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The deviation of the natural spectral line profile from the Lorentz shape for the optical resonant frequency
measurements is considered. This deviation leads to an asymmetry, which is mainly due to nonresonant
correction to the resonant Lorentz profile. The nonresonant corrections are studied for the different types of the
atomic resonant experiments. The most accurate recent optical resonance experiments are analyzed, i.e., the
two-photon 1s-2s resonance excitation of the hydrogen atom with the delayed decay in the external electric
field. The description of the nonresonant correction in the latter case requires the employment of QED with
different in and out Hamiltonians. The nonresonant corrections for this experiment are investigated and found
to be about 10−5 Hz, while the recent experimental uncertainty is 34 Hz and in the near feature is expected to
be a few hertz. The projected 1s-2s resonance excitation experiment with the three-photon ionization detection
�which is now in progress� is also considered.
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I. INTRODUCTION

The recent superaccurate measurements of the resonance
transition frequency in the hydrogen atom �1,2� require a
careful analysis of the limits for the validity of the resonance
approximation in such experiments. These limits are set by
nonresonant �NR� corrections to the standard Lorentz line
profile. Here we address only the natural spectral line profile,
disregarding Doppler, time-of-flight, and collisional broaden-
ing. It is assumed that the accuracy of the experiment allows
for the observation of natural line profile, like in �3�. In the
resonance approximation, which reduces the description of
the spectral line profile to the Lorentz contour, the line pro-
file is described by two parameters, resonance frequency wres

and width � and is symmetric with respect to wres. In the
early paper by Low �4� it was pointed out that resonance
approximation is valid only up to a certain level of accuracy,
which is defined by NR corrections. Beyond this limit the
line profile becomes asymmetric and the interpretation of
wres becomes ambiguous. Moreover, the NR corrections are,
in principle, process dependent, so the measured line profile
also becomes dependent on the process of measurement. The
other source of the line profile asymmetry is the dependence
of transition rates on frequency. The NR corrections are,
however, dominant in the most cases.

The magnitude of NR correction �wres as it was estimated
by Low �4� for H-like ions appeared to be very small:
�wres /�����Z�2 for the dipole optical transition, where � is
the fine structure constant and Z is the charge of the nucleus.
Accordingly, for the long time after the arrival of the paper
of Low �4� there was no need to consider these corrections in
the optical experiments. Recently the interest to NR correc-
tions was triggered by the new very accurate optical reso-
nance experiments �1,2� and the various theoretical estimates
were given in �5,6�. Recently the NR corrections were con-

sidered also within an astrophysical context �7�. In this work
we will present the evaluation of NR corrections for the fre-
quency measurements in experiment �1,2�. The calculations
will be done for the hydrogen atom or H-like ions.

One has to distinguish between two types of the possible
resonant optical experiments. All the processes consist of
three stages: excitation of the certain intermediate states, its
propagation, and its decay. The coherence in the sum over
the intermediate state can be destroyed by the collisions �the
first type of the experiments� or conserved �the second type
of the experiments�. The analysis shows that the NR correc-
tions in case of the first type of resonance experiments are
essentially smaller than for the experiments of second type.
However, in the ultimate case when the natural line profile
can be observed and there are no phase distortions, both
types of resonance experiments actually coincide and the NR
corrections to the frequency for both experiments are the
same. In what follows we will consider only this situation.
Our argumentation is the following: when the natural line
profile is not observed, i.e., screened by the collisional, time-
of-flight, Doppler broadening, etc. �1�, the latter effects de-
fine the possible uncertainty of the experimental determina-
tion of the transitional frequency. This uncertainty is
evidently larger than the effect of the NR corrections but can
be decreased by the technical improvements. The distortion
of the line profile caused by the NR corrections is the un-
avoidable systematic effect that should be always taken into
account.

The absolute uncertainty remaining in the two-photon
resonance frequency measurement �1� for 1s-2s transition in
hydrogen is 34 Hz, which corresponds to the relative accu-
racy of 1.4�10−14. However, in �1� a special scheme of reg-
istration was employed, which requires the special theoreti-
cal consideration. In �1� the atoms are excited by means of
laser radiation via two-photon absorption from the ground 1s
state. This excitation occurs in a spatial region free of exter-
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nal fields. The excited atoms are moving subsequently to
another spatial region where they experience an additional
weak electric field. In the presence of such a field the 2s and
2p states are mixed and the atoms decay via ordinary 2p-1s
transition. This radiation is detected and provides the neces-
sary information for the extraction of 1s-2s frequency value
from the experimental data. In the rest frame of an atom it
looks like the excitation occurs in the absence of the electric
field and then the electric field is turned on �delayed decay�.
In terms of QED, the initial and final states of an atom are

described then by different Hamiltonians Ĥin and Ĥout. The
QED theory with different in and out Hamiltonians was con-
sidered by several authors. Here, we refer to the book by
Fradkin et al. �8� �see there the references to other works in
the area�.

In this paper we will discuss also another possible method
for registration of the excited 2s state in hydrogen: the three-
photon ionization �9�.

The paper is organized as follows. In Sec. II the processes
of the first and second types as defined above will be com-
pared. The standard expressions for the excitation and decay
probabilities will be derived. In Sec. III we describe the dif-
ferential cross section for the process of the resonant photon
scattering on atomic electron, having the goal to stress the
difference between this process �of the second type� and pro-
cess of level excitation: in the latter case the information on
the excitation process is usually lost when the decay of the
excited state is registered and the natural line profile is
screened by the collisional and Doppler broadening �process
of the first type�. However we always will consider the reso-
nant scattering process for defining the NR correction even
in cases when in the real experiment the natural line profile is
not yet observed. In Sec. IV the NR correction to the process
of the resonant photon scattering on the atomic electron will
be introduced. In Sec. V we introduce the formulation and
present the generic expressions for QED with different in
and out Hamiltonians, which are necessary for description of
delayed decay of the 2s level in an external electric field.
This QED theory is applied in Sec. VI to the description of
the experiment �1�, considered as a resonance process of
two-photon excitation of 2s level with a subsequent delayed
decay in the external electric field. These derivations will
result in Sec. VII as the NR correction values for the fre-
quency measurement with this type of experiment. In Sec.
VIII all results are summarized and the final conclusions are
made.

II. RESONANT EXCITATION OF ATOMIC LEVELS
AND RESONANCE PHOTON SCATTERING

(TOTAL CROSS SECTIONS)

We start with introducing the resonant elastic scattering of
the photon on the bound electron in an atom in the absence
of external fields. The corresponding Feynman graphs are
depicted in Fig. 1. The amplitude of this process can be
written in the form

Un0j0l0mf,n0j0l0mi

JMf,JMi

= �
njlm

�n0j0l0mf�AJMf

�E,M�†
�njm	�njm�AJMi

�E,M��n0j0l0mi	

Enjl − En0j0l0
− �

+ �
njlm

�n0j0l0mf�AJMi

�E,M��njm	�njm�AJMf

�E,M�†
�n0j0l0mi	

Enjl − En0j0l0
+ �

.

