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We present a study of multimode effects in dissociative electron attachment to CF3Cl molecules using a
time-independent version of the local complex potential theory. Symmetric stretch C-Cl vibrations �3 and
symmetric deformation �or so-called umbrella� vibrations �2 are included. The neutral and anion potential
energy surfaces are calculated using the second-order Møller-Plesset perturbation theory with an empirical
adjustment of the vertical attachment energy. The final-state vibrational distribution in the CF3��2� fragment is
dominated by the �2=2 state. We also find an increase in the total cross section as compared with the
one-dimensional calculations. This is explained by an increase in the anion survival probability.
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I. INTRODUCTION

Almost all of the dissociative electron attachment �DEA�
calculations performed so far include only one vibrational
mode representing the reaction coordinate. To the best of our
knowledge, the only three exceptions are model calculations
of the DEA to CO2 �1�, ab initio calculations for water �2�,
and recent study of the DEA to the C2H2 molecule �3�. All
these calculations were carried out within the framework of
the local complex potential �LCP� theory. In view of the
tremendous amount of computational work necessary to ob-
tain multidimensional complex potential energy surfaces and
the solution of the multidimensional Schrödinger equation
for the nuclear motion, it is apparent that the way to solve the
DEA problems for molecules with more than three atoms is
to make further �in addition to local� approximations. The
one most common is to “freeze” all modes other than one
corresponding to the reaction coordinate. Many calculations
for polyatomic molecules have been performed in this way.
However, the role of other modes in these calculations has
not been investigated so far. The mode coupling effects are
well known in molecular spectroscopy and photodissociation
dynamics, but they are relatively less studied in DEA pro-
cesses. In particular, it is not clear if all the other coordinates
should be fixed in these calculations or optimized �in terms
of the least energy value�. According to the Franck-Condon
principle, the nuclear geometry should not change during the
electron capture, therefore from this point of view other co-
ordinates should not be optimized, but rather fixed at the
values corresponding to the nuclear configuration of the neu-
tral molecule. However, after the initial capture, when two
fragments �anion and neutral radical� separate, all nuclear
coordinates evolve.

This paper presents an attempt to solve this problem for
polyatomic molecules. We have chosen CF3Cl to study the
resonance process

e + CF3Cl��2,�3� → CF3Cl− → CF3��2�� + Cl−. �1�

Here �2 and �3 stand for the symmetric deformation vibra-
tions �so-called “umbrella” mode� and the symmetric stretch
vibrations, �2�, represent the umbrella mode of the free CF3
radical. At this point we restrict our considerations to one
mode only, in addition to the reaction mode �3. This restric-
tion can be justified by the same reasoning as that given by
Shapiro and Bershon �4� in their studies of photodissociation
of CH3I. First, the intermediate anionic state responsible for
the DEA at low energies has A1 symmetry, therefore degen-
erate vibrations �4, �5, and �6 of the e type can be excited
resonantly only in pairs. �They can also be excited directly
due to the transition dipole moment, but this should not sig-
nificantly affect the pure resonant DEA process.� Second, the
C-F bond length RFC=1.34 Å �5� is very close to that for the
anion, 1.37 Å �5� and free CF3 radical, 1.32 Å �6�. There-
fore, we can assume that the C-F symmetric stretching mode
�1 is unlikely to be excited as well. These assumptions are
confirmed by measurements of Mann and Linder �7� who
observed strong electron-impact vibrational excitation of the
�3 and �2 modes in the A1 resonance region, whereas other
modes were not significantly excited.

Inclusion of additional vibrational modes in description of
the DEA to CF3Cl is of interest due to two reasons. First, it
allows us to study the distribution of the internal energy of
the fragment, in our case the energy of the umbrella mode in
the CF3 radical. This energy can be significant due to a large
Franck-Condon factor of the transition from the initial vibra-
tional state of CF3Cl to the excited umbrella vibrational
mode of the intermediate anion CF3Cl− or due to the final-
state interaction between Cl− and CF3 redistributing the in-
ternal energy of CF3. Studies of the Rydberg electron attach-
ment to CH3I, CF3I, and CF3Br molecules �8� showed that at
high principal quantum number n �or at low electron ener-
gies� the major portion of the energy released by electron
capture appears in translation, indicating insignificance of
the internal energy redistribution in the final state. However,
at lower n �or higher electron energies� the final-state inter-
action becomes important �9–11�, although there are no
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quantitative theoretical or experimental results of the radical
fragment internal energy redistribution.

