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The adiabatic approximation of time-dependent density-functional theory is studied in the context of non-
linear excitations of two-electron singlet systems. We compare the exact time evolution of these systems to the
adiabatically exact one obtained from time-dependent Kohn-Sham calculations relying on the exact ground-
state exchange-correlation potential. Thus, we can show under which conditions the adiabatic approximation
breaks down and memory effects become important. The hydrodynamic formulation of quantum mechanics
allows us to interpret these results and relate them to dissipative effects in the Kohn-Sham system. We show
how the breakdown of the adiabatic approximation can be inferred from the rate of change of the ground-state
noninteracting kinetic energy.
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I. INTRODUCTION

Time-dependent density-functional theory �TDDFT� pro-
vides an attractive approach to treat electron dynamics in the
nonlinear regime, where the solution of the many-electron
time-dependent Schrödinger equation �TDSE� is not possible
with the computational resources available today �1�. Impor-
tant applications such as correlated electron dynamics in the
presence of strong laser fields �2� crucially depend on meth-
ods like this. The benefit of TDDFT is mainly due to the fact
that it is a rigorous reformulation of the quantum-mechanical
many-body problem in terms of single-particle equations that
can be integrated with moderate computational effort. The
price to pay for this gain is the necessity to approximate the
unknown but uniquely defined time-dependent exchange-
correlation �xc� potential vxc�r , t�.

Most applications of TDDFT are based on an “adiabatic
approximation” in which the exact vxc�r , t� is replaced by an
existing ground-state density functional. However, even if
the exact ground-state xc potential is available for this pro-
cedure �adiabatically exact approximation�, one would still
introduce an error that will become important as soon as
nonadiabatic or “memory” effects are non-negligible. The
question of the breakdown of the adiabatic approximation is
thus of major importance for any TDDFT application �3–9�.
In practice, this problem is complicated further by the fact
that the exact ground-state xc potential vxc,0 is also unknown.
Hence, in most situations, e.g., when using the adiabatic lo-
cal density approximation �ALDA�, it is difficult to tell apart
the two possible sources of error: the adiabatic approxima-
tion of vxc and the spatial approximation of vxc,0. Finally, to
be able to identify any introduced error, an exact reference
solution is required.

It is exactly for these reasons that one-dimensional �1D�
two-electron singlet systems provide an invaluable tool to
study the validity range of any adiabatic approximation.
Here, both the exact reference solution and the adiabatically
exact approximation can be obtained �5,10,11�. Hence, we
will focus on these systems to investigate the conditions for
the breakdown of the adiabatic approximation. We find that
nonadiabatic effects become important when the time-
dependent density experiences rapid deformation. Based on

this observation we derive a simple criterion for the break-
down of the adiabatic approximation related to the ground-
state noninteracting kinetic energy. Both the observations
and the criterion can be very well interpreted when one is
taking a hydrodynamic point of view on the two-electron
system.

The hydrodynamic formulation of quantum mechanics or
quantum fluid dynamics �QFD� dates back to Madelung’s
reformulation of the single-particle TDSE in 1926 �12�. Dur-
ing the following years, further development of the theory
with extensions to many-body systems has taken place
mainly within condensed matter and nuclear physics �see,
e.g., Refs. �13,14� and references therein�. In the early 1980s
QFD formulations �15� were among the immediate predeces-
sors of TDDFT �16,17�. The latter finally provided rigorous
existence and uniqueness proofs �16,18� both for TDDFT
and QFD, i.e., the well-defined closure of the respective sys-
tem of equations. Since then hydrodynamic concepts have
proven very valuable to obtain a better understanding of col-
lective electron dynamics �e.g., Refs. �19,20�� and even to
find exact constraints on the properties of the exact xc po-
tential �e.g., Ref. �21��. Many approaches to go beyond the
adiabatic approximation mentioned earlier are based on hy-
drodynamical ideas, such as current density-functional
theory �22,23� and TDDFT in a comoving Lagrangian refer-
ence frame �24–26�. Only recently, QFD for the general
many-body problem has been cast in a very compact formu-
lation for density and fluid velocity based on a rigorous mi-
croscopic expression of the exact stress tensor �24–26�. The
latter approach has received much attention lately �27–29�,
providing a very intuitive way to assess many-electron phe-
nomena. In this paper, we will argue that it is also suitable to
analyze the role of memory effects and the validity regime of
the adiabatic approximation in TDDFT.

It is found that the QFD formulation valid for the systems
studied here is formally similar to well-known equations of
classical hydrodynamics. This allows for a very intuitive ex-
planation of the breakdown of the adiabatic approximation in
TDDFT. Rapid density compression and rarefaction translate
into strong gradients of the velocity field. The latter are
linked to dissipative effects in the electron liquid, which are
not correctly accounted for when memory effects are ne-
glected. On the other hand, electron motion with no or slow
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density deformation is properly described by the adiabatic
approximation.

Our paper is organized as follows. In Sec. II we provide
the basic theory for the 1D two-electron singlet system
within Schrödinger quantum mechanics and TDDFT, define
the adiabatic approximation, and list the required inversion
concepts. We introduce the hydrodynamic point of view in
Sec. III with further details provided in Appendixes A–C. In
Sec. IV we present our results for the breakdown of the
adiabatic approximation and its relation to dissipative effects
before finally offering a summary and conclusions in Sec. V.

