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We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid
Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical
treatment is based on the Hartree-Fock ground state of the trapped gas and a configuration-interaction descrip-
tion of the excitations. We determine the scattering phase shifts for the system and predict Fano-type scattering
resonances that are a direct consequence of interatomic pairing. We describe the main characteristics of the
scattering resonances and make a comparison with the results of BCS mean-field theory.
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I. INTRODUCTION

Scattering experiments have led to many important dis-
coveries in physics. In the field of dilute atomic gases, an
understanding of interatomic scattering, as well as scattering
between light and atoms, is fundamental to preparing, con-
trolling, and manipulating systems for study. For example, a
Feshbach resonance is a two-body scattering resonance that
makes it possible to control the strength and sign of inter-
atomic interactions �1�. An understanding of this phenom-
enon has led to the formation of molecular condensates �2,3�
and the investigation of the crossover between Fermi super-
fluidity and Bose-Einstein condensation �4,5�.

Our interest is in collective aspects of quantum collisions.
Degenerate atomic gases open up possibilities for studying
collective scattering phenomenon and recently single- or
few-particle scattering from a degenerate Bose gas has been
considered theoretically �6,7�. We present a theoretical treat-
ment of collective scattering from a two-component degen-
erate Fermi gas. We imagine the gas confined to one dimen-
sion in an optical waveguide �8–10� and localized
longitudinally by an additional tight optical trapping poten-
tial �11�. To realize the scattering experiment, projectile par-
ticles, identical to one of the trapped components, propagate
along the waveguide in a well-defined momentum state and
collide with the trapped gas.

We describe the elastic-scattering process using a number-
conserving theory based on the Hartree-Fock ground state of
the trapped gas. We construct the excitations in a
configuration-interaction approach using one-particle con-
tinuum excitations and bound two-particle one-hole excita-
tions. The excitations are single-particle-like in the
asymptotic limit, and we determine the scattering properties
of the system by extracting the scattering phase shifts. We
predict Fano-type scattering resonances that arise due to the
interrelation of the one-particle and the multiparticle
branches of the excitation spectrum. In particular, when the
energy of a two-particle one-hole bound state lies within the
one-particle continuum, coupling between the two branches
significantly modifies the scattering properties of the system
near the uncoupled bound-state energy. In this system, the
two branches of the excitation spectrum are coupled by the
interatomic pairing.

We also present a BCS mean-field description of the scat-
tering. In this approach, the scattering properties are deter-
mined from the asymptotic behavior of the quasiparticle ex-
citations in the many-body system. We find that, in the
uncoupled system, bound hole excitations lie within the par-
ticle excitation continuum. It is well known that these bound
states acquire a width in the presence of the mean-field pair
potential �e.g., �12� and references therein� and we again
observe Fano-type scattering resonances. However, these
resonances are quantitatively different from those predicted
by the configuration-interaction method. In this particular
system, the BCS treatment leads to spurious results that are
explicitly linked with the violation of particle number con-
servation in the theory. Effects of this type are particularly
evident in small systems.

Our paper is organized as follows. In Sec. II we outline
the system for study. In Sec. III we investigate elastic single-
particle scattering from a trapped Fermi gas using the
configuration-interaction method. In Sec. IV we present the
BCS mean-field treatment of that same problem. In Sec. V
we give a detailed discussion of the validity of the mean-
field approach, and we conclude in Sec. VI.

II. TWO-COMPONENT FERMI GAS

We consider a trapped one-dimensional degenerate Fermi
gas at zero temperature with two equally populated spin
components interacting weakly via an attractive contact po-
tential. The Hamiltonian is

Ĥ = �
�
� �̂�

†�x�HSP�x��̂��x�dx

+ g� �̂↑
†�x��̂↓

†�x��̂↓�x��̂↑�x�dx , �1�

where the field operator �̂��x� destroys a particle at position
x, in the spin state �= ↑ ,↓, and g�0. The single-particle
Hamiltonian is

HSP�x� = −
�2

2M

d2

dx2 + Vext�x� , �2�

where M is the atomic mass and Vext�x� is a symmetric ex-
ternal trapping potential with a zero energy continuum
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threshold. The exact form of the trapping potential is not
crucial for our discussion. However, for our numerical cal-
culations we use the Gaussian form Vext�x�=−V0 exp�
−2x2 /w2�, with V0�0, which can be realized experimentally
for atoms in a waveguide by applying a single Gaussian laser
beam. The Gaussian width provides a convenient energy
scale Ew=�2 /2Mw2.