The second motivation for study of the DEA with inclu-
sion of the vibrational umbrella mode is the strong sensitivity
of the DEA cross section to the initial vibrational state of the
target or to the initial vibrational temperature. The one-mode
approximation explains quite well the observed temperature
dependence of the DEA in electron collisions with methyl
halides �12,13�. However, it fails �14,15� to give the correct
quantitative description of the observed temperature depen-
dence �16� of the low-energy peak in the DEA to CF3Cl.
Recent joint experimental and theoretical work on the DEA
to CF3Br �17� demonstrates that the DEA rate calculated in
the one-mode approximation gives a slower growth at high
temperatures than that observed. This indicates that the um-
brella mode in perfluoromethyl halides is more important
than in methyl halides. This is consistent with the fact that
corresponding vibrational quanta are lower in perfluorom-
ethyl halides �e.g., compare 168 meV in CH3Cl with 97 meV
in CF3Cl�. Therefore, the excited umbrella mode is more
populated there than in methyl halides.

The aim of this work is to study the effects of additional
vibrational mode in the DEA to the CF3Cl molecule and to
compare the results with the one-dimensional treatment. In
all our calculations we are using a model resonance width
from the previous one-dimensional calculations �14� which is
arbitrarily, although reasonably, extended to two dimensions.
Because of this model approach, we do not expect the
present calculations to improve the quantitative agreement
with experimental data. Rather, we aim to investigate the
effect of the additional vibrational mode on the final-state
energy distribution and the magnitude of the total cross sec-
tion.

This paper is organized as follows: In Sec. II we describe
our theoretical model and methods used to solve the corre-
sponding equations, in Sec. III we describe the potentials
used in our calculations, and in Sec. IV we discuss the results
of the two-dimensional and one-dimensional calculations.
Atomic units are used throughout the paper.

II. THEORETICAL APPROACH

In the present work we employ the LCP theory �18–20� of
the DEA. Since the nonlocal calculations are rather compli-
cated even in the one-dimensional case, it is desirable to get
the results using a simpler approach as a first step. In addi-
tion, the A1 shape resonance in CF3Cl appears at a relatively
high energy 1.83 eV �21� and it is rather narrow �the width
about 0.6 eV�. This justifies the use of the local theory for
CF3Cl. Another justification is given by the comparison of
our local calculations with previously published nonlocal re-
sults �14,15� as discussed below in Sec. IV A.

A. Coordinates and Hamiltonian

In our calculations the potential energy surfaces V and U
for the neutral molecule CF3Cl and the anion CF3Cl− are
represented using two coordinates: C-Cl internuclear separa-
tion R and the distance between the C atom and the plane

formed by the fluorine atoms r=−RCF cos �, where � is the
F-C-Cl angle and RFC is the F-C bond length. Since we do
not include the C-F stretching mode into our considerations,
RCF is fixed and set to the value 1.342 Å corresponding to
the equilibrium geometry of the neutral CF3Cl. We take all
the potentials relatively to the equilibrium potential energy of
the neutral molecule. Asymptotically �R→�� both surfaces
are represented by the harmonic approximation De+k�r
−rm�2 /2 for the neutral molecule and De+k�r−rm�2 /2−EA
for the anion, where k and rm are the force constant of the
umbrella mode and equilibrium value of r for the free CF3
radical, De is the dissociation energy of the C-Cl bond, and
EA is the electron affinity of the Cl atom.

The classical kinetic energy for the nuclear motion taking
into account the degrees of freedom described above can be
derived from the general Hamiltonian for XY3Z molecules
�22� by fixing of all variables except R and r. In addition, we
assume in the present work that the approximation of har-
monic oscillations with small amplitude is suitable for the
CF3 umbrella motion. In principle, the angle �0 correspond-
ing to the equilibrium geometry of the CF3 radical at given R
changes with the C-Cl distance. However, the potential sur-
faces show that this dependence is rather weak and enables
us to assume that �0 is constant and take its value at the
equilibrium geometry of the neutral CF3Cl. Then we can
write the classical kinetic energy in the following form:

T =
1

2
��Ṙ2 +

3

2
mF�cot2 �0 +

mC + mCl

M
�ṙ2 +

3mClmF

M
Ṙṙ ,

�2�

where mC, mCl, and mF are the masses of corresponding at-
oms, M =mC+mCl+3mF is the total mass of the molecule,
and ��=mCl�mC+3mF� /M is the reduced mass for the rela-
tive motion of the Cl atom and the CF3 radical. All our
calculations were performed in the following reaction coor-
dinates �4� � and r which decouple kinetic energy �2�,

� = R + �r, � =
3mF

mC + 3mF
, �3�

and r remains unchanged. The reaction coordinate � is sim-
ply the distance between the center of mass of the CF3 radi-
cal and the Cl atom. Corresponding linear operator of the
kinetic energy can be written in the reaction coordinates as
follows:

T� + Tr = −
1

2��

�2

��2 −
1

2�r

�2

�r2 , �4�

where

�r = 3mF�cot2 �0 +
mC

mC + 3mF
� . �5�

As long as we are not dealing with the DEA to CF3Cl in
vibrationally highly excited states, we can use the harmonic
approximation for V�� ,r� and diagonalize the Hamiltonian
H=T�+Tr+V. This gives us the normal frequencies and
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normal-mode coordinates expressed as linear combinations
of �− �R0+�r0� and r−r0, where R0 and r0 are the equilib-
rium coordinates of the neutral molecule.