�1�

Here the quantum numbers njlm represent the standard set of
one-electron quantum numbers for the electron in the hydro-
gen atom: principal quantum number n, total angular mo-
mentum j, its projection m, and orbital angular momentum l
which fixes the parity of the state. The photons are charac-
terized, apart from the frequency �, by the total angular mo-
mentum J, its projection M, and the type of the photon �elec-
tric E or magnetic M�, which fixes the parity. For simplicity
we assume that the absorbed and emitted photons have the
same J values as it happens, for example, for 1s-2p �E1
photon� transition. The indices i , f denote the initial and final
states of the particles. The operator AJM

E,M corresponds to the

photon absorption and AJM
�E , M�†

denotes the photon emission.
The absorption operator looks like

AJM
E,M = e�� · A� �JM

E,M , �2�

A� �JM
E �r�� =
 �

2�
�
 J

2J + 1
gJ+1��r�Y� JJ+1M�n��

−
 J + 1

2J + 1
gJ−1��r�Y� JJ−1M�n��� , �3�

A� �JM
M �r�� =
 �

2�
Y� JJM�n�� . �4�

Here the spherical vector functions Y� JLM�n�� are introduced,

FIG. 1. The Feynman graphs describing the elastic photon scat-
tering on atomic electron. The solid line describes the electron in
the field of the nucleus; the wavy line with an arrow denotes the
absorption or the emission of a photon. Symbol a corresponds to
the certain electron level �njl� in an atom; � and �� denote the
absorbed and emitted photon frequencies. The right-hand side of
both graphs corresponds to the initial state and the left-hand side
corresponds the final state. In case of the elastic scattering �the
initial and final atomic states are the same� �=��.
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Y� JLM�n�� = �
ML,	

CJM
L1 �ML,	�YLML

�n��
�	, �5�

where n� = r�
r , YLML

�n�� is the ordinary spherical function, 
�	 is
the vector spin function for the photon,

gl��r� =
�2��3/2


�r
Jl+1/2��r� ,

and Jl+1/2��r� is the Bessel function. We use the standard
notation �� for the Dirac matrices and e is the electron charge.
The relativistic units �=c=1 �� is the Planck constant and c
is the speed of light� are employed.

Imposing the resonance approximation together with the
resonance condition

� = En1j1l1
− En0j0l0

, �6�

only the terms with njl=n1j1l1 in the first sum in Eq. �1�
should be retained; the second sum should be fully omitted.

This yields

Un0j0l0mf,n0j0l0mi

JMf,JMi �n1j1l1�

= �
m

�n0j0l0mf�AJMf

�E,M�†
�n1j1l1m	�n1j1l1m�AJMi

�E,M��n0j0l0mi	

En1j1l1
− En0j0l0

− �
.

�7�

The difference between the two types of the resonant pro-
cesses, mentioned in Sec. I, concerns the summation over the
projection m in Eq. �7�. The process of excitation of atomic
level corresponds to the case when this summation should be
decoupled and restricted to one particular value of the pro-
jection. This implies that the summation over m in Eq. �7�
should be omitted and �n1j1l1m	�n1j1l1m� should be replaced
by �n1j1l1m	�n1j1l1m�� with the fixed m ,m� values. In the
expression for the transition probability, the summation over
m and averaging over m� should be restored. This decoupling
may occur due to some averaging process that intervenes
between the absorption of the photon and emission of the
photon. In particular, it could be multiple scattering, where
the value of the projection m changes many times. In the
process of scattering the atom may change also the values
njl, but then it leaves the resonant process �of course, due to
the collisions some atoms can be kicked out of the beam and
thus not detected at all�.

If the values njl remain equal to n1j1l1 and only m
changes, the atom remains within the resonance. We are in-
terested in the latter case. The result of such changes of the m
value can be interpreted as a random process and thus de-
coupling arise. In this way the experimental methods of the
resonant excitation of atomic levels should be understood.

Now we can write down the expression for the resonant
process probability �excitation cross section� as

dWn0j0l0,n0j0l0
�J� �n1j1l1�

=
1

�2J + 1��2j0 + 1��2j1 + 1�

� �
MiMf

�
mimf

�
m,m�

��n0j0l0mf�AJMf

�E,M�†
�n1j1l1m	�2

�
��n1j1l1m��AJMi

�E,M��n0j0l0mi	�2

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d� . �8�

In Eq. �8� it is assumed that both the initial electrons and
photons are nonpolarized.

Here the width of the excited level �n1j1l1
is introduced in

a standard way. The operators AJM
�E,M� are the spherical tensors

of the rank J with the JM component in the electron space.
Then, performing the summations over all the angular mo-
mentum projections in Eq. �4� with the use of the Wigner-
Eckart theorem for the matrix elements in Eq. �8�,

�n�j�l�m��AJLM�njlm	

= �− 1� j�−m�� j� J j

m� M m̄
��n�j�l���AJL��njl	 , �9�

where �n�j�l���AJL��njl	 is the angular reduced matrix
element, yields

dWn0j0l0,n0j0l0
�J� �n1j1l1� =

Wn0j0l0,n1j1l1
em�J� Wn1j1l1,n0j0l0

ab�J�

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d� ,

�10�

where

Wn1j1l1,n0j0l0
ab�J� =

��n1j1l1��AJ
E,M��n0j0l0	�2

�2j0 + 1��2J + 1�
�11�

is the absorption transition rate for the process n0j0l0
→n1j1l1 and

Wn0j0l0,n1j1l1
em�J� =

��n0j0l0��AJ
E,M��n1j1l1	�2

2j1 + 1
�12�

is the emission transition rate for the process n1j1l1→n0j0l0.
It follows from expression �11� that the process of the

atomic level excitation, as described above, demonstrates the
standard resonant behavior, i.e., the frequency distribution of
the absorbed photons is determined by the Lorentz profile.
The atomic level emission, also described by the same Lor-
entz contour �Eq. �12��, is fully independent of the excitation
process; the latter can be even of another nature �electron
impact excitation, etc.�. In principle, there are NR corrections
to this process, which restore this dependence; these correc-
tions arise from the terms of the expansion over intermediate
states in Eq. �1� with njl�n1j1l1. However we have to re-
member that collisional and other processes, which we sup-
posed to intervene between the absorption of the photon and
its subsequent emission, fully distort and screen the natural
line profile for the emitted photons. Therefore there is no
sense to discuss the role of NR corrections in this case. The
systematic corrections to the resonance frequency determina-
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tion from the emission spectrum are defined now by other
factors which in case of 1s-2s resonance were in every detail
analyzed in �1�. Still it makes sense to investigate the experi-
ment for the measurement of 1s-2s transition frequency �1�,
idealizing the experimental situation and assuming that the
natural line profile can be observed. Then the experiment for
the measurement of 1s-2s transition frequency will become
of the resonant photon scattering type with a complicated
scattering scheme: absorption of two photons followed by
the one-photon delayed decay in an external electric field.