III. CONFIGURATION-INTERACTION METHOD

To describe elastic single-particle scattering we determine
the excitation spectrum using the equation of motion method
�13�. The ground state �G� of the trapped gas has energy EG,

i.e., Ĥ�G�=EG�G�. We introduce the operators Q̂�
† that create

excitations ���= Q̂�
†�G� satisfying Ĥ���=E����, and the excita-

tion spectrum is given by

�Ĥ,Q̂�
†��G� = E�Q̂�

†�G� , �3�

where E�=E�−EG. Projecting Eq. �3� onto the state X̂†�G�,
where X̂ is an arbitrary operator, gives

	G�X̂�Ĥ,Q̂�
†��G� = E�	G�X̂Q̂�

†�G� . �4�

Later, X̂ is chosen so that Eq. �4� generates a matrix eigen-
value equation for the excited states ���. Equation �4� is exact
but is difficult to solve because we do not know the ground

state �G� or the excitation creation operators Q̂�
†.

An approximate solution to Eq. �4� can be found by ne-
glecting pair correlations in the ground state, i.e., we calcu-
late the matrix elements using the Hartree-Fock ground state
�HF� in place of �G�. We briefly summarize the Hartree-Fock
method here. The Hartree-Fock Hamiltonian is

ĤHF = �
�
� �̂�

†�x��HSP�x� + W�x���̂��x�dx , �5�

where W�x�=g	HF��̂�
†�x��̂��x��HF� is spin independent be-

cause we have chosen equal spin populations. The expansion

�̂��x�=�n�n�x�ân� diagonalizes Hamiltonian �5� where the
Hartree-Fock wave functions satisfy

�HSP�x� + W�x���n�x� = En�n�x� . �6�

The operators ân�
† and ân� obey fermionic commutation re-

lations and the modes are populated according to

	HF�ân�
† ân���HF� = nn	nn�	��, �7�

where, at zero temperature, nn=1 for En�EF and nn=0 for
En�EF. We choose the Fermi energy EF�0 so that all of the
particles are bound. The Hartree-Fock ground state is con-
structed by adding one particle of each spin to the lowest
available energy level until the Fermi energy is reached, i.e.,

�HF� = 
 �
n
nF

ân↑
† ân↓

† ��0� , �8�

where nF denotes the highest occupied level.
We determine the Hartree-Fock ground state of the system

by numerically calculating the self-consistent Hartree poten-

tial W�x�. We use an iterative method where the kinetic-
energy term in Eq. �6� is evaluated according to a finite-
difference formula. Figure 1�a� shows the Hartree potential
for a particular set of parameters where there are six particles

of each spin state, i.e., 	N̂��=	�̂�
†�x��̂��x��dx=6.00. We

have chosen to consider a small number of particles so that
identifying the scattering features is straightforward and the
breakdown of BCS theory can be demonstrated clearly in
Sec. IV. The small particle number means that there are os-
cillations in the Hartree potential in Fig. 1�a� �14�. In the
ground state the particles occupy the lowest available energy
levels as shown in Fig. 1�d� �see Eqs. �7� and �8��.

We consider excitations ��� that are single-particle-like in
the asymptotic limit but are phase shifted from plane-wave
scattering states due to the presence of the external trapping

potential and the trapped gas. Formally, the operators Q̂�
† are

constructed from continuum one-particle excitations and
bound multiparticle excitations. The multiparticle excitations
in general consist of all possible configurations of the par-
ticles in the Hartree-Fock energy levels. We include only the
leading-order terms, i.e.,