II. QUANTUM MECHANICS OF THE TWO-ELECTRON
SYSTEM

A. Governing equations

The ground state �0�r1 ,r2� of the two-electron singlet
system follows from the solution of the interacting static
Schrödinger equation �SE� H0�0=E0�0, with the Hamilton
operator

H0 = �
j=1,2

�−
�2

2m
� j

2 + vext,0�r j�� + Vee��r1 − r2�� . �1�

Here vext,0�r j� is the external potential and the symmetric
electron-electron interaction is given by Vee��r1−r2��. The
time evolution of a general symmetric wave function
��r1 ,r2 , t� on the other hand is obtained from the solution of
the TDSE, i��t�=H�, governed by

H = �
j=1,2

�−
�2

2m
� j

2 + vext�r j,t�� + Vee��r1 − r2�� �2�

with the time-dependent external potential vext. The exact
electron density, e.g., in the time-dependent case, can be ob-
tained by

n�r,t� = 2	 ���r,r�,t��2d3r�. �3�

For the one-dimensional case, i.e., ��z ,z� , t�, the TDSE can
be integrated numerically at bearable cost. To avoid the Cou-
lomb singularity in 1D we employ the soft-core interaction
W�z�=e2 /
z2+1 for Vee �always� and for the electron-
nucleus interaction if we are dealing specifically with the
helium atom. This approximation has been shown to repro-
duce the essential features of correlated electron dynamics
�30–35�. It is also possible in one dimension to numerically
invert the SE �11� to find vext,0�z� for a given ground-state
density n0�z�. This will be useful for the reconstruction of
certain quantities relevant in the context of TDDFT �see be-
low�.

The standard Kohn-Sham �KS� density-functional theory
�DFT� representation of the two-electron singlet system con-
sists of two noninteracting particles in the same spatial or-
bital ��r�. For the ground state this orbital is the lowest
eigenstate �0 of the stationary Kohn-Sham equation �KSE�,

�−
�2

2m
�2 + vs,0�r���i�r� = �i�i�r� , �4�

where the effective potential vs,0 is a unique functional of the
density n0�r�=2��0�r��2 by virtue of the Hohenberg-Kohn
theorem �36�. Similarly the time-dependent Kohn-Sham
equation �TDKSE�,

i��t��r,t� = �−
�2

2m
�2 + vs�r,t����r,t� , �5�

governs the evolution of a general orbital ��r , t�. Here the
unique relation between vs and n�r , t�=2���r , t��2 is estab-
lished by the Runge-Gross theorem �16�. Naturally, it is pos-
sible to calculate eigenstates of the KSE and to integrate the
TDKSE. Furthermore, both equations can be inverted. This
is especially straightforward for the KSE where, for any
given density n�r , t�,

vs,0�r,t� =
�2

m
�1

4

�2n�r,t�
n�r,t�

−
1

8
��n�r,t�

n�r,t� �2� . �6�

As this rule to construct vs,0 relies only on the instantaneous
density, t just takes the role of a parameter here. On the other
hand the inversion of the TDKSE �37,38� works according to

vs�r,t� =
�2

m

�2��r,t�
2��r,t�

+ i�
�̇�r,t�
��r,t�

=
�2

m
1

4

�2n�r,t�
n�r,t�

−
1

8
��n�r,t�

n�r,t� �2�
− ��̇�r,t� +

�

2m
����r,t��2�

= vs,0�r,t� − ��̇�r,t� +
�

2m
����r,t��2� , �7�

i.e., it requires both density and phase information of
��r , t�=
n�r , t� /2ei��r,t�.

B. xc potential of TDDFT

The xs potential of TDDFT is related to the xc potential
vxc according to

vs�r,t� = vext�r,t� + vh�r,t� + vxc�r,t� �8�

or, for the ground-state situation �where t is again just a
parameter�,

vs,0�r,t� = vext,0�r,t� + vh�r,t� + vxc,0�r,t� , �9�

where vh�r , t�=�n�r� , t�Vee��r−r���d3r� is the Hartree poten-
tial, which is a local-in-time functional of the density. For the
two-electron singlet system the exchange contribution to vxc

simplifies to vx=− 1
2vh so that in the following we will often

consider vc separately from vhx=vh+vx= 1
2vh. When the ini-

tial state is the ground state, the xc potential at any given
time t is a nonlocal functional of the exact time-dependent
density n at all previous times, i.e., vxc�r , t�
=vxc�n�r� , t����r , t� where t�� t. This dependency on the his-
tory of the density is usually referred to as ‘‘memory effects’’
in the xc potential �1,39�.
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Most TDDFT applications rely on the adiabatic approxi-
mation, which is defined by treating the time-dependent den-
sity at a fixed time t= t0 as a ground-state density, i.e.,
n�r , t0�=n0�r�. Then, in the TDKSE vxc�r , t0� is substituted
by one of the existing approximations of the ground-state xc
potential. This procedure does not only lead to the loss of
any memory effects but is also approximate with respect to
the spatial nonlocality of the xc potential.

To treat the full spatial nonlocality exactly one needs to
replace these approximations for vxc�r , t0� by the exact
vxc,0�n0�r����r� of ground-state DFT. This defines the adia-
batically exact approximation which exclusively neglects the
memory effects. Only recently it has become possible to con-
struct this approximation for 1D two-electron systems �11�.
In this approach a numerical representation of the exact and
fully nonlocal vxc,0 is obtained from Eq. �9� using the above-
mentioned KSE- and SE-inversion schemes to calculate vs,0
and vext,0 of the ground-state systems corresponding to n0.

Thus, in the following, we can propagate the TDKSE in
the adiabatically exact approximation using at every time
step the vxc,0 self-consistently obtained from the calculated
density �AE-TDKSE scheme�. The resulting observables can
then be compared to their exact counterparts provided by the
solution of the TDSE for the same process allowing us to
assess the validity of the adiabatically exact approximations.