B. Local theory of the dissociative electron attachment

We start the derivation of the formula for the DEA cross
sections using the basic equation for the nuclear wave func-
tion �E�� ,r� in the LCP approximation �18,19�:

�T� + Tr + U��,r� − i���,r�/2 − E��E��,r� = Vdk��,r�	i��,r� ,

�6�

where Vdk�� ,r�=���� ,r� /2
 is the amplitude for electron
capture into the resonance state, 	i�� ,r� is the vibrational
wave function of the neutral molecule in the initial state, and
U�� ,r� represents the anionic potential surface.

To solve Eq. �6�, we expand �E�� ,r� in a basis depending
on r only �4�. Specifically, we select the eigenfunctions of
the vibrational Hamiltonian for the CF3 fragment �note that
��� ,r�=0�:

�Tr + Vh��,r� − ������r� = 0, �7�

where �� are the corresponding eigenenergies ��=De+2
f ��

+1 /2�, 2
f is the harmonic frequency of the CF3 radical um-

brella mode, and Vh�� ,r� is the corresponding free CF3 radi-
cal potential curve in the harmonic approximation with the
minimum corresponding to the C-Cl bond dissociation en-
ergy. Thus, the expansion has the form

�E��,r� = �
�

��������r� . �8�

Projection of Eq. �6� on the functions ���r� yields the fol-
lowing system of coupled differential equations for functions
�����:

�T� + �� − E������ + �
��

U������������ = �i���� , �9�

where

U������ =	 ���r��U��,r� − i���,r�/2 − Vh��,r������r�dr ,

�10�

�i���� =	 Vdk��,r�	i��,r��s�r�dr . �11�

Expansion �8� defines the channels corresponding to the vi-
brational states of the free CF3 radical. We solve system of
equations �9� with the outgoing-wave boundary condition at
�→�,

d�����
d�


 iK������ , �12�

where K�
2=2���E−���. In case of the energetically closed

channels we take the asymptotically decaying condition. The
DEA cross section corresponding to the CF3 fragment in the
vibrational state with the quantum number � can be written
as follows �18–20�:

�� =
2
2

k2

K�

��

lim
�→�

�������2, �13�

where k2 /2 is the initial electron energy. As it is well known,
Eq. �13� is not consistent with the Wigner threshold law at
small electron energies. To repair this deficiency of the local
theory, we introduce an additional correction factor �20,23�
into the capture amplitude Vdk�� ,r�:

c��,r� = �� k2

2Er��,r��
�

k2 � 2Er��,r�

1 otherwise,
 �14�

where � is the threshold exponent and Er�� ,r� is the reso-
nance energy discussed below. For s-wave capture in the
absence of the dipole moment, �=1 /4. It should be slightly
modified for CF3Cl. However, this correction becomes im-
portant only in the energy region close to the threshold. Our
calculations showed that it does not play any significant role
in the energy interval of our interest.

System of equations �9� can be solved efficiently using
the Green’s function for the homogeneous equations. Taking
into account asymptotic condition �12�, the column vector
���� of the solutions ����� can be written in the following
matrix form:

���� =
1

2i��
���r����	

�

�

��+�T���������d�� + ��+����

�	
0

�

��r�T���������d��� , �15�

where ���� is the column vector of the source terms �11�, the
symbol T means transposition of the corresponding matrix,
and ��r����, ��+���� are matrix solutions of the homogeneous
coupled equations �Eq. �9� without the source term� satisfy-
ing the following asymptotic conditions at �→�:

��r���� 
 ��−���� − ��+����S , �16a�

����
������ 
���

K�

exp��iK�������. �16b�

Here S is the scattering matrix. According to the standard
definition of the scattering matrix, the solutions ������� are
normalized to the unit flux in each channel. According to
Eqs. �16a� and �16b�, the required asymptotic factor in Eq.
�13� is

lim
�→�

�������2 =
�B��2

4��K�

, �17�

where coefficients B� are given by the following matrix
equation:

B = 	
0

�

��r�T���������d��. �18�

To find the matrix ��r����, we first integrate outward the
homogeneous system of coupled equations corresponding to
Eq. �9� with the regular boundary conditions at the origin.
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We form the square matrix of the solutions ��a���0� at some
intermediate distance �=�0. Similarly, we obtain the solu-
tions ������� by the inward integration of the homogeneous
coupled system of equations corresponding to Eq. �9� from
the asymptotic region to �=�0, where we again form the
matrix of solutions satisfying the asymptotic conditions �16a�
and �16b�. We match this matrix with the matrix ��a���0� to
find the solution of the homogeneous system satisfying both
boundary conditions using the equation