Q̂�
† = �

q

Cq
�âq↑

† + �
r,s,t

Brst
� âr↑

† âs↓
† ât↓, �9�

where Eq�0, and Er ,Es ,Et�0 �15�. The first term in Eq. �9�
describes continuum one-particle excitations �e.g., see Fig.
1�b��. The second term introduces bound two-particle one-
hole excitations where the spin of the hole differs from the
spin of the projectile particle �e.g., the bound excitation with
�r ,s , t�= �7,8 ,3� is illustrated in Fig. 1�c��. We require
Er ,Es�EF and Et�EF as these are the only nonzero contri-
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FIG. 1. �a� The Hartree-Fock ground state of a trapped Fermi
gas. The curves correspond to �thick� the Hartree potential W�x�,
�thin� the Gaussian external potential Vext�x�, and �dashed� the com-
bined potential Vext�x�+W�x�. �b� A scattering one-particle excita-
tion and �c� a bound two-particle one-hole excitation, where the
energy-level occupation of the ��� spin-up and ��� spin-down par-
ticles is indicated schematically. The arrows indicate the particle
rearrangement between the configurations in panels �b� and �c�. �d�
The ground-state energy-level occupation �see Eq. �7�� is indicated
by the horizontal component of the markers �. In all panels, the
horizontal lines indicate �dashed� the Fermi energy EF and �solid�
the bound Hartree-Fock energies En�0 �see Eq. �6��. Parameters
are g=−9.55wEw, V0=127.32Ew, and EF=−19.10Ew.
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butions when acting on the Hartree-Fock ground state �Eq.
�8��.

The coefficients Cq
� and Brst

� in Eq. �9� are determined so

that Eq. �4� is valid, with �G�→ �HF�. Taking X̂†= âq↑
† and

X̂†= âr↑
† âs↓

† ât↓ yields

EqCq
� + �

r,s,t
Brst

� Vqtsr = E�Cq
�, �10�

and

�Er + Es − Et�Brst
� + �

q

Cq
�Vrstq + �

r�,s�

Br�s�t
� Vrss�r�

− �
r�,t�

Br�st�
� Vrt�tr� = E�Brst

� , �11�

respectively, where

Vnmm�n� = g� �n
��x��m

� �x��m��x��n��x�dx . �12�

Equations �10� and �11� define a Hermitian eigenvalue prob-
lem for the coefficients Cq

� and Brst
� . The one-particle con-

tinuum excitations �Cq
�� are coupled to the bound two-

particle one-hole excitations �Brst
� � by the full Hamiltonian

�1� giving rise to the off-diagonal interaction terms Vqtsr. By
construction, the three-particle wave functions associated
with the coefficients Brst

� vanish asymptotically and, in the
limit x→ �, the excitations ��� are described by the single-
particle wave functions

���x� = �
q

Cq
��q�x� . �13�

To investigate the scattering properties quantitatively, the
Hartree-Fock ground state is computed on a grid of spatial
extent 2L. We invoke the Neumann boundary conditions
�d�n�x� /dx�x=�L=0 so that the Hartree-Fock wave functions
provide an orthonormal basis. Solving the eigenvalue prob-
lem defined by Eqs. �10� and �11�, we determine the single-
particle wave functions ���x� for particular discrete values
of the energy eigenvalue E�. The scattering information at
any energy of interest is then extracted using the R-matrix
method �16�, i.e., we match the even and the odd single-
particle wave-function solutions to the analytic asymptotic
forms

lim
x→�

��
e�x� � cos�kx � 	e�k�� ,

lim
x→�

��
o�x� � sin�kx � 	o�k�� , �14�

where E�=�2k2 /2M, and we use the Hartree-Fock basis to
reconstruct the asymptotic solutions and the scattering phase
shifts 	e�k� and 	o�k�, for any k.

The even and the odd phase shifts for the trapped Fermi
gas considered in Fig. 1 are shown in Fig. 2�a�. We observe
a variation in the background phase shifts 	e,o

bg �k� due to the
effective external potential Vext�x�+W�x� �see Eq. �6��. We
also observe 24 resonance features that are characterized by
a jump of �� in either the even or the odd phase shift.

Transmission and reflection coefficients for the system
can be calculated from the phase shifts �6,7�. For a projectile
particle incident from x=− �or equivalently from x=�, the
transmission probability �normalized to one� is given by
�T�k��2=cos2�	e�k�−	o�k��. The transmission probability is
shown in Fig. 2�b�. As expected, �T�k��2→0 in the limit k
→0, and �T�k��2→1 as k→. The smoothness of the Gauss-
ian external potential means that quantum reflections at the
trap edges do not play a significant role. Consequently,
	e

bg�k��	o
bg�k� and the background transmission profile ap-

proaches unity without the characteristic oscillations ob-
served in the case of a square-well potential. In addition to
the background transmission profile, we observe 24 scatter-
ing resonances for which the transmission falls to zero.

