generated
Xe*. Polar plots are shown for nine different time delays after the
end of the laser pulse.

completely saturate ionization. Hence, the amplitude added
to the ionization channels during each half cycle is generally
not in phase with the channel wave functions populated in
previous half cycles. In order to create a more coherent elec-
tronic wave packet in the outer valence shell of Xe*, one
could, in principle, ionize Xe using a series of ultrashort
electric field spikes that are temporally separated by the spin-
orbit period of 3.2 fs. This seems difficult to implement in an
experiment. On the other hand, if one used one or more
extreme-ultraviolet attosecond pulses, one would not address
primarily the outer valence shell.

Considerations similar to those presented here are prob-
ably applicable to strong-field ionization of molecules as
well. The impact of multiple electronic channels on high-
harmonic generation by molecules has been the subject of
recent studies [122,123]. If the binding energies associated
with the channels populated in the strong-field ionization
process are separated by approximately 1.55 eV (800 nm) or
more, it is likely that the electronic density matrix of strong-
field-generated molecular ions is characterized by an inco-
herent superposition of electronic states. This might change,
however, if the laser electric field can directly couple the
electronic states of the molecular ion.
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