��a���0�C = ��−���0� − ��+���0�S �19�

and similar for the derivatives of the solutions. Here C is a
matrix of coefficients which should be determined together
with the S matrix from the matching conditions. Since the
exponentially growing solutions in the closed channels are
unphysical, matrices C, ��−���0�, and S are rectangular with
N rows and N0 columns, where N is the total number of the
vibrational channels and N0 is the number of the open chan-
nels. After S and C are found, the column B is calculated as

B = 	
0

�0

CT��a�T�������d�

+ 	
�0

�

���−�T��� − S��+�T��������d� . �20�

III. CALCULATIONS

In our multimode calculations we used the two-
dimensional surfaces of CF3Cl and the corresponding anion
calculated by the second-order Møller-Plesset perturbation
theory �24�. All calculations were performed with GAUSSIAN

03 suite of codes �25� employing the Dunning’s augmented
correlation-consistent polarized valence-triple-zeta �cc-
pVTZ� basis set �26–28�. More details are given in Ref. �5�.

Since we use the two-mode approximation for the vibra-
tional wave functions in all our calculations, it is useful to
check how well our two-dimensional Hamiltonian with the
potential surface of the neutral molecule reproduces the cor-
responding normal-mode frequencies. Comparison of our re-
sults with experimental data due to Scanlon et al. �29� is
given in Table I. As can be seen, our two-dimensional Hamil-
tonian gives slightly underestimated values for the normal-
modes frequencies but they are still in good agreement with
experiment and justify the use of our two-dimensional treat-
ment of the neutral CF3Cl.

For the anion at R�1.9 Å the present calculation exhibits
a kinklike behavior similar to that observed in the previously
published one-dimensional calculation �14�, where it was ex-
plained by variational collapse: an attempt to introduce a
more diffuse basis set leads to larger contribution of the con-
tinuum states and the “collapse” of the anion energy to the
neutral energy �with the zero-energy electron in the con-
tinuum�. In order to remove this deficiency, we employed a
semiempirical method used in several previously published
calculations �13,14�: we extrapolated the calculated anionic
potential surface toward smaller R so that it represents the
correct vertical attachment energy, 1.83 eV, in the case of
CF3Cl �21�. The adjusted surface is plotted in Fig. 1.

In our multimode calculations the CF3 fragment was rep-
resented by the potential curve V�� ,r� plotted in Fig. 2. The
potential could be symmetrically continued toward negative
values of r due to possible flip-flop of the CF3 radical. How-
ever, in the present work we restrict our considerations to
geometries of CF3 which do not exceed the planar configu-
ration. As can be seen in Table I, the fixation of the C-F bond
in our treatment gives slightly higher vibrational frequency
than previous experimental study �30�.

In order to find the asymptotic solution of system of equa-
tions �9� we need to evaluate potential matrix �10� also for
values of R and r exceeding the region in which the quantum

TABLE I. The harmonic frequencies �in cm−1� of the CF3Cl
calculated using our two-dimensional Hamiltonian, the frequency of
the umbrella mode of the CF3 radical, and their comparison with
experimental data.

Our Hamiltonian Experiment

2 775.12 862.18 �29�
3 463.33 483.07 �29�
CF3 fragment �2� 747.38 701�3 �30� 0.20.40.60.811.2
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FIG. 1. �Color online� The two-dimensional anionic potential
surface used in the multimode calculations. The zero potential cor-
responds to the minimum of the neutral target potential surface.
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FIG. 2. The potential energy of the CF3 radical as a function of
the distance between the carbon atom and the plane of the fluorine
atoms.
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chemical calculation of the potential surfaces is available.
Since the imaginary part of the potential matrix U������ van-
ishes outside this region, it is necessary to continue the an-
ionic surface only. To this end we introduced the following
parametrization of the surface:

U�R,r� = b�r�exp�− 2��r��R − R0��

− c�r�exp�− ��r��R − R0��

+ V��,r� − V��,rm� + De − Ea, �21�

where rm=0.77 a0 is the position of the minimum of the CF3
radical potential energy V�� ,r�, De=4.014 eV is the C-Cl
bond dissociation energy �5�, and Ea=3.613 eV is the elec-
tron affinity of the Cl atom �31�. This parametrization repro-
duces correct asymptotic behavior in R of the anionic poten-
tial. For every fixed r it represents the Morse potential, the
parameters ��r�, b�r�, and c�r� are determined by the condi-
tion of the smooth connection between the region where the
potential is given by quantum chemical calculation and the
region where we use the parametrization.