The observed scattering resonances are due to interfer-
ence between the bound two-particle one-hole excitations
and the one-particle excitation continuum. The coupling of
the two branches of the excitation spectrum is provided by
the interatomic pairing, i.e., the matrix elements Vqtsr in Eqs.
�10� and �11�. For each resonance, the coupling Vqtsr is only
nonzero for either the even or the odd continuum wave func-
tions, depending on the parity of the �r ,s , t� bound wave
function �see Eq. �12��. Therefore, a particular �r ,s , t� con-
figuration modifies either the even or the odd continuum
states but not both.

The effect on the continuum of an embedded discrete state
has been described by Fano �17�. Following that treatment,
the resonant phase shift 	e,o

R �k�=	e,o�k�−	e,o
bg �k� near each

resonance is approximated by

tan 	e,o
R �k� =

��k�/2
E� − Ers

t − ��k�
, �15�

where the resonance width is ��k�=2ML�Vktsr�2 /�2k and the
resonance energy is determined by
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FIG. 2. �a� Scattering phase shifts and �b� transmission probabil-
ity for a trapped Fermi gas, calculated using the configuration-
interaction method. The curves in �a� correspond to �thick� the even
phase shift 	e�k� and �thin� the odd phase shift 	o�k�. The vertical
lines in �b� indicate the uncoupled resonance wave vectors krs

t �see
Eq. �16��. Parameters are g=−9.55wEw, V0=127.32Ew, and EF=
−19.10Ew.
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Ers
t =

��krs
t �2

2M
= Er + Es − Et + Vrssr − Vrttr, �16�

and ��k�=�q�Vqtsr�2 / �E�−Eq�. Taking Vqtsr to be approxi-
mately independent of q, we find that ��k�=0. The resonance
energies are well approximated by E�=Ers

t , as shown by the
vertical lines in Fig. 2�b�.

The energy Ers
t �see Eq. �16�� can be interpreted as the

energy required to create the bound two-particle one-hole
excitation �r ,s , t�, i.e., to create a spin-up particle in level r
and excite a spin-down particle from level t to s. The last two
terms in Eq. �16� account for the accompanying change in
the pair-wise interaction energy. When the energy of the in-
coming projectile particle matches Ers

t , the bound excitation
�r ,s , t� is an allowed intermediate state for the scattering pro-
cess �see Figs. 1�b� and 1�c� for �r ,s , t�= �7,8 ,3��. The inter-
mediate state is made accessible by the two-body coupling
term Vqtsr in Eqs. �10� and �11�.

IV. MEAN-FIELD APPROACH

The BCS mean-field treatment of pairing and superfluid-
ity in fermionic systems has been extremely successful. It is
a tractable method that accurately describes a wide range of
systems in which fermionic many-body pair correlations are
important. One of the features of the BCS approach is that
the mean-field pair potential couples the particle and the hole
branches of the excitation spectrum, and this means that in
finite systems uncoupled bound hole excitations lying in the
particle excitation continuum acquire a width �18�. This ef-
fect has been studied by a number of authors in the context
of pairing in nuclei �12,19,20�.

In this section we give a pedagogical treatment of elastic
single-particle scattering from a two-component degenerate
Fermi gas based on the BCS mean-field approach. We iden-
tify Fano-type scattering resonances due to deeply bound
hole excitations lying in the particle excitation continuum.
This scattering problem is particularly useful for a discussion
of the validity of BCS mean-field theory because �i� the pre-
dicted scattering resonances are extremely sensitive to the
ground-state properties of the trapped gas, and �ii� a physical
interpretation of the resonances is possible allowing the
mean-field approach to be investigated in detail. We broadly
follow the organizational sequence of the number-conserving
treatment in Sec. III to aid comparison between the two ap-
proaches.