C. Exact properties of vxc

Several properties of the exact vxc have been derived over
the years. One of them is the zero-force theorem �40�,

	 n�r,t� � vxc�r,t�d3r = 0, �10�

which states that, as a consequence of Newton’s third law,
the net xc force exerted on the system as a whole is zero.
This is automatically fulfilled for the adiabatically exact vxc,
which is at any time t the exact ground-state xc potential
corresponding to the instantaneous density. For the two-
electron singlet system studied here, the zero-force theorem
holds also separately for both the Hartree-type exchange and
the correlation part of vxc.

Another important constraint is provided by the harmonic
potential theorem �HPT� �21� for interacting electron dynam-
ics in a parabolic potential with a time-dependent dipole per-
turbation, i.e., vext�r , t�= �k /2�r2+E�t� ·r. It can be shown
that for this vext and any number of electrons N, the electron
density is rigidly translated according to n�r , t�=n0(r−X�t�).
Here, X�t�= �1 /N��rn�r , t�d3r is the center-of-mass coordi-
nate obeying

mẌ�t� = − kX�t� − E�t� . �11�

Thus, for k /m¬�0
2 and, e.g., E�t�=E0 sin��ft� and with

X�0�= Ẋ�0�=0,

X�t� = E0
1

�0
2 − �f

2��f

�0
sin��0t� − sin��ft�� . �12�

For TDDFT to satisfy the HPT, the xc potential needs to
rigidly follow the rigidly translated density, a feature also

termed generalized translational invariance �40�. When the
initial state of the system is the ground state, this means that
vxc,0 is rigidly translated with the density, i.e., the adiabati-
cally exact vxc is valid exactly for HPT motion. Later on,
when we want to establish a criterion for the validity regime
of the adiabatic approximation, the fact that HPT motion
always should fulfill this criterion will be of importance.

To shortly illustrate the important concept of HPT motion
and to test the accuracy of the numerical realization of the
AE-TDKSE scheme, we have performed calculations for a
1D Hooke’s atom. We show in Fig. 1 how theory �Eq. �12��
and numerical results both from the exact TDSE and the
AE-TDKSE schemes provide exactly the same evolution of
X�t�. This shows that the AE-TDKSE scheme, which by defi-
nition should be able to reproduce HPT motion, is working
very accurately. It should also be noted that the HPT theorem
is valid not only in the linear regime but also for strong
perturbation amplitudes E0, as used in the test calculation on
which Fig. 1 is based.

In the following, we will consider three different 1D
bound systems: the “anharmonic Hooke’s atom” character-

ized by vext,0�z�= �k /2��z2+ k̃z6� �A6-Hooke� or vext,0�z�
= �k /2��z2+ k̃z4� �A4-Hooke� with k=0.1 a.u. and k̃
=0.01 a.u. �41� �we use Hartree atomic units unless stated
otherwise�. The anharmonic term has been introduced to de-
liberately avoid HPT motion when the dipole field ezE�t� is
applied �5�. The third system studied is the soft-core helium
atom �11,30,34,35� characterized by the ground-state poten-
tial vext,0�z�=−2W�z�. The different systems are summarized
in Table I. The initial state for any time-dependent process is
the ground state of the particular system.

III. HYDRODYNAMICS OF THE TWO-ELECTRON
SYSTEM

After the inspection of the relevant equations of quantum
mechanics we will now turn to their hydrodynamic formula-
tion. For our purposes it will suffice to deal with the nonin-

FIG. 1. Time evolution of X�t� for the 1D two-electron Hooke’s
atom with vext�z�= �k /2�z2+E0z sin��ft�, where k=0.1 a.u.,
E0=0.447 a.u., and �f=1.870 a.u. The TDSE �dashed� and
AE-TDKSE �dotted-dashed� curves both lie on top of the dotted
one given by Eq. �12�. For comparison, we also show E�t�
=E0 sin��ft� �thin solid line�.
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teracting TDKSE system, which for the exact vxc produces
the same density as the interacting TDSE system. The QFD
formulation of the TDKSE presented in the following allows
for a more intuitive interpretation of the adiabatic approxi-
mation guided by well-known concepts of classical fluid dy-
namics. A short review of the classical theory is provided in
Appendix A.

A. Governing equations

As mentioned before, the single-particle KS wave func-
tion ��r , t�=
n�r , t� /2ei��r,t� is completely determined by the
density n and the phase �. This means that we can transform
the KSE system into a set of hydrodynamic equations for the
density n and the KS velocity field,

us�r,t� = js�r,t�/n�r,t� =
�

m
� ��r,t� , �13�

where js is the KS current �42� by noting that us contains the
same information as �. The transformation closely follows
the one given by Madelung for the single-particle
Schrödinger equation �12,43�. The details are provided in
Appendix B. Finally, one arrives at the hydrodynamic set of
equations consisting of the continuity equation

Dtn = − n � · us, �14�

the momentum equation

mDtusj = −
1

n
�i�Psij + �ijpc� − � j�vhx + vext� �15�

�we use the Einstein convention of implicit sums �i=1
3 over

products with the same index i�, and the Poisson equation

	vhx = − 2
e2n . �16�

Here Dt=�t+us ·� is the convective derivative and

Psij =
�2

4m
� ��in��� jn�

n
− �ij�

2n� �17�

is the noninteracting stress tensor �24–26�. The correlation
contribution pc is defined by �pc=n�vc. The formal closure
of the hydrodynamic set of equations is proven by the
Runge-Gross theorem �16�, which implies that pc exists and

is uniquely defined by the density n, i.e., we have an un-
known but well-defined constitutive relation pc�n�.