In order to justify the use of the local theory of the DEA
and to see the effect of the vibrational modes of the CF3
radical we performed two local one-dimensional calculations
�18–20� with fixed CF3 radical. In the first calculation we
used the Morse potentials

UM�R� = B exp�− 2��R − R0�� − C exp�− ��R − R0�� + D

�22�

for the neutral and anionic curves as functions of the C-Cl
distance. In both cases R0=3.307 a0 was taken and it corre-
sponds to the position of the neutral potential surface mini-
mum. These potentials were used previously by Wilde et al.
�14� in the nonlocal semiempirical R-matrix calculation and
corresponding parameters are given in Table II.

The parameters of the neutral potential were chosen to
reproduce the experimental value of the vibrational fre-
quency �29� and the anionic potential curve was obtained by
fitting to the ab initio calculations �14�. Another one-
dimensional calculation was performed using the potential
curves extracted from our two-dimensional surfaces. We
took the potential curves along R in the neutral and anionic
surfaces with fixed r=0.877 a0 corresponding to the value at
the minimum of the neutral potential surface. These curves
are compared with the Morse potentials in Fig. 3.

This graph shows that the different behavior in the vicin-
ity of the crossing points of the neutral potential curve with
the corresponding anionic potential leads to slightly different
position of these crossing points. While in the case of the
Morse potentials RC=3.87 a0, the potential curves extracted

from the two-dimensional surface give the value RC
=3.80 a0. We do not expect that the different behavior at
larger C-Cl internuclear separation will have considerable
influence on the DEA cross sections.

All our calculations discussed in the present work em-
ployed the width function obtained from the semiempirical
R-matrix theory as described in �14�. In this study, the sur-
face amplitude of the semiempirical one-pole R matrix was
fitted to the experimental vibrational excitation cross section
of Mann and Linder �7�. As a result, the energy-dependent
fixed-nuclei resonance width can be calculated using the
general relation between the surface amplitude and the reso-
nance width �32�. In the one-dimensional local calculations
the local �adiabatic� width is represented as �(Er�R� ,R),
where Er�R�=U�R�−V�R� is the resonance energy for a
given C-Cl internuclear separation R. Its extension to the
two-dimensional case requires an additional information on
the dependence of the width on the second coordinate r. As a
first step, we present here the two-dimensional width
�(Er�R ,r� ,R ,r) as a function of Er�R ,r� only. This function
is plotted in Fig. 4.

TABLE II. Parameters of the Morse potentials �in a.u.� used in
our one-dimensional calculations taken from Ref. �14�.

� �units of a0
−1�

B
�a.u.�

C
�a.u.�

D
�a.u.�

Neutral molecule 0.8507 0.1382 0.2764 0.1382

Negative ion 0.820 0.0928 0.009 −0.011
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FIG. 3. �Color online� Potentials used in the one-dimensional
calculations. The Morse potentials taken from �14� are compared
with curves extracted from the two-dimensional surfaces.
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FIG. 4. The width function � used in our calculations taken
from the nonlocal semiempirical R-matrix calculation �14�.

EFFECTS OF TWO VIBRATIONAL MODES IN THE… PHYSICAL REVIEW A 79, 052712 �2009�

052712-5



Near the threshold ��Er� exhibits the s-wave behavior
slightly modified by a small permanent dipole moment
�0.5 D�. For larger Er the behavior is more consistent with
the E3/2 dependence typical for �� resonances �21�.

Using the potential surfaces and widths discussed above
we calculated potential matrix �10�. Few lowest elements �as
functions of �� are plotted in Figs. 5 and 6.

The lowest diagonal elements are very similar to each
other and the most pronounced differences between them
appear in the region around their minima. However, due to
the oscillatory character of the vibrational wave functions
�s�r�, �s��r�, the off-diagonal elements become smaller with
increasing difference between the indices s and s�.

The system of differential equations �9� was integrated as
discussed in Sec. II B using Milne’s predictor-corrector
method �33�. We employed this technique since it does not
require the calculation of the first derivatives of the solution.
To use this method it is necessary to have the solution cor-
responding to first four steps in the integration region. To this
end we calculated the semiclassical wave functions �34� cor-
responding to the real part of potential matrix �10� deep
enough in the classically forbidden region. This solution
evaluated at four lowest steps of the outward integration was

used to integrate the full system of equations �9�. The small
values of the semiclassical wave functions in the classically
forbidden region enabled us to neglect the imaginary part of
potential matrix �10�. This method showed to be stable with
respect to change of the starting point of the outward inte-
gration as far as it was far enough from the corresponding
classical turning point. The inward integration was started in
the region where potential matrix �10� can be neglected and
where solutions satisfying conditions �16a� and �16b� can be
used to start the predictor-corrector integration.