In the BCS mean-field treatment, we approximate Hamil-
tonian �1� by the Hartree-Fock-Bogoliubov Hamiltonian

ĤHFB = �
�
� �̂�

†�x��HSP�x� + U�x� − ���̂��x�dx

+� ���x��̂↑
†�x��̂↓

†�x� + H.c.�dx , �17�

where the Hartree potential is U�x�=g	�̂�
†�x��̂��x�� and the

pair potential is ��x�=−g	�̂↑�x��̂↓�x�� �21�. The two spin
states are equally populated so U�x� is spin independent. We
choose the chemical potential ��0 so that all of the par-

ticles are bound. The Bogoliubov transformation,

�̂↑�x� = �
n

�un�x��̂n↑ − vn
��x��̂n↓

† � ,

�̂↓�x� = �
n

�un�x��̂n↓ + vn
��x��̂n↑

† � , �18�

diagonalizes Hamiltonian �17�, where the quasiparticle am-
plitudes un�x� and vn�x� solve the Bogoliubov-de Gennes
equations �22�

� L�x� ��x�

���x� − L�x� ��un�x�
vn�x� � = �n�un�x�

vn�x� � . �19�

In Eq. �19�, L�x�=HSP�x�+U�x�−� and �n are the quasipar-
ticle energies �taking �n�0�. The quasiparticle operators �̂n�

†

and �̂n� obey fermionic commutation relations, and the qua-
siparticle modes are populated according to the Fermi distri-
bution function, i.e., at zero temperature, 	�̂n��̂n��

† �
=	nn�	�� �22�.

Figure 3�a� shows the self-consistent BCS mean fields for
a trapped Fermi gas. We have used the same parameters as in
Figs. 1 and 2. However, in the mean-field treatment, the
ground state is not a particle number eigenstate �22�. For the
parameters used in Fig. 3, the average number of particles in

each spin state is 	N̂��=5.97 and the number variance is

	N̂�
2�− 	N̂��2=0.20.
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FIG. 3. �a� The BCS ground state of a trapped Fermi gas. The
curves correspond to �thick� the Hartree potential U�x�, �dotted� the
pair potential ��x�, �thin� the Gaussian external potential Vext�x�,
and �dashed� the combined potential V̄�x�=Vext�x�+U�x�. �b� A scat-
tering particle excitation and �c� a bound hole excitation, where the
energy-level occupation of the ��� spin-up and ��� spin-down par-
ticles is indicated schematically. The arrows indicate the particle
rearrangement between the configurations in panels �b� and �c�. �d�
The ground-state occupation of the bound states in the combined

potential V̄�x� �see Eqs. �20� and �21�� is indicated by the horizontal
component of the markers �. In all panels, the horizontal lines
indicate �dashed� the chemical potential � and �solid� the bound-

state energies En=Eb�0 in the combined potential V̄�x�. Param-
eters are g=−9.55wEw, V0=127.32Ew, and �=−19.10Ew.
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To understand the effect of the off-diagonal coupling in
the Bogoliubov-de Gennes equations, we first consider Eq.
�19� with ��x�=0. We retain the Hartree potential U�x� from
the finite ��x� self-consistent solution. In this case, Eq. �19�
reduces to the Schrödinger equation

�−
�2

2M

d2

dx2 + V̄�x���n�x� = En�n�x� , �20�

where V̄�x�=Vext�x�+U�x� is the effective confining potential
for the many-body system �23�. Equation �20� has discrete
bound states �b�x� with energy Eb�0, and an excitation con-
tinuum of both even and odd scattering states �k

e,o�x� with
energy Ek=�2k2 /2M �0. In the particle-hole picture, the ex-
citation spectrum has a particle branch �un

0�x�=�n�x�� with
energy �n

0=En−� �for En��� and a hole branch �vn
0�x�=

−�n�x�� with energy �n
0=−En+� �for En���. The super-

script zero indicates that we are solving Eq. �19� with ��x�
=0.

Taking ��x� to be finite introduces coupling between the
particle and the hole branches of the excitation spectrum.
The quasiparticle excitations then become simultaneously
particle-like and hole-like to reflect the fact that the pairing
interactions can excite particles to energy levels lying above
the chemical potential. Figure 3�d� shows the BCS ground-
state average particle occupations of the uncoupled bound
states �b�x�, i.e.,

nb = �
n
�� �b�x�vn�x�dx�2

. �21�

The lowest bound levels are fully occupied but there is a
redistribution of particles near the chemical potential, com-
pared to the Hartree-Fock ground state �see Fig. 1�d��.