The equations for the two-electron singlet system closely
resemble those derived by Madelung �12� for the single par-
ticle. Also Psij has the same form as the quantum stress ten-
sor of single-particle QFD �14,28�. This is a consequence of
the singlet property of the system leading to two spatially
identical KS orbitals. The only differences are due to the
appearance of the correlation contribution pc and the
Hartree-exchange potential vhx.

For the 1D situation that we study, where us denotes the z
coordinate of the KS velocity, one arrives at

Dtn = − n�zus �18�

and

mDtus = −
1

n
�zp − �z�vhx + vext� , �19�

where Dt=�t+us�z. Now, vhx�z , t�=1 /2�n�z� , t�W��z−z���dz�
and the tensor in Eq. �15� has collapsed into a generalized
scalar pressure

p = ps,0 + pc �20�

with the noninteracting pressure �29�

ps,0 =
�2

4m
� ��zn�2

n
− �z

2n� . �21�

Note that �zps,0=−n�zvs,0.
At this point it is instructive to pause for a moment and

have a look at the derived three-dimensional �3D� and 1D
QFD equations. They are exact reformulations of the
TDKSE, i.e., when the exact vc is available, they will have
the exact time-dependent density as solution. The latter is of
course also provided by the QFD equations for the interact-
ing system, which can be derived from the TDSE �24–26�.
However, the exact KS velocity us and the exact interacting
velocity u do not necessarily agree in three dimensions. This
is a consequence of the open question whether KS and inter-
acting current are identical �42�. Of course in one dimension
the relation us=u holds, allowing us for the time-dependent
process at hand to identify u from the TDSE with the exact
us. The latter can then be compared with the adiabatically
exact us stemming from the corresponding AE-TDKSE cal-
culation.

B. Contributions to the generalized pressure

Looking at Eqs. �18� and �19� we notice a strong struc-
tural similarity to the 1D versions of the classical hydrody-
namic equations reviewed in Appendix A. To push the anal-
ogy even further we recall that the classical stress tensor
�Appendix A� contains a �hydro�static density-dependent
pressure part and a dynamic velocity-dependent viscous con-
tribution. As we will show in the following, the same classi-
fication holds for the generalized pressure of Eq. �20�.

We start by splitting up the correlation pressure according
to pc= pc,0+ pc,mem, where the former part stems from the
adiabatically exact vc,0 while the latter includes all the

TABLE I. Ground state properties of 1D two-electron singlet
systems studied in this paper. The ground-state noninteracting ki-
netic energy Ts,0 is defined in Eq. �23�. The lowest KS excitation
frequency �s,1 is determined from the 1D version of Eq. �4�. The

breakdown threshold Ṫs,0
crit is defined in Eq. �25�. All values are in

Hartree atomic units.

System vext,gs�z� �s,1 Ts,0�0� Ṫs,0
crit

A6-Hooke k /2�z2+ k̃z6� a 0.267 0.156 0.007

A4-Hooke k /2�z2+ k̃z4� a 0.192 0.108 0.003

Helium −2W�z� 0.479 0.277 0.021

ak=0.1, k̃=0.01.
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memory effects with respect to n. While ps,0 and pc,0 exclu-
sively depend on the instantaneous density �nonlocal in
space and local in time�, the situation for pc,mem requires a
closer inspection.

Due to the relation between KS velocity and density as
provided by Eq. �14� the nonlocal-in-time relation to the den-
sity in pc,mem�n� can be re-expressed in terms of a depen-
dency on the initial state density ngs and on the history of the
KS velocity us. This follows from a “kinematic” solution of
Eq. �14�, where from a prescribed velocity field us�z , t�� for
0� t�� t one can always reconstruct ṅ�z , t�� on the same
interval. Together with ngs�z� this fixes n�z , t�� and hence
pc,mem for 0� t�� t. As a consequence pc,mem�n� is replaced
by p̂c,mem�ngs ,us�, which is a functional of ngs �nonlocal in
space� and velocity us �nonlocal in space and time�.

The HPT motion mentioned earlier has a very intuitive
form in the hydrodynamic picture: rigid motion of the den-
sity corresponds to purely advective motion without defor-
mation, i.e., a continuity equation with vanishing right-hand
side �rhs� or �zus=0 �see Appendix A�. Thus, the velocity is

constant in space following us= Ẋ�t�. In the momentum equa-
tion the nonlinear term of the convective derivative disap-
pears and the xc pressure is replaced by its adiabatically
exact contribution. This means that p̂c,mem�ngs ,us�=0 here,
telling us that p̂c,mem is in fact a functional of �zus, i.e., we
actually have p̃c,mem�ngs ,�zus�. The latter observation is a
consequence of the Galilean invariance of the stress tensor
�23,44�, of which p is the scalar “leftover” in one dimension.

Thus ps,0 and pc,0 clearly provide the ground-state contri-
bution or hydrostatic pressure �29� in Eq. �20� �recall also
that �zps,0=−n�zvs,0�, while the dynamical component can
only stem from p̃c,mem.