We will investigate the NR corrections in this idealized ex-
periment in Secs. VI and VII.

For the investigation of the resonant photon scattering on
the atomic electron, i.e., the resonant process of the second
type, discussed in Sec. I, we can start with expression �7�.
Now no assumption is made concerning summation over m
in Eq. �7�; this summation is exactly performed. The expres-
sion for the transition probability in the resonance approxi-
mation now looks like

dWn0j0l0,n0j0l0
�J� �n1j1l1� =

1

�2J + 1��2j0 + 1� �
MiMf

�
mimf

�
m,m�

�n0j0l0mf�AJMf

�E,M�†
�n1j1l1m	

��n1j1l1m�AJMi

�E,M��n0j0l0mi	
�n0j0l0mf�AJMf

�E,M�†
�n1j1m�	��n1j1m��AJMi

�E,M��n0j0l0mi	�

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d� . �13�

Using again the Wigner-Eckart theorem �Eq. �9�� and per-
forming the summation over the angular momentum projec-
tions in Eq. �13� we arrive again at Eq. �10�. To see how it
happens it is useful to perform first the summation over
mi ,Mi and mf ,Mf in Eq. �13�. Thus there is no difference
between the processes of the first and the second types in the
total probabilities �cross sections� and the statement made in
�10� that both types of the process differ in the total cross
sections is incorrect. However, this difference arises in the
differential �with respect to the angles� cross sections. The
NR correction estimates, given in �10�, are valid for the dif-
ferential cross sections as well as general derivation scheme
with the use of the QED with different in and out Hamilto-
nians. Therefore, we now go over to the description of the
differential cross sections.

III. RESONANCE PHOTON SCATTERING ON THE
ATOMIC ELECTRON: DIFFERENTIAL CROSS SECTIONS

To write down the differential cross sections we have to
introduce first the wave functions for the incoming and out-
coming photons. We characterize these photons by their mo-
mentum k� =��� ��= �k�� is the frequency� and the polarization
vector e�,

A� k�·e��r�� =
2�

�
e�eik�·r�. �14�

Function �14� represents the absorbed photon, the emitted

photon is described by the wave function A� k�·e�
� �r��. Now we

expand plane wave �14� in the spherical waves or what is
more convenient in the electric and magnetic photon wave
functions,

A� k�·e�
� �r�� =

2�

�
�
JMs

�e�� · A� JM
�s� �����A� JM

�s� �r�� , �15�

where s=E ,M and

A� JM
E ���� =
 �

2�

 J

2J + 1
Y� JJ+1M���� −
 J + 1

2J + 1
Y� JJ−1M����� ,

�16�

A� JM
M ���� =
 �

2�
Y� JJM���� �17�

are the electric and magnetic photon wave functions in the
momentum space. Instead of Eq. �7� we have the amplitude

Un0j0l0mf,n0j0l0mi

�� fe� f,�� ie�i

= �
m

�n0j0l0mf�A�� fe� f
†
�n1j1l1m	�n1j1l1m�A�� ie�i�n0j0l0mi	

En1j1l1
− En0j0l0

− �
,

�18�

where

A�� i,e�i�r�� = e�� · A� k�i,e�i
�r�� . �19�

An expression, which replaces now Eq. �8�, is
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dWn0j0l0,n0j0l0

�� f�� i =
1

�2j0 + 1�
�2�3� �

Jf�Mf�sf�
�

JfMfsf

�
Ji�Mi�si�

�
JiMisi

�
e�ie� f

�e� f
� · A� JfMf

�sf� ��� f���e� f · A�
Jf�Mf�
�sf�� ��� f��

��e�i · A� JiMi

�si� ��� i���e�i
� · A�

Ji�Mi�
�si�� ��� i�� �

mimf

�
m,m�

�n0j0l0mf�e�� · A� JfMf

�sf�
�

�r���n1j1l1m	�n0j0l0mf�e�� · A�
Jf�Mf�
�sf���

�r���n1j1l1m�	�

��n1j1l1m�e�� · A� JiMi

�si� �r���n0j0l0mi	�n1j1l1m��e�� · A�
Ji�Mi�
�si�� �r���n0j0l0mi	�

1

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� .

�20�

Essential simplification arises if we assume that only one type of the photon with the fixed J value can be absorbed and emitted
in the resonance. Summation over the polarizations we perform with the use of the formula

�
e�

�e�� · a���e� · b�� = �a� � ����b� � ��� . �21�

Then

�
e� f

�e� f
� · A� JfMf

�sf� ��� f���e� f · A�
Jf�Mf�
�sf�� ��� f�� = ��� f � A� �sf����� f � A� �sf��� , �22�

�
e�i

�e�i
� · A� JiMi

�si� ��� i���e�i · A�
Ji�Mi�
�si�� ��� i�� = ��� i � A� �si����� i � A� �si��� . �23�

The vector products ��� �A� JM
�E,M����� can be presented like

��� � A� JM
�E,M����� = A� JM

�M,E���� . �24�

Then Eq. �20� results in the following:

dWn0j0l0,n0j0l0

�� f�� i =
1

�2j0 + 1�
�2�3� �

MfMf�
�

MiMi�
�

s

�A� JMf

�s� ��� f� · A� JMf�
�s��

��� f���A� JMi

�s� ��� i� · A� JMi�
�s��

��� i��

� �
mimf

�
m,m�

�n0j0l0mf�AJMf

�s� �r���n1j1l1m	�n0j0l0mf�AJMf�
�s� �r���n1j1l1m�	�

��n1j1l1m�AJMi

�s� �r���n0j0l0mi	�n1j1l1m��AJMi�
�s� �r���n0j0l0mi	�

1

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� . �25�

where we have used again notation �2�.
As the next step we employ once more Wigner-Eckart theorem �9� and perform the summations over mi ,mf ,m ,m� in Eq.

�25�. This results in the following:

dWn0j0l0,n0j0l0

�� f�� i =
2j1 + 1

�2J + 1�
�2�3� �

MfMi

��A� JMf

�E,M���� f���2��A� JMi

�E,M���� i���2

� Wn0j0l0,n1j1l1
em�J� Wn1j1l1,n0j0l0

ab�J� 1

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� . �26�

The sum over s=E ,M is absent in Eq. �26� since the value of s is fixed by the choice of l0 , l1. Since the angular dependence
on the angles �� i and �� f is separated in Eq. �26�, both absorption and emission differential probabilities do not depend on the
angles and we return to formula �10� �see the details of calculations in Appendix A�.