To investigate the scattering properties of the system, we
compute the even and the odd solutions of the
Bogoliubov-de Gennes equations �Eq. �19�� subject to Neu-
mann boundary conditions. We then match the asymptotic
behavior of the quasiparticle amplitudes to their analytic
forms. The even and the odd particle-like amplitudes lying in
the continuum have the form

lim
x→�

uk
e�x� � cos�kx � 	e�k�� ,

lim
x→�

uk
o�x� � sin�kx � 	o�k�� , �22�

where �k=�2k2 /2M −�. In the asymptotic limit, the corre-
sponding holelike amplitudes vk

e,o�x� tend exponentially to
zero. Again we use the R-matrix method �16� to determine
the scattering phase shifts 	e�k� and 	o�k� for any k.

The even and the odd phase shifts for the parameters used
in Fig. 3 are shown in Fig. 4�a�. The phase shifts are inde-
pendent of the spin of the projectile particle because the two
spin states are equally populated. We observe a background
variation in the phase shifts due to the effective potential

V̄�x� �see Eq. �20��. We also observe five resonance features
that occur alternately in the even and the odd phase shifts
and become narrower higher in the continuum. The transmis-
sion probability is shown in Fig. 4�b�.

The observed scattering resonances are possible because,
in the uncoupled system, a scattering particle excitation �e.g.,
see Fig. 3�b�� can have the same quasiparticle energy as a
bound hole excitation �e.g., see Fig. 3�c� for b=3�. In par-
ticular, a particle scattering state with quasiparticle energy
�k

0=Ek−� is degenerate with a bound hole excitation with
quasiparticle energy �b

0=−Eb+� when �k
0=�b

0. In the ordinary
particle picture this can be rewritten as Ek=Er

b, where

Er
b =

��kr
b�2

2M
= − Eb + 2� . �23�

If Er
b�0, the uncoupled bound state is embedded in the par-

ticle excitation continuum and, when ��x� is finite, this gives
rise to a Fano-type scattering resonance. Note that in Fig. 3
the b=6 bound state does not give rise to a resonance be-
cause it does not lie sufficiently low in the trap, i.e.,
E6�2�.

Using standard techniques �24�, we find that near a reso-
nance the resonant phase shift is well described by the Fano
profile

tan 	e,o
R �k� =

�e,o�k�/2
�k

0 − �b
0 − �e,o�k�

. �24�

The resonance width is

�e,o�k� = −
2M

�2Wk
Qe,o

2 �k�cos�	e
bg�k� − 	o

bg�k�� , �25�

where Qe,o�k�=�b�x���x��k
e,o�x�dx �25� and the Wronskian

Wk=�k
o�x�d�k

e�x� /dx−�k
e�x�d�k

o�x� /dx is constant because
there is no first-order derivative in Eq. �20� �26�. For each
resonance, the coupling matrix element Qe,o�k� is only non-
zero for either the even or the odd continuum wave func-
tions, depending on the parity of the bound hole excitation.
The smoothness of the Gaussian external potential means

δ/
π
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kw

|T
(k

)|
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FIG. 4. �a� Scattering phase shifts and �b� transmission probabil-
ity for a trapped Fermi gas, calculated using the mean-field method.
The curves in �a� correspond to �thick� the even phase shift 	e�k�
and �thin� the odd phase shift 	o�k�. The vertical lines in �b� indicate
the uncoupled resonance wave vectors kr

b �see Eq. �23��. Parameters
are g=−9.55wEw, V0=127.32Ew, and �=−19.10Ew.
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that 	e
bg�k��	o

bg�k� and, therefore, cos�	e
bg�k�−	o

bg�k���1.
The resonance energy is determined by solving �k

0=�b
0

+�e,o�k�, where

�e,o�k� = ��k� �
M

�2Wk
Qe,o

2 �k�sin�	e
bg�k� − 	o

bg�k�� , �26�

and ��k�=�b�x���x�Gk�x ,s���s��b�s�dxds. The upper
�lower� sign in Eq. �26� applies if the uncoupled bound hole
excitation is even �odd�, but sin�	e

bg�k�−	o
bg�k���0 and the

first term in Eq. �26� dominates. The Green’s function of Eq.
�20� is

Gk�x,s� =
M

�2Wk
� ��k

e�x��k
o�s� − �k

o�x��k
e�s� , x � s

�k
o�x��k

e�s� − �k
e�x��k

o�s� , x � s
� .