IV. BREAKDOWN OF THE ADIABATIC APPROXIMATION

It has already been shown that for certain time-dependent
processes, the exact and adiabatically exact xc potentials cor-
responding to a given exact density will be different �11�. To
demonstrate that these memory effects have an observable
influence on the dynamics, we have performed self-
consistent AE-TDKSE calculations for several processes
with and without nonadiabatic effects. The obtained results
can then be compared with the exact TDSE solution. We
concentrate on the anharmonic Hooke system �cf. Table II�,

which is especially suitable to analyze deviations from HPT
motion while still profiting from the localization of the den-
sity due to the strong confinement provided by the parabolic
potential.

A. A6-Hooke process without memory

We start with the A6-Hooke I process, for which the driv-
ing field intensity and frequency are in the range of typical
strong laser processes �cf. Table II�. Figures 2 and 3 show the
evolution of the Hartree energy Eh�t�=1 /2�n�z , t�vh�z , t�dz
and of the ground-state noninteracting kinetic energy Ts,0�t�
for both the TDSE and AE-TDKSE calculations. We choose
these observables for monitoring memory because of their
direct scalar dependence on the density �5�. Ts,0�t� is defined
as

Ts,0�t� =
�2

m
	 ��z�0�z,t��2dz , �22�

where �0�z , t�=
n�z , t� /2 and thus,

Ts,0�t� =
�2

8m
	 ��zn�z,t��2

n�z,t�
dz , �23�

with similar relations for the 3D case. The good agreement
of the TDSE and AE-TDKSE results indicates that the adia-

TABLE II. Time-dependent processes of the A6-Hooke and A4-
Hooke systems as given in Table I with vext�z , t�=vext,gs�z�
+ezE0 sin��ft�. Intensity I in W /cm2; E0 and �f in Hartree atomic
units. The memory character of a process follows from the devia-
tion of the TDSE- and AE-TDKSE-solutions in time �see text�.

Process I E0 �f Memory

A6-Hooke I 7�1014 0.141 0.029 No

A6-Hooke II 7�1015 0.447 1.870 Yes

A4-Hooke I 7�1014 0.141 0.029 No

A4-Hooke II 7�1015 0.447 1.870 Yes

A4-Hooke III 7�1015 0.447 0.935 Yes

FIG. 2. Time evolution of Eh for A6-Hooke I system calculated
with TDSE �solid line� and AE-TDKSE �dotted line�.

FIG. 3. Time evolution of Ts,0 for A6-Hooke I system calculated
with TDSE �solid line� and AE-TDKSE �dotted line�.
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batically exact approximation is valid here. Figure 4 shows
snapshots of typical densities and velocities during this pro-
cess. Although there is not only bulk motion but also some
density deformation going on, it apparently happens on a
slow enough time scale for the adiabatic approximation to
remain valid. The slowness of the density deformation cor-
responds to almost flat velocity profiles according to Eq.
�18�, indicating that the instantaneous velocity is a more suit-
able quantity in this context than the instantaneous density
deformation. Note that in the 1D situation studied in this
paper density deformation always corresponds to density
compression on the one hand and rarefaction on the other as
at least two dimensions are required for a finite fluid volume
to deform its shape while conserving its volume.

B. A6-Hooke process with memory

Now we turn our attention to a process at higher intensity
and frequency �A6-Hooke II process� and repeat the analysis
with respect to the energies. Figures 5 and 6 show the evo-

lution of Eh and Ts,0 for both the TDSE and AE-TDKSE
calculations. In striking contrast to the situation before, we
can see that around t�3.5 a.u. the solutions start to differ.

The different density evolutions in the two calculations
indicate the insufficiency of the adiabatic approximation for
this process. To analyze the conditions of the breakdown, it
is instructive to compare the evolution of the density and
velocity field for TDSE and AE-TDKSE calculations during
the time interval where the energies start to deviate �Figs.
7–9�. As in the A6-Hooke I process, the density gets de-
formed compared to HPT motion. But now this deformation
is happening more rapidly, i.e., strong gradients appear in the
velocity. This is a situation that is completely unlike the HPT
motion described earlier as it leads to regions of either rapid
density compression or rarefaction. Such behavior has been
discussed in several earlier works: strong velocity gradients
were shown to lead to the breakdown of the approximation
of Vignale, Ullrich, and Conti �23� for the description of
collective intersubband transitions in quantum wells �45� and
of s→p transitions in atomic systems �46�. Similarly, it has
been observed that rapid and strong density deformation

FIG. 4. Snapshots of exact density n and velocity us during
A6-Hooke I process. According to Eq. �13� the velocity increases as
the density drops �e.g., around z=4 a.u.�. The resulting velocity
gradients in regions of very low density are discussed further below.

FIG. 5. Time evolution of Eh for A6-Hooke II system calculated
with TDSE �solid line� and AE-TDKSE �dotted line�.

FIG. 6. Time evolution of Ts,0 for A6-Hooke II system calcu-
lated with TDSE �solid line� and AE-TDKSE �dotted line�.

FIG. 7. Comparison of densities and velocities from TDSE
�solid line� and AE-TDKSE �dotted line� schemes at t=3.36 a.u.
for A6-Hooke II system.
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leads to failure of the ALDA �7� and the time-dependent
Krieger-Li-Iafrate approximations �9� in simple model sys-
tems. However, all these approaches are approximate not
only in their nonlocal-in-time dependency on the density but
also with respect to nonlocality in space. The adiabatically
exact approximation which we use here allows us to inves-
tigate the exclusive relation between strong density deforma-
tion and memory effects while treating the nonlocality in
space exactly.