Now we go over to the description of the second type of the experiment when the differential �with respect to the angles�
cross section is evaluated. Equation �25� should be replaced by
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dWn0j0l0,n0j0l0

�� f�� i =
1

�2j0 + 1�
�2�3� �

MfMf�
�

MiMi�

�A� JMf

�E,M���� f� · A� JMf�
�E,M��

��� f���A� JMi

�E,M���� i� · A� JMi�
�E,M��

��� i��

� �
mimf

�
m,m�

�n0j0l0mf�AJMf

�E,M��r���n1j1l1m	�n0j0l0mf�AJMf�
�E,M��r���n1j1l1m�	� � �n1j1l1m�AJMi

�E,M��r���n0j0l0mi	

��n1j1l1m��AJMi�
�E,M��r���n0j0l0mi	�

1

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� . �27�

Application of the Wigner-Eckart theorem to the matrix element in Eq. �2� and the subsequent summation over indices
mi ,mf ,m ,m� yields

dWn0j0l0,n0j0l0

�� f�� i =
1

�2j0 + 1�
�2�3� �

MfMf�
�

MiMi�

�A� JMf

�E,M���� f� · A� JMf�
�E,M��

��� f���A� JMi

�E,M���� i� · A� JMi�
�E,M��

��� i�� � �
x

�− 1��2x + 1�� J J x

M̄ f Mf� 
�

�� J J x

M̄i Mi� 
�� J x J

j1 j0 j1
�2

� Wn0j0l0,n1j1l1
em�J� Wn1j1l1,n0j0l0

ab�J� 1

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� . �28�

Equation �28� corresponds to the photon scattering cross section �probability� for the process of the second type: the
resonance photon scattering on the atomic electron. Namely, Eq. �28� describes the contribution of the resonant term to the
differential cross section. Due to the summation over x in Eq. �28�, unlike Eq. �26� the connection holds between the angles
�� i and �� f for the incoming and outcoming photons. Finally, we can write down expression �29� for the transition probability in
the form

dWn0j0l0,n0j0l0

�� f�� i = SJj0j1
��� f�� i�

Wn0j0l0,n1j1l1
em�J� Wn1j1l1,n0j0l0

ab�J�

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� , �29�

where

SJj0j1
��� f�� i� =

1

�2j0 + 1� �
MfMf�

�
MiMi�

�A� JMf

�E,M���� f� · A� JMf�
�E,M��

��� f���A� JMi

�E,M���� i� · A� JMi�
�E,M��

��� i��

��
x

�− 1��2x + 1�� J J x

M̄ f Mf� 
�� J J x

M̄i Mi� 
�� J x J

j1 j0 j1
�2

. �30�

The only angular dependence that can arise in the reso-
nant photon experiment in the absence of external electric
fields is the dependence on the ��� i�� f between the direction
�� i of the velocity of the absorbed photon and the direction �� f

of the velocity of the emitted photon. While the vector �� i is
fixed by the incident laser beam, the vector �� f is fixed by the
position of the detector. In the experiment of the first type no
angular dependence can arise since the integration over
angles is performed independently for the absorption and the
emission rate, respectively. In the processes of the second
type the angular dependence can occur.

To obtain the angular dependence in the explicit form we
can choose the direction of z axis in the photon momentum

space along the vector �i
�. Then the vector � f

� will represent

the dependence on the ��i
�� f
�. Expression �30� simplifies and

is given in Appendix B. In case of the magnetic dipole pho-
tons �J=1� the corresponding expression reads

S1j0j1
M ��� =

�2

32��2j0 + 1�� 1 0 1

j1 j0 j1
�2

�aM + bM cos2 �� ,

�31�

where

aM =
1

3
−

15

2
6
, �32�

bM =
45

2
6
. �33�

In case of the electric dipole photons �J=1� the correspond-
ing expression reads

S1j0j1
E ��� =

�2

32��2j0 + 1�
� � 1 0 1

j1 j0 j1
�2

�aE + bE cos2 �� ,

�34�
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where

aE =
1 + 
30 − 4
10

9
+

5

36
30
−

5�31
3 − 12�
12
3

, �35�

bE =
5

2
30
+

5

12
3
. �36�

IV. NONRESONANT CORRECTIONS TO THE
RESONANCE TRANSITION PROBABILITY

In this section we will derive the NR corrections to the
resonance transition probability for the process of resonant

photon scattering on the atomic electron. The nonresonant
corrections to the resonant process arise as the terms of ex-
pansion in Eq. �1� with njl=n2j2l2�n1j1l1. In the expression
for the transition probability the major NR contribution will
arise from the interference between the amplitudes corre-
sponding to n2j2l2 and n1j1l1. The contribution from the level
n2j2l2 most close to n1j1l1 level will dominate. Repeating the
derivations which led to the expression for the transition
probability �Eq. �29�� and retaining now two terms n1j1l1 and
n2j2l2 �n2j2l2 being considered as the closest neighbor to the
n1j1l1� in the sum over njl in Eq. �1� result in

dWn0j0l0,n0j0l0

�� f�� i = SJj0j1
��� f�� i�

Wn0j0l0,n1j1l1
em�J� Wn1j1l1,n0j0l0

ab�J�

�En1j1l1
− En0j0l0

− ��2 + 1
4�n1j1l1

2 d�� id�� fd� + SJj0j1j2
��� f�� i�

� 2 Re� �n0j0l0�AJ
E,M�n1j1l1	�n0j0l0�AJ

E,M�n2j2l2	�n1j1l1�AJ
E,M�n0j0l0	�n2j2l2�AJ

E,M�n0j0l0	

�En1j1l1
− En0j0l0

− � − i
2�n1j1l1��En2j2l2

− En0j0l0
− � − i

2�n2j2l2� �d�� id�� fd� , �37�

where

SJj0j1j2
��� f�� i� =

1

�2j0 + 1�
�2�3� �

MfMf�
�

MiMi�

�A� JMf

�E,M�

���� f� · A� JMf�
�E,M��

��� f���A� JMi

�E,M���� i� · A� JMi�
�E,M��

��� i��

� �
x

�− 1��2x + 1�� J J x

M̄ f Mf� 
�

�� J J x

M̄i Mi� 
�� J x J

j1 j0 j2
�2

. �38�

It is important that the factor SJj0j1j2
��� f�� i� does not vanish

for j2l2� j1l1, i.e., for the levels with different symmetry
properties �different total angular momenta or different pari-
ties�. Such terms, as a rule, give the major contribution to the
NR corrections. In �5� only NR corrections from the terms
n2j2l2 with j2l2= j1l1 were considered.

Expression �38� again can be simplified if we choose the
direction of z axis in photon momentum space along the

vector �i
�. The corresponding expression is given in Appendix

B. In case of the magnetic dipole photon �J=1� this expres-
sion reads

S1j0j1j2
M ��� =

�2

32��2j0 + 1�� 1 0 1

j1 j0 j2
�2

�aM + bM cos2 �� .

�39�

In case of the electric dipole photons �J=1� the correspond-
ing expression reads

S1j0j1j2
E ��� =

�2

32��2j0 + 1�� 1 0 1

j1 j0 j2
�2

�aE + bE cos2 �� .