Since we start the outward integration in the classically
forbidden region, the solutions of the homogeneous system
of equations corresponding to Eq. �9� raise rather rapidly
with increasing � in this region, especially in the case of
energetically closed channels. In this case the exponentially
increasing component of the solution becomes dominant and
the linear dependence with the exponentially decreasing
component raises the issues with the matching procedure de-
scribed above. In order to keep the calculations numerically
tractable, we did not include more than one closed channel
into our calculations for every particular energy of the inter-
est. However, the large masses of the nuclei suggest that the
inclusion of the closed channels will not influence the results
significantly.

IV. RESULTS

A. Local complex potential calculations

We performed the multimode calculation of the cross sec-
tions for the DEA to CF3Cl in the ground vibrational state for
initial electron energies from 0.8 to 3 eV. Using the basis set
of 13 lowest vibrational wave functions of CF3 to solve Eq.
�9� we obtained converged results for final states of the frag-
ment with vibrational quantum numbers ��6 as well as con-
verged total cross section. Due to the restriction to one
closed channel only discussed above, the cross sections at
energies with less than 12 open channels �E�1.48 eV� were
calculated using the smaller basis sets. The distribution of
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final vibrational states of the CF3 fragment is plotted in Fig.
7.

This graph shows that the cross section with the highest
peak corresponds to the final vibrational state of the fragment
with �=2. For every energy in the range of our interest the
cross section corresponding to �=0 is below the cross sec-
tion for �=1. This suggests that the DEA to CF3Cl is an
efficient way of vibrational excitation of CF3. These results
can be understood by analyzing two mechanisms taking
place in the DEA: the vertical Franck-Condon transition and
final-state interaction. The vertical transition leaves the CF3
radical in a particular vibrational state. Then the CF3 um-
brella motion is influenced by the Cl− ion in the temporal
anionic complex, and as a consequence of this final-state
interaction, the vibrational state of the fragment can be
changed. In order to analyze the relative importance of these
two mechanisms in production of the excited fragments, we
performed another calculation where we neglected all the
off-diagonal elements in potential matrix �10�. Therefore, the
coupling between different vibrational states of the radical
due to the interaction with the Cl− ion in Eq. �9� was not
taken into account. Results of this calculation are plotted in
Fig. 8.

As can be seen in this graph, the dominant cross sections
correspond to the vibrational ground state ��=0� and first
excited state of the fragment ��=1�. All the peaks corre-
sponding to higher excited states are successively decreasing
with raising �. Comparison of Fig. 7 with Fig. 8 shows that
dominance of the cross section corresponding to �=2 around
its peak is mainly due to interaction of the umbrella motion
with the Cl− ion in the anionic complex. As can be seen in
Fig. 9, the reduction in the excited fragments due to the
neglect of the coupling leads to a narrower peak in the total
cross section when compared with calculation including the
off-diagonal elements of potential matrix �10�. This figure
shows that our two-dimensional calculations give rather high
total DEA cross sections when compared with previous stud-
ies �14�.

In order to understand these results, we performed two
one-dimensional LCP calculations using the Morse potentials

described above and using the potential curves taken from
the two-dimensional potential surfaces as discussed in Sec.
III. Corresponding cross sections are plotted in Fig. 10.

It shows that the model using the potentials extracted
from the two-dimensional surfaces gives cross section larger
approximately by a factor of 2 than the cross section calcu-
lated using the Morse potentials. The peaks, however, appear
at very close energy of about 1.65 or 1.7 eV. As can be seen
in Fig. 10, our one-dimensional calculation using the Morse
potentials is in very good agreement with previously pub-
lished results of the nonlocal semiempirical R-matrix calcu-
lations �14�. This agreement justifies the use of the local
theory. The same figure shows the comparison with previous
nonlocal calculation due to Beyer et al. �15�. The fixed nuclei
quantities used to construct the nonlocal model in Ref. �15�
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were obtained from the ab initio R-matrix calculations �35�.
It can be seen that these results are in good correspondence
to our calculations using the Morse potentials. However, the
peak in our results appears at energy which is 0.15 eV below
the peak position in Ref. �15� and its value is 0.004 Å2

lower. This difference also can be attributed to different
treatments of the resonant anionic state.

B. Classical calculations

To emphasize how the differences in potentials used in
our one-dimensional calculations change the cross sections,
we calculated the survival probability P of the negative ionic
complex �36� for both models using the formula

P�E� = exp�−���

2
	

RF�E�

RC ��R�dR
�E − U�R�� , �23�

where RC is the crossing point of the anionic potential curve
with the neutral potential. RF�E� is the Franck-Condon point
given by the condition �37�

U„RF�E�… − V„RF�E�… = E − Evib, �24�

where Evib is the corresponding vibrational energy of the
neutral molecule. Calculated survival probabilities are plot-
ted in Fig. 11.