�27�

In the limit ��x�→0, ��k�=0 and the resonances occur for
�k

0=�b
0, i.e., the quasiparticle energy of the bound hole exci-

tation matches the quasiparticle energy of the scattering par-
ticle excitation. The resonance energy is well approximated
by Ek=Er

b �see Eq. �23��, as indicated by the vertical lines in
Fig. 4�b�.

The energy Er
b can be interpreted as the energy required to

excite a bound particle to the chemical potential and to create
a second particle at the chemical potential with opposite
spin. A scattering resonance occurs near this energy if there
is coupling between the scattering state and the intermediate
state, where the projectile particle and the bound particle of
opposite spin form a pair at the chemical potential. In gen-
eral, this intermediate state is forbidden because the chemical
potential is not an energy eigenvalue of Eq. �20�. However,
in the mean-field theory, the pair potential ��x� facilitates
pair creation and destruction as if there is a source/sink of
atom pairs at the chemical potential, i.e., there is an effective
pair condensate at �. These pairing vibrations �13,27� allow
the projectile particle and a bound particle of opposite spin to
be simultaneously removed from the system, and the inter-
mediate state for the scattering process is a bound hole exci-
tation with two fewer particles than the scattering state �see
Figs. 3�b� and 3�c��. In a number-conserving treatment, cou-
pling to this intermediate state would be forbidden because
Hamiltonian �1� does not couple states with different num-
bers of particles.

We conclude that, in this case, the scattering resonances
predicted by the mean-field approach are spurious. In par-
ticular, the mean-field theory does not conserve particle num-
ber and this allows for coupling between sectors of the Hil-
bert space corresponding to different numbers of particles.
We discuss the validity of the BCS mean-field approach in
more detail in the following section.

V. VALIDITY OF MEAN-FIELD THEORY

The conventional application of BCS mean-field theory
provides a steady-state ansatz for the quantum system. This
BCS state, introduced in 1957 by Bardeen, Cooper, and
Schrieffer �28�, is not an eigenstate of the total number of
particles in the system, but it can be used to compute the
expectation values of a variety of physical observables, in

particular, the number-conserving Hamiltonian. It can be
shown that the expectation value of any number-conserving
operator will yield approximately the same result when
evaluated either with the BCS state or with the projection of
that state on any eigenstate of the total number of particles,
so long as it has a particle number eigenvalue close to the
�large� mean particle number in the BCS state �22�.

Our use of BCS theory is less well justified because,
rather than investigating the full number-conserving Hamil-
tonian �Eq. �1�� within the BCS ansatz, we address the dy-
namics governed by the approximate number nonconserving
Hartree-Fock-Bogoliubov Hamiltonian �Eq. �17��. Higher-
order methods based on the number-conserving Hamiltonian
have been applied to scattering from nuclei �e.g., �29��. How-
ever, in the case of our one-dimensional scattering problem,
the spurious scattering resonances described in Sec. IV are
retained even in such a treatment.

It is well known that the BCS mean-field approach is
particularly prone to giving inaccurate results when applied
to small systems. So, it is perhaps not surprising that the
BCS treatment predicted spurious resonances in Sec. IV.
However, by illustrating in detail the nature of this break-
down of the theory, we can now present arguments for why
the BCS method can be expected to give accurate predictions
in higher dimensions and for larger systems.

One of the difficulties with using the BCS mean-field ap-
proach to describe the one-dimensional scattering problem is
that the chemical potential is not, in general, an allowed
energy level in the system. However, this problem only
arises in systems with discrete energy levels. For example, in
two or three dimensions where the energy levels can be
highly degenerate, or in a homogeneous system where the
energy spectrum is continuous, the chemical potential is far
more likely to lie at, or very near to, an available energy
level. Furthermore, the high degeneracy provides a compel-
ling argument for the validity of the mean-field description in
the macroscopic limit, as discussed below.