�40�

Note that factors aE,M ,bE,M in Eqs. �31� and �34� coincide
with corresponding factors aE,M ,bE,M in Eqs. �39� and �40�.

V. QED THEORY WITH DIFFERENT IN AND OUT
HAMILTONIANS

Aiming at the accuracy estimates for the 1s-2s resonance
experiment in hydrogen �1� we will first introduce necessary
generalization of QED, mentioned in Sec. I, i.e., we will
present the formulation of QED with different in and out
Hamiltonians. In this formulation we will follow Fradkin-
Gitman-Shvartsman book �8� �FGS formalism�. In principle,
Fradkin et al. �8� pursued the more complicated task; then
one considered here, namely, the case when the external
electric field creates the electron-positron pairs. Accordingly,
we shall describe this approach in a simplified version, suf-
ficient for our purposes here: the presence of weak electric
field that enables the more efficient one-photon decay of 2s
level in hydrogen. However due to the admixture of 2p state
to 2s state the emission probability changes by 7 orders of
magnitude. We will consider the change in the other atomic
characteristics �Stark effect of atomic levels and Stark split-
ting� negligible. The criterion of the weak field will be
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���c=475 V /cm, where � is the strength of the electric
field. In the field �=�c the Stark matrix element is equal to
the Lamb shift and the 2s and 2p levels are strongly mixed
�11�.

The applicability of the FGS picture is defined by the two
inequalities: �at�� field��d. Here � field is the time showing
how fast the field is changing in the rest frame of atom, �at is
the characteristic atomic time necessary for the formation of
the stationary atomic states, and �d is the atomic decay time.
The inequality �at�� field means that the field is changing
slowly enough not to destroy the stationary atomic states.
The other inequality � field��d implies that the field is chang-
ing quite abruptly in space �and, corresponding, in time in
the rest frame of the atom� so that the detection signal has a
sharp peak structure which allows for the accurate determi-
nations of the frequency. Evidently, the second inequality
� field��d is satisfied in the 1s-2s experiments �1,2�. To esti-
mate �at we have to recall that for the formation of the
atomic states the electron has to perform at least several
revolutions around the nucleus, the time of one revolution
being of the order 10−16 s. For the formation of the distinct
2s, 2p levels split by the energy interval �Lamb shift� 1000
MHz, the atomic time �at�10−9 s will be necessary. The
decay time for the 2p level is about 10−9 s; the same decay
time acquires the 2s level in the critical field �c. Assuming
that the “weak field” in the experiments �1,2� is by 1 order of
the magnitude smaller than �c and remembering that admix-
ture of the 2s state in the external field � is proportional to �2

we obtain �d�10−7 s. Thus the both inequalities mentioned
above are compatible and the applicability of the FGS
picture is a plausible assumption.

Another assumption concerns the duration of the excita-
tion time, i.e., the time interval when laser, exciting 2s level,
is switched on. This time should not be less than the lifetime
of the 2s level in the absence of the field, i.e., 1/7 s. Then the
line profile is not influenced by the excitation time.

The FGS theory operates with two complete sets of eigen-
functions, belonging to in and out Hamiltonians. For the ex-
perimental situation in �1� the in states correspond to the
solution of the Dirac �Schrödinger� equation in the field of
the nucleus. The nonrelativistic approximation utilizing
Schrödinger wave function will be sufficient for our pur-
poses. The out set will correspond to the perturbed wave
function in the presence of an electric field; according to the
experimental conditions in �1� this field is assumed to be
weak.

The advantage of the FGS approach is that it employs the
standard QED methods in a generalized form: S matrix, field
operators in the Fock space, four-dimensional perturbation
theory, and Feynman graph techniques in the Furry picture.
Although inspired by the generic lines of FGS theory, a sim-
plified version of Feynman graph techniques, more close to
the conventional bound-state QED, will be employed here.

Actually the only new element which needs to be used is
the generalized electron propagator, connecting vertices
which refer to the different in and out spaces. The eigenmode
decomposition of this propagator reads

SFGS�x1,x2� = ��t1 − t2� �
m̃,n

Em̃,En�0

�m̃�x1��m̃n�̄n�x2�

− ��t2 − t1� �
m̃,n

Em̃,En�0

�n�x1��m̃n�̄m̃�x2� ,

�41�

where �m̃�x� are the solutions of the Dirac equation for the
electron in the field of the nucleus and external electric field,
�n�x� are the solutions with zero external field, and Em̃ ,En
are corresponding eigenvalues. Within the nonrelativistic
theory, sufficient for the description of the process in the
neutral hydrogen atom, in Eq. �41� the contribution due to
the negative energy states can be neglected.

The matrix �m̃n is defined as �8�

�m̃n = �¯m̃ ¯ �ẫ†â� ¯ n¯	 , �42�

where �¯m̃¯� denotes the state vector of the out-Fock-
space with an electron in the state m̃, �¯n¯	 denotes the
state vector of the in-Fock-space with an electron in the state
n, ẫ† is the creation operator in the out-Fock-space, and â is
the annihilation operator in the in-Fock-space. In the simple
case, when no particles are created by the electric field, the
matrix �m̃n is reduced to the overlap integral,

�m̃n =� �m̃
† �x���n�x��dx� � �m̃�n	 . �43�

In what follows the conventional Feynman diagrams in-
volving the propagator SFGS, defined by Eq. �41�, will be
used. The ordinary solid line will represent an electron in the
field of nucleus only, while a double solid line will describe
an electron propagator in the field of the nucleus together
with an additional external electric field. We will denote the
vertex, corresponding to the out Hamiltonian, as a fat dot,
and the vertex, corresponding to the in Hamiltonian, as an
ordinary dot. The new graphic element, corresponding to the
propagator SFGS, is depicted in Fig. 2.

An important question is the evaluation of the transition
probabilities within FGS theory. The problem arise how to
connect the matrix element of the S matrix with the transition
rate �or cross section� of the process. In the traditional QED
this problem is solved in the following way: due to the en-
ergy conservation law the S-matrix element between the ini-
tial �i� and final �f� states can be always presented as

Sif = 2�i��Ei − Ef�Uif , �44�

where Ei ,Ef are the energies of the initial �final� states and
Uif is the amplitude of the process. The squared � function
��Ei−Ef� is presented like

FIG. 2. The diagrammatic representation of the FGS electron
propagator �Eq. �33�� in the coordinate space. See explanations in
the text.
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��Ei − Ef�
1

2�
�

−T/2

T/2

ei�Ei−Ef�tdt = ��Ei − Ef�
T

2�
, �45�

where T can be interpreted as the observation time. Then the
transition rate �probability per time unit� can be defined as

dWif =
�Sif�2

T
= 2���Ei − Ef��Uif�2d� . �46�

Within FGS theory the energy is not conserved and definition
�44� for the transition probability fails, in principle.

However, in the case of the weak field, assuming that the
Stark shifts are neglected, the energy conservation actually
remains. Then we can keep standard formula �44� for the
evaluation of transition probabilities using however the wave
functions, perturbed by the electric field.