The appearance of strong gradients in the velocity field
has been related to a transition of the system from mostly
collective toward single-particle-like motion �7,45�. How-
ever, for the two-electron singlet case this concept has to be
refined as the motion here is always collective in the sense
that only two equivalent orbitals exist and evolve exactly in
the same way. Hence the velocity gradients cannot arise from
differences in the single-particle currents, which were iden-

tified to be a reason for noncollective motion in systems with
more electrons �47�. So, for the two-electron singlet system,
it might be more appropriate to regard velocity gradients as a
deviation from rigid “bulk motion” of the density distribu-
tion.

So why and how are strong velocity gradients related to
the breakdown of the adiabatic approximation? It is instruc-
tive to now look back at the essential features of the hydro-
dynamic equations derived above. In the adiabatic approxi-
mation, where p̃c,mem�ngs ,�zus�=0, we are dealing with a
momentum equation that strongly resembles the Euler equa-
tion, i.e., no velocity-dependent components appear on the
rhs as would be the case for, e. g., the Navier-Stokes equa-
tion. Thus, it is immediately clear that as soon as strong
velocity gradients develop, the nonlinear term us�zus on the
left-hand side will become dominant for the time evolution
because there is no term p̃c,mem�ngs ,�zus� on the rhs, which
could balance it. Hence, one should indeed expect that the
solutions of calculations with and without p̃c,mem�ngs ,�zus�
start to deviate in such a situation.

From the analogy of p̃c,mem�ngs ,�zus� to the viscous stress
contributions in classical hydrodynamics it follows that its
reaction to strong velocity gradients is, at least to leading
order, of dissipative nature. Here, the term dissipation spe-
cifically refers to the dissipation of classical �collective� ki-
netic energy through a diffusive term in the momentum equa-
tion, i.e., the nonadiabatic term, p̃c,mem, can lead to
dissipation of the velocity field’s kinetic energy. The latter
does not disappear from the system but can be transferred to
other internal energy components. It should be mentioned
that further contributions to p̃c,mem�ngs ,�zus� may also lead to
energy injection. Nonadiabatic effects of velocity-dependent
contributions have also been shown to be connected to en-
tropy production and irreversible relaxation in infinite sys-
tems �48�.

Generally, there seems to be a tendency of the AE-
TDKSE solution to lead to more pronounced gradients than
the TDSE �cf. Figs. 8 and 9�. This appears quite reasonable,
as it is well known that due to the nonlinear convective term
us�zus, the 1D Euler equation can build up discontinuities in
the velocity field �49�. This effect can be balanced by a dis-
sipative velocity-dependent term on the rhs, as frequently
studied in one dimension in the context of the viscous Burg-
er’s equation �49�. However, due to the nature of the adia-
batic approximation, any velocity-dependent term on the rhs
of Eq. �19� is excluded. Thus, a “smoothing” or damping
effect on the buildup of velocity gradients is not available in
this situation. The absence of such a mechanism does gener-
ally not pose a problem for a quantum system, as disconti-
nuities in the �not observable� velocity just signal kinks in
the phase �cf. Eq. �13��. But here, it will clearly make the
phase of the adiabatically exact system start to differ from
that of the exact system, leading to a different time evolution
of the whole process and thus to the breakdown of the adia-
batic approximation.

We have seen that the development of strong gradients in
the velocity will threaten the validity of the adiabatic ap-
proximation. One should also note that the main effect of this
feature on the observable quantity of interest, namely, the
density n, is due to the rhs of the continuity equation �Eq.

FIG. 8. Comparison of densities and velocities from TDSE
�solid line� and AE-TDKSE �dotted line� schemes at t=4.20 a.u.
for A6-Hooke II system.

FIG. 9. Comparison of densities and velocities from TDSE
�solid line� and AE-TDKSE �dotted line� schemes at t=5.46 a.u.
for A6-Hooke II system.
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�18��. This indicates that the effect is weighted by the density
�n�zus�, showing that the strong gradients might be less im-
portant in regions where the density is small. Note that in the
limit of vanishing density the definition of the velocity
breaks down anyway �28�. In a way, one could also regard
those parts of the flow where the rhs of Eq. �18� vanishes due
to vanishing n and/or �zus as approximately incompressible
and hence not problematic for the adiabatic approximation.
In these regions the density is just advected by the velocity
field as a whole without any deformation happening �cf. Ap-
pendix A�. An important limiting case is of course electron
motion according to the harmonic potential theorem, where
�zus vanishes exactly and, as stated above, the adiabatic ap-
proximation is exactly valid.

C. Breakdown criterion

While the obtained results and the hydrodynamic argu-
ment provide us with a good qualitative understanding of the
adiabatic approximation, the appearance of strong velocity
gradients does not offer a very practical criterion to deter-
mine when its breakdown will actually occur. Ideally one
would like to infer already from the type, frequency, and
strength of the applied perturbation whether an adiabatic ap-
proach is justified. However, facing the whole scope of pos-
sible strong field excitations, it seems too ambitious to pre-
dict the appearance of strong density gradients just from
looking at vext�z , t�. Instead, we will in the following present
a simple criterion that will tell us, for an ongoing time-
dependent KS calculation, when the adiabatic approximation
is most certainly breaking down and the density evolution
will start to differ from the exact one.