This graph shows that the curve corresponding to the
model using Morse potentials is smaller by a factor of 2 than
the curve using the potentials extracted from the two-
dimensional surfaces. This result corresponds to the DEA
cross sections plotted in Fig. 10. Since we use the same
resonance width ��R� in both models, the difference arises
from the different time needed to pass from RF�E� to RC on
the anionic curve for given electron energy. This time, given
by the formula

T�E� =���

2
	

RF�E�

RC dR
�E − U�R�

, �25�

is plotted in Fig. 12 for both one-dimensional models.

It shows that this time for Morse model is higher than for
the model using the potentials extracted from the two-
dimensional surface for every energy. These results suggest
that the small differences in the potentials used in our models
lead to rather large changes in the corresponding DEA cross
sections. The more extensive discussion of the character of
the stabilization time T�E� and its relation with the maximum
of the survival probability is presented in the Appendix.

It is an interesting feature of the results obtained from our
two-dimensional LCP calculation that it exhibits a substantial
increase in the total cross section when compared with the
one-dimensional case. This is partly because of more favor-
able potential surfaces intersection in the multimode calcula-
tion. As has been shown, the one-dimensional potential curve
extracted from the two-dimensional surface produces a
higher survival probability. In the case of the two-
dimensional potential surface, the negative ion motion can be
even more favorable �in terms of the survival probability�. To
understand this better, we have performed classical simula-
tions of the DEA process along the lines developed in Ref.
�38� �see also Ref. �39��.

The classical DEA cross section can be written as

� =
2
2

ki
2 	 dPdQ��Q�W�q�Q,P�,p�Q,P��

���H�Q,P� − E�P�Q,P� , �26�

where Q ,P are the sets of initial reaction coordinates and
conjugated momenta, ��Q� is the adiabatic width function,
W�q ,p� is the Wigner distribution function expressed in
terms of the set of normal coordinates q and conjugated
momenta p, H�Q ,P� is the classical Hamiltonian of the
system, and P�Q ,P� is the survival factor given by
P=exp�−���t�dt� along the classical trajectory correspond-
ing to the initial coordinates Q and momentum P.

For interpretation of our two-dimensional LCP results we
analyzed several classical trajectories which give the most
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significant contribution to integral �26�. They correspond to
the maximum of the function

F�Q,P� = W�q�Q,P�,p�Q,P��P�Q,P� �27�

with the constraint imposed by the conservation of energy

H�Q,P� = E . �28�

In our case of 2 degrees of freedom, we have three indepen-
dent parameters corresponding to the initial conditions. We
have chosen �, r, pr, with p� defined by Eq. �28�.

In Figs. 13 and 14 we present the time dependence of �, r,
and � for three classical trajectories with relatively high val-
ues of the function F�Q ,P�. The incident electron energy is
1.7 eV and the corresponding initial positions and momenta
are presented in Table III. Note that the case �a� corresponds
to the maximum value of the function F, whereas case �c� to
the maximum value of the survival probability. However, in
case �c� the value of the Wigner distribution function is very
low.

From the analysis of Figs. 13 and 14 we see that the
optimal classical trajectory does not correspond to a constant
value of r, therefore by going from one-dimensional to two-
dimensional case we have more possibilities to increase the
survival factor by expanding the class of possible trajecto-
ries. Typically optimal trajectories lead to substantially
higher survival probabilities than we obtain in the one-
dimensional case. Note, however, that, although this conclu-
sion is qualitatively general, the quantitative results depend

on the width function ��Q�, and in the present case the width
is rather arbitrarily �although reasonably� extended from one-
dimensional case to two-dimensional case.

V. CONCLUSIONS

We performed a two-dimensional LCP calculation of the
DEA to CF3Cl in the ground vibrational state at energies
from 0.8 to 3 eV. The corresponding total cross section ex-
hibits a substantial increase when compared with our one-
dimensional models and previously published studies. Our
classical two-dimensional calculation showed that this is due
to the more optimal, with respect to the survival probability,
paths performed by the final products in the two-dimensional
case compared to those in the one-dimensional case. The
classical trajectories with largest contribution to the DEA
cross section do not correspond either to a fixed value of the
coordinate r or optimal �in the sense of the minimal energy�
path in the �� ,r� plane. This suggests that the additional de-
gree of freedom enables the increase in the DEA cross sec-
tion. With the increasing number of vibrational degrees of
freedom quantum-mechanical calculations become computa-
tionally very demanding, therefore a further development of
classical and semiclassical methods �38–41� is necessary.