VI. TWO-PHOTON 1s-2s RESONANCE WITH DELAYED
DECAY REGISTRATION IN AN EXTERNAL

ELECTRIC FIELD

In this section we will apply the formalism described in
Sec. V to the derivation of NR correction to the resonance
1s-2s transition in the idealized experiment �1�, i.e., in the
process of resonant two-photon excitation of 2s level in hy-
drogen with the subsequent delayed decay in an external
electric field. In the experiment �1� excited by the two-
photon absorption hydrogen atom in 2s state left the excita-
tion region �in space� and entered the decay region �out
space�, where the weak electric field was present. The decay
occurred predominantly via the fast 2p-1s transition �transi-
tion rate �109 s−1�. Thus the lifetime of the excited 2s state
as defined by the experimental setup was in the millisecond
range. This lifetime is much smaller than the natural lifetime
for a 2s level associated with the two-photon decay �� 1

7 s�.
Within the reference frame of hydrogen atom this situation
corresponds to a time-dependent problem, where the in and
out QED formalisms involving different asymptotic Hamil-
tonians are applicable. Employing the diagrammatic tech-
niques for the FGS formalism introduced in Sec. V, the pro-
cess of 1s-2s excitation, described above, is represented by
the Feynman graph depicted in Fig. 3.

Writing down the S-matrix element, corresponding to Fig.
3, we find

Sãa = �− i�3� �̄ã�x1��	1A	1
�JLM���x1�SFGS�x1x2��	2A	2

�J�L�M��

��x2�S�x2x3��	3A	3
�J�L�M���x3��a�x3�

�d4x1d4x2d4x3. �47�

Here �a�x� is the initial electron wave function �in the in

space�, �̄ã�x� is the Dirac-conjugated final state wave func-
tion �in the out space�, �	 are the standard Dirac matrices,
A	

�JLM� is the photon wave function with quantum numbers
JLM �12�, S�x1x2� is the ordinary electron propagator in the
Furry picture, and SFGS is the propagator defined by Eq. �41�.

The integration over the time variables in Eq. �47� in the
nonrelativistic limit and with neglect of Stark shifts of the
levels in an external electric field yields

Sãa = 2�i��� − 2����
nn1

�ã�AJLM
† �ñ	�ñ�n	

�
�n�AJ�L�M��n1	�n1�AJ�L�M��a	

�En − Ea − 2����En1
− Ea − ���

. �48�

In Eq. �48� we omitted the sum over m̃ in the FGS propaga-
tor �Eq. �41�� and kept only the term m= ñ having in mind
that ñ→n when the electric field is switched off. Keeping the
other terms m̃� ñ would mean the energy nonconservation
and would contradict to our basic assumption about the en-
ergy conservation in the weak field limit. More accurately,
m= ñ means that we keep summation over the degenerate
substrates; in case of hydrogen for n=2s ,2p we keep m= ñ

=2s̃ ,2p̃.
In Eq. �48� the last two matrix elements in the numerator

together with the last energy denominator after the summa-
tion over intermediate states n1 represent the ordinary two-
photon absorption amplitude, corresponding to the transition
from the state �a	 to the state �n	 in the absence of the electric
field. The resonance condition, as it was realized in the
experiment �1�, is

2�� = Ea� − Ea, �49�

where a=1s ,a�=2s. Then, setting in Eq. �48� n=a� , ñ= ã,
using Eq. �46�, integrating over �, and summing over angu-
lar momentum projections, except the initial Mi ,Mi� and final
Mf photon projections in the resonance approximation we
receive the following expression for the differential probabil-
ity of the process:

FIG. 3. The process of the two-photon excitation 1s-2s followed
by the delayed decay in an external electric field. The picture is
understood with respect to the frame of reference of the hydrogen
atom. The ordinary external and internal solid lines describe the
electron wave function and electron propagator for the bound elec-
tron in the absence of external electric field. The double internal
electron line represents the FGS electron propagator as described in
Fig. 2. The external double solid line corresponds to the electron
wave function in the external electric field. The two absorbed pho-
tons are the laser photons with frequencies �= 1

2 �E2s−E1s�, where
Ei are the energies of the atomic electron states in the absence of the
electric field. The notations n , ñ for the wave functions were intro-
duced in Sec. V.
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dWãa���� =
1

2�
Saa�J

2� ��� f�� i��� i�

�
Wãã�

em�JL���ã��a�	�2Wa�a
ab�JL,J�L��

�Ea� − Ea − 2���2 + 1
4�a�

2 d�� fd�� i�d�� id��, �50�

where Wa�a
ab�JL,J�L�� is the two-photon absorption probability

and Saa�J
2� ��� f�� i��� i� is the angular factor, similar to the factor in

Eq. �30� in case of one-photon scattering.
In case of the Doppler-free spectroscopy employed in �1�,

�� i�=−�� i. Taking into account the NR correction due to the
closest to a� neighbor level a� results in the expression simi-
lar to Eq. �37�,

dWãa���� =
1

2�
Saa�J

2� ��� f�� i��� i�
Wãã�

em�JL���ã��a�	�2Wa�a
ab�JL,J�L��

�Ea� − Ea − 2���2 + 1
4�a�

2 d�� fd�� i�d�� id�� +
1

2�
Saa�a�J

2� ��� f�� i��� i�

�2 Re� �ã��AJ
E,M��ã�	�ã��AJ

E,M��ã�	�ã��a�	��ã��a�	�ã���AJ�L�,J�L�
ab ��a	�a���AJ�L�,J�L�

ab ��a	

�Ea� − Ea − 2�� − i
2�a���Ea� − Ea − 2�� − i

2�a��
�d�� fd�� i�d�� id��. �51�

Here �ã���AJ�L�,J�L�
ab ��a	 , �a���AJ�L�,J�L�

ab ��a	 are the angular
reduced two-photon absorption amplitudes and
Saa�a�J

2� ��� f�� i��� i� is the angular factor, similar to the factor in
Eq. �38� in case of one-photon scattering.

VII. NR CORRECTIONS FOR THE FREQUENCY
MEASUREMENTS IN 1s-2s RESONANT HYDROGEN

EXPERIMENT

For moving further we have to choose the procedure for
the determination of the resonance photon frequency. In �5,6�
the evaluation of the maximum value of the frequency dis-
tribution was used for this purpose. As it was shown in �6�,
any other procedure �e.g., finding a “center of gravity” for a
line profile� would give the result close to the choice formu-
lated above. In case of the Lorentz profile all the methods of
defining �res give the same result,

�0
res = Ea� − Ea .

With our choice of the resonance frequency definition the
NR correction will look like

��NR = �max − �0
res, �52�

where �max corresponds to the position of the maximum of
the asymmetrical frequency distribution. In this section we
will investigate the two-photon transition in hydrogen �1�,

1s1/2�F = 1� + 2� → 2s1/2�F = 1� .