A suitable criterion that is based on the density should be
sensitive to its rapid deformation, which, as shown above,
corresponds to strong velocity gradients in regions of finite
n. To this end, we turn back to Ts,0, which basically provides
an integral measure of the curvature and hence the deforma-
tion of the instantaneous density. As we are not interested in
the absolute deformation of the density but rather how rap-
idly it changes in time, it is advantageous to look at

Ṫs,0 = −	 js�zvs,0dz

= −	 nus�zvs,0dz

=	 us�zps,0dz

= −	 ps,0�zusdz . �24�

There are several additional reasons why this quantity might
be suitable for a memory criterion: it has been shown �5� that
time derivatives of energy components can indicate memory

effects. Additionally, Ṫs,0 is based on just the orbitals, i.e., it
is always available in any time-dependent KS scheme. Fur-

thermore, we see that Ṫs,0 provides an integral measure of the
velocity gradient �zus weighted with the noninteracting pres-

sure ps,0. The latter quantity vanishes in regions where the
density falls off to zero and hence ensures that velocity gra-

dients in regions of low density will contribute less to Ṫs,0.
Finally, Ts,0 can be regarded as a quantity intimately related
to the ground-state character of a given density. The latter is
expected to change rapidly in any nonadiabatic process.

Another attractive feature of Ṫs,0 is that in the limit of

HPT motion without deformation, Ṫs,0 vanishes exactly as
�zus=0 in Eq. �24�. Note that this property is shared by, e.g.,

Ėh, but the latter is much more sensitive to the density dis-
tribution in space than to its deformation.

In the following we will define an approximate upper

bound for �Ṫs,0�t�� of an ongoing time-dependent process that
is still adiabatic. This bound is provided by the ratio

Ṫs,0
crit =

Ts,0�t = 0�
�mem , �25�

where Ts,0�t=0� is the initial value of the ground-state non-
interacting kinetic energy of the system under study. �mem is
the memory time scale defined in the following way: as soon
as a process is happening on the time scale �mem �or on
shorter time scales�, it is expected to be no longer adiabatic.
To fix �mem we consider the limit of the linear response of the
system. Here memory is known to become important as soon
as the considered process takes place at a frequency � at
which the xc kernel, �vxc�n� /�n, shows significant frequency
dependence �1,4�. As the xc kernel is composed of the in-
verse response functions of the interacting and the noninter-
acting systems, it will “inherit” their frequency dependence.
This means that a good estimate for an upper bound for the
frequency range where the xc kernel is almost independent
of � is provided by the lowest occurring transition frequency
�50�. For the systems studied here this is the lowest KS tran-
sition energy �s,1= ��1−�0� /� �cf. Table I�. Thus it makes
sense to define �mem=2
 /�s,1. Consequently an approximate
upper bound for the validity of the adiabatic approximation

for a specific process is provided by �Ṫs,0�t�� Ṫs,0
crit. The pos-

sibility to extend this criterion to the case of more than two
electrons in three dimensions is discussed in Appendix C.

Figure 10 shows the exact evolution of Ṫs,0�t� for the two

A6-Hooke systems together with the upper bound for �Ṫs,0�t��
according to Eq. �25�. Ṫs,0�t� differs strongly for both pro-
cesses and the proposed criterion clearly separates both re-
gimes.

Figure 11 shows Ṫs,0�t� for a larger data set of TDSE
calculations for the A6-Hooke system �cf. Table III�, where
the memory character of each process has been determined
by comparing vc and vc,0 obtained from the inversion
schemes. Although the applied dipole fields vary strongly
with respect to E0 and �f, the criterion seems to hold in a
large part of the parameter space. Note that the procedure
used here to determine memory effects is not completely
equivalent to the approach presented before. Therefore, the
data shown in Fig. 11 should be seen more as a trend for the
applicability of the adiabatic approximation with respect to
the parameters E0 and �f for a given system. These results
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also indicate that Ṫs,0
crit provides an upper bound for �and not

the maximum of� the �Ṫs,0�t�� that can occur during a still

adiabatic process. On the other hand with �Ṫs,0�� Ṫs,0
crit the

adiabatic approximation is certainly breaking down.
To show the applicability of the criterion to different sys-

tems we consider the A4-Hooke I–III processes. Figure 12

shows the exact evolution of Ṫs,0�t� for the three processes

together with the appropriate criterion. Here again, �Ṫs,0�t��
� Ṫs,0

crit correctly indicates memory effects for A4-Hooke III

process. The regime �Ṫs,0�t�� Ṫs,0
crit covers both the adiabatic

A4-Hooke I process at almost vanishing �Ṫs,0� and the nona-

diabatic A4-Hooke II process with relatively high �Ṫs,0�.
These findings highlight once more that Ṫs,0

crit has the charac-
ter of an approximate upper bound for the adiabatic regime.

For completeness we also show in Fig. 13 three different
processes in the helium atom studied previously �11�. Al-
though the helium system differs qualitatively from the an-
harmonic Hooke case and the studied processes are of differ-
ent types the criterion works similarly well here.

V. CONCLUSION

We have studied the conditions for the breakdown of the
adiabatic approximation in TDDFT. To allow for a numeri-
cally exact analysis of this problem we focused on 1D two-
electron singlet systems where both exact and adiabatically
exact calculations are possible. To interpret the results and
proceed toward a quantitative criterion for the breakdown,
we have transformed the governing equations into a hydro-
dynamic formulation based on the density n and the KS ve-
locity us.

The breakdown of the adiabatic approximation was found
to be related to the appearance of strong velocity gradients
corresponding to rapid compression and rarefaction of the
density. Within the hydrodynamic picture these features can
be clearly linked to dissipative effects in the KS system that
are missed whenever the adiabatic approximation is used.
Guided by this observation we derived a criterion for the
breakdown of the adiabatic approximation based on the rate
of change of the ground-state noninteracting kinetic energy.

FIG. 10. Exact evolution of Ṫs,0 for A6-Hooke systems I �with-
out memory, solid line� and II �with memory, dashed line�. The
dotted-dashed line represents the memory criterion according to
Table I and formula �25�.