The results obtained for the distribution of the final vibra-
tional states of the CF3 radical show that the cross section
with the highest peak corresponds to the vibrational state of
the CF3 fragment with �=2. We showed that this excitation
is mainly due to the final-state interaction, leading to the
energy exchange between the umbrella motion and the C-Cl

TABLE III. Parameters of classical trajectories presented in Figs. 13 and 14, together with corresponding
value of the function F and the survival factor S. Initial coordinates and momenta are given in a.u., and
function F in arbitrary units.

� r P� Pr F S

�a� 4.134 0.932 2.611 0.103 1.000 0.0050

�b� 4.048 0.777 10.275 −0.100 0.0605 0.0026

�c� 4.248 1.027 18.777 −0.100 0.00095 0.0727
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motion in the temporal anionic complex. Therefore, our re-
sults support the findings indicating the importance of the
CF3 vibrational energy redistribution during the DEA at
higher energies �9–11�.

Our new cross sections for attachment to the ground state
of CF3Cl are about a factor of 3 higher than those calculated
within the framework of one-dimensional model. This also
leads to worse agreement with experiment at room tempera-
ture �16,21,42,43� when only ground vibrational state of
CF3Cl is mostly populated. However, our width has been
extrapolated from an empirical width obtained from one-
dimensional calculations. For a proper comparison with ex-
periment the two-dimensional adiabatic width should be cal-
culated ab initio, or readjusted with the account of the
second vibrational coordinate. As a next step, we plan calcu-
lations of vibrational excitation cross sections which would
allow us to obtain a semiempirical two-dimensional width by
its adjustment to experimental data �7� on vibrational excita-
tion.

The next step will be the extension of our calculations of
DEA to vibrationally excited states. This will allow us to
study the temperature dependence of DEA cross sections and
hopefully will explain the low-energy peak at 800 K �16�
which cannot be explained by existing one-dimensional cal-
culations �14,15�.
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APPENDIX: DISCUSSION OF THE MAXIMUM OF THE
SURVIVAL PROBABILITY

Here we will discuss the origin of the unexpected maxi-
mum of the survival probabilities shown in Fig. 11. The de-
creasing part of each curve corresponds to the raising parts of
T�E� plotted in Fig. 12. Since the temporal anionic system
�treated classically� needs longer time to reach the stabiliza-
tion point RC, the survival probability decreases with raising
energy. The increasing part at the smaller energies corre-
sponds to the rapidly decreasing parts of the curves T�E�
plotted in Fig. 12. As a consequence of Eqs. �24� and �25�,
the larger energy leads to shift of the Franck-Condon point
toward smaller values and prolongs the classical path of the
anionic system to the stabilization point RC �see Fig. 15�.
However, this time increase competes with increase in the
classical velocity. Let us investigate the behavior of T�E� in
the limit of energies sufficiently close to E2=U�R2�−V�R2�
+Evib, where R2 is the right boundary of the Franck-Condon
region of the ground vibrational state �see Fig. 15�.

E2 provides the left boundary of energies for which it is
possible to define the survival probability. Consider E close
to E2, so that anionic turning point Rt, determined by the

condition U�Rt�=E, can be approximated by a linear function
of E,

Rt = R2 + d�E2 − E� , �A1�

where d�0 is the constant dependent on the potentials in the
vicinity of R2. As the energy E decreases toward E2, the
corresponding Franck-Condon point RF shifts toward R2 as
well as Rt �see Fig. 15� and can be approximated as

RF = R2 + b�E2 − E� , �A2�

where 0�b�d, since Rt�RF. These approximations are
equivalent to the assumption that the kinetic energy for the
motion in the anion potential between Rt�E� and R2 can be
approximated by a linear function. Then we can write

E − U�R� � c�R − Rt� , �A3�

where c�0 is another constant dependent on the behavior of
the anionic potential between Rt and R2. Using these assump-
tions we can express integral �25� for energies sufficiently
close to E2 as follows:

T�E� =���

2c
	

RF�E�

R2+� dR
�R − Rt

+���

2
	

R2+�

RC dR
�E − U�R�

,

�A4�

where ��0 is a constant small enough to make approxima-
tion �A3� valid at the interval �Rt ,R2+��. Then we can cal-
culate the first integral in Eq. �A4� and obtain

T�E� = 2���

2c
��d�E − E2� + � − ��d − b��E − E2��

+���

2
	

R2+�

RC dR
�E − U�R�

. �A5�
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FIG. 15. �Color online� The relative positions of the turning
point Rt, Franck-Condon point RF and the crossing point RC, and
corresponding energies used in the calculations of the survival prob-
abilities P�E� and times T�E�.
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This equation shows that T as a function of E exhibits a
square-root singularity of the type const− p�E−E2 where p
is a positive constant. Therefore, when E starts to increase
from E2, T�E� is always decreasing and reaches a minimum

at higher E. Therefore the survival probability increases first
and then reaches a maximum as can be seen in Fig. 11. Note
that this result is not valid if RC=R2.
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