Here F is the total angular momentum for an atom, which
defines the hyperfine structure sublevel. The value K=1 for
the total angular momentum K of the two-photon system
with equal photon frequencies is strictly forbidden by the
Landau theorem �13�. Then the NR correction due to the
transition

1s1/2�F = 1� + 2� → 2s1/2�F = 0�

is forbidden because of the Landau theorem and main NR
contribution arises from the transition

1s1/2�F = 1� + 2� → 2p1/2�F = 1� .

Note that according to Eq. �38� this NR contribution van-
ishes for the nonpolarized initial photons. In experiments,
however, the incident laser light should have nonzero
polarization.

For deriving the NR correction we have to use expression
�51� where we have to set

a = 1s1/2�F = 1� ,

a� = 2s1/2�F = 1� ,

a� = 2p1/2�F = 1� .

In the weak electric field,

�ã = �a,

�ã� = �a� + ��a�,

�ã� = �a� − ��a�,

and the overlap integrals are

�ã��a�	 = �ã��a�	 = 1.

Here

� =
��ES�
�EL

is the Stark shift to the Lamb shift ratio. This ratio is 1 for
the field �=�c. For deriving the NR correction we set in Eq.
�51�

Ea� − Ea = �0
res,
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Ea� − Ea = Ea� − Ea� + Ea� − Ea = �0
res − �EL,

where

�EL = E2s1/2
− E2p1/2

� 103 MHz

is the Lamb shift. Here we assume that the hyperfine splitting
for the 2s, 2p levels is much smaller than Lamb shift.

The width �a� follows from the experimental conditions

�a� = �expt � 1 kHz.

The width

�a� = �2p � 100 MHz

is very large but still can be neglected in the corresponding
denominator of Eq. �26� compared to �EL. Insertion of the
wave functions �ã, �ã� and �ã� in the emission amplitudes
in Eqs. �50� and �51� yields

�ã��AJ
E,M��ã�	 = ���2p�1/2, �53�

�ã��AJ
E,M��ã�	 = ��2p�1/2. �54�

For the estimates of the NR corrections we omit the angular
factors in Eqs. �51� and �52�, assuming them to be of the
same order of magnitude. Then, performing the evaluation of
the maximum value in Eq. �51� with respect to �� we write

d

d��
� �2W1s,2s1/2

2�

��0
res − 2���2 + 1

4�expt
2

+ 2 Re� �W1s,2p1/2
2�

��0
res − 2�� − i

2�expt���0
res − � EL − 2���

��
= 0, �55�

where W1s,2s1/2
2� and W1s,2p1/2

2� are the two-photon transition
rates for the decay of 2s1/2 and 2p1/2 levels, respectively. We
should remind that the interference between two channels

1s1/2 + 2� → 2s1/2

and

1s1
2

+ 2� → 2p1
2

can arise in the differential �with respect to the angles� cross
section according to Eq. �41�.

In case of experiment �1�,

F0 = F� = F� = 1

�see Fig. 4�. The probability for the two-photon emission
W1s,2s1/2

em�2�� is very well known. The accurate nonrelativistic
value for this transition was obtained in �14�,

W1s,2s1/2
2��E1E1� = 1.32 � 10−3��Z�6 a.u.

It is assumed that �Z�1. The probability W1s,2s1/2
em�2�� was evalu-

ated recently numerically for all Z values �15�, 1�Z�100,
and analytically for �16� �Z�1. The result is

W1s,2p1/2
2� = W1s,2p1/2

2��E1M1� + W1s,2p1/2
2��E1E2�

= 2.907 � 10−5��Z�8 + 3.69 � 10−6��Z�8 a.u.

However, for our purposes we need the two-photon absorp-
tion probability calculated for the case of two photons of
equal frequencies,

� = �� = 1
2 �E2s − E1s� .

These probabilities can be easily obtained from the results in
�15,16� and are equal to

W1s,2s1/2
ab�2�� = 0.91 � 10−2��Z�6,

W1s,2p1/2
ab�2�� = W1s,2p1/2

ab�2�,�E1M1�� + W1s,2p1/2
ab�2��E1E2��

= 1.94 � 10−4��Z�8 + 0.887 � 10−4��Z�8.

Solving Eq. �55� and employing definition �52� yield

���NR� =
1

4

�expt
2

�EL
�W1s,2p1/2

ab�2��

W1s,2s1/2
ab�2�� �1/2

1

�
. �56�

Inserting all numbers in Eq. �56� and taking �=0.1 which
corresponds to the weak electric field �=47.5 V /cm, we ob-
tain the final result

���NR� � 10−5 Hz. �57�

This accuracy is still far from the recent experimental inac-
curacy estimate of 34 Hz �2�. However as it was stated in �1�
the refitment of the experimental techniques will allow one
to reach the better accuracy in the future.

In �10� it was incorrectly claimed that the NR correction
in case of deuterium can be several orders of magnitude
higher than in case of hydrogen due to the different selection
rules between the levels with the half-integer F values. In
reality these selection rules are the same as for the integer F
values for the transitions between the s states in any atoms
�i.e., for any isotopes of hydrogen atom, etc.�.

2s

2p

1s1/2

1/2

1/2

F=0

F=0

F=0

F=1

F=1

F=1

Main NR
contribution
for hydrogen
(K=2,1,0)

Basic
two-photon
transition(K=2,1,0)

NR corrections
forbidden for
hydrogen (K=1)

FIG. 4. Scheme of the levels for the two-photon 1s-2s transition
in hydrogen. The vertical double lines denote the two-photon tran-
sitions. The K numbers denote the total angular momentum for a
two-photon system, possible for the different two-photon
transitions.
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There exists another idea how to register the 2s level ex-
citation in the 1s-2s experiment �9�. This idea consists of the
registration of the 2s state ionization with the third laser
photon with the same frequency

�� = 1
2 �E2s − E1s� .

The energy of the three photons

3�� = 3
2 �E2s − E1s� = 9

16 a.u.

is higher than the ionization potential �E1s�=
1
2 a.u. The reg-

istration can be performed via the registration of outcoming
electron. The Feynman graph corresponding to this process
is depicted in Fig. 5.

This kind of registration means actually the integration
over the direction �� f. This eliminates fully the NR correc-
tions connected with the interference terms and makes these
corrections fully negligible.

VIII. CONCLUSIONS

First, the results of the measurement begin to depend on
the method of extraction of the frequency value from the
experimental line profile: the frequency value corresponding
to the maximum of the line profile will differ from the value
obtained for the center of gravity, etc.

Second, the results will depend also on the method of
excitation of atomic level, i.e., the excitation by photons will
provide the frequency value different from the value ob-
tained with excitation by electrons.

Third, the method of detection will also influence the
measured frequency value. In particular, as it follows from
Eq. �44� in case of 1s-2s excitation in hydrogen, the depen-
dence on both excitation and detection method is present.