Figure 5�a� represents the excitation spectrum for a ge-
neric quantum system where the energy levels are highly

E µ

(a)

nb

(b)

t

r, s

0 0.5 1

FIG. 5. �a� The energy-level diagram for a generic quantum
system for which the energy levels near the chemical potential are
highly degenerate. �b� The average energy-level population nb that
could be expected from a BCS mean-field calculation. In both pan-
els, the dashed horizontal line indicates the chemical potential �.
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degenerate near the chemical potential. Applying the BCS
mean-field theory to such a system would give an energy-
level average population nb that varies slowly across the qua-
sicontinuum, as indicated in Fig. 5�b�. Calculating the scat-
tering properties of the system, in the mean-field approach,
we would expect to find scattering resonances at energies
Ek�Er

b for each sufficiently low-lying energy level �i.e., for
Eb�2��. To determine whether this is reasonable, we could
alternatively consider this system in the spirit of the
configuration-interaction approach of Sec. III. In this treat-
ment we would expect there to be a large number of reso-
nances due to the many possible �r ,s , t� configurations. In
particular, many resonances for a given value of t would
have similar resonance energies and, taking the continuum
limit for the r and s levels, these resonances would overlap
and we would predict essentially the same result as in the
BCS mean-field treatment, i.e., a single resonance for every
low-lying bound state t. To verify this quantitatively, it
would be necessary to show that the operator âr↑

† âs↓
† in Eq.

�9� could be replaced by a complex number that was ap-
proximately independent of r and s in the quasicontinuum.
Therefore, Eq. �9� could be reinterpreted in the spirit of the
Bogoliubov transformation �18�.

To rephrase the argument, consider a group of N states
near the chemical potential that are on average half filled. In
this case the states near the chemical potential are mutually
coupled by the many-body pairing and the corresponding
eigenstates can be assumed to be essentially symmetric in
terms of the population of each single-particle state. The
probability of transferring the projectile particle, and a low-
lying bound particle of opposite spin, to any of the half-filled
levels is then amplified by a combinatorial factor increasing
with N, similar to the collective spontaneous emission
�Dicke super-radiance� of light from a symmetrically excited
atomic medium �30�. The collective enhancement would be
maximum at exactly half filling, and the intermediate states
populating r and s levels near � would yield one strong
resonance for every level t, in agreement with the BCS
mean-field prediction. In this regime the pairing vibrations,
corresponding to correlated pairs being added to and re-
moved from the system, become collective and can be de-
scribed by a classical field �13,27�. Additional resonances
due to unpopulated r and s levels lying well above the
chemical potential �as in Fig. 2� do not benefit from the
collective enhancement associated with the half filling of
levels and would be comparatively unimportant in the mac-
rosopic limit. This justifies the use of the self-consistent
mean-field treatment as a symmetry-breaking approach in the

same spirit that the semiclassical approximation with a mean
collective dipole is applied to the description of optical
super-radiance. A similar interpretation has been discussed in
the context of open quantum billiards �31,32� and nuclear
reactions �33,34�.

VI. CONCLUSION

We have considered single-particle scattering from a
trapped two-component degenerate Fermi gas when the pro-
jectile particle is identical to one of the confined species. Our
theoretical treatment is based on a configuration-interaction
approach and we predict Fano-type scattering resonances
that are possible because of interatomic pairing. The scatter-
ing resonances are sensitive to the ground-state properties of
the trapped Fermi gas and we have described the key features
of the scattering resonances quantitatively.

We have also presented a BCS mean-field approach to the
scattering problem and have shown that the non-number con-
servation of the theory leads to spurious scattering reso-
nances. We have described in detail the breakdown of BCS
theory for this case but have argued that in macroscopic sys-
tems where the energy spectrum is highly degenerate, or con-
tinuous, the BCS theory may be expected to give accurate
results. Furthermore, we have suggested that the BCS mean-
field approximation can be interpreted as an effective semi-
classical representation of super-radiance in the system, and
this presents an interesting avenue for further research.

The scattering resonances we predict are relevant for a
range of reflection and transmission experiments with cold
atoms. In particular, the energy sensitivity of the scattering
resonances could allow for energy filtering and, in the case
of spin imbalance, spin filtering may also be possible. This is
interesting in the context of cold atom chip experiments and
recent theoretical proposals for developing cold atom ana-
logs of electronic devices �35–37�. Indeed, Fano-type scat-
tering resonances have been observed in a single-electron
transistor �38�, and the transport properties of different junc-
tion interfaces have been widely studied �39–41�. Finally,
recent work has also shown that the scattering properties of
normal-superfluid interfaces have implications when consid-
ering the thermodynamics of a Fermi gas �42�.
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