Extracting from the experiment the frequency value “in-
variant” with respect to the different kinds of measurements
and characterizing pure atomic property one has to take into
account the NR corrections which should be considered as
specific systematic corrections in every particular type of
experiment.

Moreover, in case of 1s-2s experiment using another de-
tection scheme �e.g., three-photon ionization� one can fully
avoid the necessity to take into account the NR corrections.
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APPENDIX A: THE FORMAL PROOF OF THE ANGULAR
INDEPENDENCE IN EQ. (26)

Here we evaluate the scalar products

SJM
�s� ���� � ��A� JM

�s� · ������2 = �
�

�− 1���A� JM
�s� · �������A� JM

�s� · �����−�
� .

�A1�

First we introduce the expression for the spherical compo-

nents of the spherical photon wave function A� JM
�s� ����,

�A� JM
�M������� = �

ml	

CJM
J1 �ml	�YJml

�����
�	��. �A2�

�A� JM
�E������� = −
 J

2J + 1 �
ml	

CJM
J+1,1�ml	�YJ+1ml

�����
�	��

+
 J + 1

2J + 1 �
ml	

CJM
J−1,1�ml	�YJ−1ml

�����
�	��,

�A3�

where the spherical components of the photon spin vector are

�
�	�� = �	�. �A4�

We consider first the magnetic photons. The insertion of Eqs.
�A2� and �A4� in Eq. �A1� results

SJM
�M����� = �

�

�− 1�� �
ml,ml�

CJM
J1 �ml��YJml

����CJM
J1 �ml��̄�YJml�

� ���� .

�A5�

Then

�
Mf

SJMf

�M� ��� f� = �
Mf�

�
ml,ml�

CJMf

J1 �ml��CJMf

J1 �ml��̄�YJml
��� f�YJml�

� ��� f� .

�A6�

The orthogonality condition for the Clebsh-Gordan coeffi-
cients reads

�
Mf�

�− 1��CJMf

l1 �ml��CJMf

l�1 �ml��̄� = �ll��mlml�
. �A7�

Using Eq. �A6� for the l= l�=J we arrive at

�
Mf

SJMf

�M� ��� f� = �
ml

�YJm���� f�2 =
2J + 1

4�
, �A8�

i.e., the probability given by Eq. �26� does not depend on �� f.
The same proof concerns the dependence on �� i. The proof

FIG. 5. The Feynman graph corresponding to the process of
three-photon ionization of hydrogen atom. Here �jl are the quantum
numbers of the electron in continuous spectrum with the energy �

=3�− �E1s�=
1

16 a.u.

LABZOWSKY et al. PHYSICAL REVIEW A 79, 052506 �2009�

052506-12



for the electric photon follows again from Eq. �A7�, which
gives zero result for l� l�.

APPENDIX B: EXPRESSION FOR THE COEFFICIENTS
[EQS. (31), (34), (39), and (42)] VIA THE ANGLE

Choosing the direction of z axis in the photon momentum
space along the vector �i we obtain the following expression
for the coefficients �Eq. �30�� �for magnetic photons�:

SJj0j1
M �� f

�� =
�2�2J + 1�4

8�2j0 + 1� �
MfMi

�− 1�Mf+Mi�
K̂

�2K̂ + 1�

��J J K̂

0 0 0
�� J K̂ J

Mi 0 M̄i

��J J J

J K̂ J�
� �

K


2K + 1

4�
�J J K

0 0 0 �� J K J

Mf 0 M̄ f
�

��J J J

J K J�YK0�� f
�� � �

x

�2x + 1�

�
J J x

M̄ f Mf 0�� J J x

M̄i Mi 0�� J x J

j1 j0 j1
�2

.

�B1�

Here we have taken into account that according to formulas
�3�–�5� we represent operators AJMf

��� f�, AJMf�
��� f�, AJMi

��� i�,
and AJMi�

��� i� via spherical functions YJML
��� f�, YJML�

��� f�,
YJM̂L

��� i�, and YJM̂L�
��� i�. Then having combined the corre-

sponding functions into YKM��� f�, YK̂M̂��� i� and using equation

YK̂M̂��� i��� i↑↑z�=
2K̂+1
4� �M̂0 we can get rid from the direction �� i.

That is why there is no dependence of the �� i in Eq. �B1�. In
case of J=1, representing spherical functions in a standard
way,

YK0��� =
2K + 1

4�
PK�cos �� , �B2�

where �= ��� i�� f, PK�cos �� are Legendre polynomials, and

summing over momentum projections and K=0,2, K̂=0,2,
x=0,1 ,2, we arrive finally at Eq. �31�. Similarly we get ex-
pression �39�.

For the electric photon instead of Eq. �B1� we get

SJj0j1
E �� f

�� =
�2

8�2j0 + 1� �
MfMi

�− 1�Mf+Mi�
x

�2x + 1�� J J x

M̄ f Mf 0
�� J J x

M̄i Mi 0
�� J x J

j1 j0 j1
�2

��
KK̂


2K + 1

4�
�2K̂ + 1�YK0�� f

�� � �J2�2J + 3�2��J + 1 J + 1 K

0 0 0
��J + 1 J + 1 K̂

0 0 0
��J + 1 1 J

J K J + 1�
��J + 1 1 J

J K̂ J + 1� + J�J + 1��2J − 1��2J + 3��J − 1 J − 1 K

0 0 0
��J + 1 J + 1 K̂

0 0 0
� � �J − 1 1 J

J K J − 1�
��J + 1 1 J

J K̂ J + 1� − �4J2 + 6J�
�J2 + J��2J − 1��2J + 3��J + 1 J + 1 K

0 0 0
��J − 1 J + 1 K̂

0 0 0
�

� �J + 1 1 J

J K J + 1��J + 1 1 J

J K̂ J − 1� + 2J�J + 1��2J − 1��2J + 3��J − 1 J + 1 K

0 0 0
��J − 1 J + 1 K̂

0 0 0
�

� �J + 1 1 J

J K J − 1��J + 1 1 J

J K̂ J − 1� − �2J2 + J − 1�
�J2 + J��2J + 1��2J + 3��J − 1 J − 1 K

0 0 0
�

��J − 1 J + 1 K̂

0 0 0
� � �J − 1 1 J

J K J − 1��J + 1 1 J

J K̂ J − 1� + 2J�J + 1��2J − 1��2J + 3�

��J − 1 J + 1 K

0 0 0
��J + 1 J − 1 K̂

0 0 0
� � �J + 1 1 J

J K J − 1��J − 1 1 J

J K̂ J + 1�
− �2J2 + 3J + 1�
�J2 + J��2J + 1��2J + 3��J − 1 J − 1 K

0 0 0
��J + 1 J − 1 K̂

0 0 0
�

��J − 1 1 J

J K J − 1��J − 1 1 J

J K̂ J + 1� . �B3�

In case of J=1, performing the same operations as for the magnetic photon, we arrive at Eqs. �39� and �40�.
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