FIG. 11. Exact evolution of Ṫs,0 for A6-Hooke processes de-
scribed in Table III �without memory: solid lines; with memory:
dashed line�. The dotted-dashed line represents the memory crite-
rion according to Table I and formula �25�.

TABLE III. Time-dependent processes of A6-Hooke in a dipole
field according to vext�z , t�=vext,gs�z�+ezE0 sin��ft�. Intensity I in
W /cm2; E0 and �f in Hartree atomic units. The memory character
of a process follows from the deviation of vc and vc,0 corresponding
to the exact time-dependent density.

I E0 �f Memory

1�1014 0.053 0.117 No

1�1014 0.053 0.935 No

7�1014 0.141 0.058 No

7�1014 0.141 0.117 Yes

7�1014 0.141 0.935 Yes

7�1014 0.141 1.870 No

1�1015 0.169 3.740 No

2�1015 0.239 1.870 Yes

2�1015 0.239 2.805 No

7�1015 0.447 1.870 Yes

FIG. 12. Exact evolution of Ṫs,0 for A4-Hooke systems I �with-
out memory, solid line�, II �with memory, dotted line�, and III �with
memory, dashed line�. The dotted-dashed line represents the
memory criterion according to Table I and formula �25�.
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The latter provides an integral measure of strong velocity
gradients in regions of finite density. We showed that this
criterion provides an approximate upper bound for the valid-
ity of the adiabatic approximation for a given time-
dependent process.

The evaluation of the criterion for different processes in-
dicates that memory effects generally become more impor-
tant for growing strength of the external perturbation. How-
ever, for forcing frequencies that are very low the adiabatic
approximation is found to hold even at strong perturbation
amplitudes. In the opposite limit of very high frequencies
there are also indications for the applicability of the adiabatic
approximation in agreement with recent analytical findings
�51�. This behavior agrees with the analogy between the
electron liquid and a viscoelastic material �23�: in the nona-
diabatic regime, the electronic system behaves fluidlike and
internal friction leads to dissipative effects. The opposing
regime is characterized by solidlike elastic behavior as for
HPT motion or in the limiting case of infinite frequency. The
effects that are crucial in the latter regime are thus mainly
incorporated into the exact ground state vxc,0. Hence, the
adiabatic approximation works well in the elastic regime.

The small perturbation limit also leads to the linear re-
sponse regime of TDDFT. Here memory effects are known
to be crucial for the correct representation of double and
multiple excitations �4,8�. Investigating these questions using
the adiabatically exact approximation has been the topic of a
recent study �52�. Earlier studies �46� have already estab-
lished a connection between dissipative effects and nonadia-
batic corrections to linear response quantities.

Of course the ultimate goal is the development of xc func-
tionals that are applicable both in the adiabatic and nonadia-
batic regimes. Currently, there is a lot of progress going on in
this direction �23,53–58� with most of these approaches
drawing from hydrodynamic concepts. The present work
shows that both the QFD approach and the 1D two-electron
singlet system as a benchmark case can provide important
guidance on this route.
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APPENDIX A: CLASSICAL FLUID DYNAMICS

In classical fluid dynamics �cf., e.g., Refs. �49,59��, the
flow of a medium is described in terms of the density field
n�r , t�, the velocity field u�r , t�, and the stress tensor ��r , t�.
The first governing equation is the continuity equation,

Dtn = − n � · u , �A1�

where the material or convective derivative Dt=�t+u ·� de-
scribes the rate of change following the fluid. An important
special case is provided by incompressible flow correspond-
ing to � ·u=0. In this case the rhs of the continuity equation
vanishes and the density is just transported or advected with
the flow, i.e., no compression and rarefaction takes place.

To determine the velocity field a second evolution equa-
tion is required; the momentum balance

mDtu =
1

n
� · � − �vext. �A2�

Here, the divergence of the stress tensor � represents inter-
nal forces whereas �vext�r , t� describes external body forces
acting on the fluid. �ij =−p�ij +�ij contains the scalar hydro-
static pressure p�r , t�, a nonideal contribution, and the vis-
cous shear-stress tensor �ij�r , t�. These quantities have to be
determined from constitutive equations, which formally
close the system of equations. For a classical Newtonian
fluid,

�ij = ��� jui + �iuj − 2
3�ij � · u� + ��ij � · u , �A3�

where � and � are the shear and the bulk viscosity of the
liquid. These material properties and an equation of state for
the pressure p are required as further input into the theory.
For constant � and � Eq. �A2� turns into the famous Navier-
Stokes equation.

Obviously � depends on spatial derivatives of the velocity
field and accounts for viscous effects in the fluid. It is set to
zero for an inviscid flow for which the Navier-Stokes equa-
tion reduces to the Euler equation,

mDtu = −
1

n
� p − �vext. �A4�

The absence of dissipation in the latter equation is the reason
for major differences to the Navier-Stokes equation: flow
governed by the Euler equation can build up shocks that
would otherwise be attenuated by dissipation. Furthermore,
viscous effects are crucial in the context of turbulence, which
is the prevalent flow state of most classical fluids. These
phenomena are all related to the intrinsic nonlinearity of both
the Euler and Navier-Stokes equations, which is provided by
the term u ·�u in the convective derivative.

We conclude this short review with the 1D version of the
Navier-Stokes equation for the z component u,

FIG. 13. Exact evolution of Ṫs,0 for helium systems ramp �with-
out memory, solid line�, pulse with I=7�1014 W /cm2 �without
memory, dotted line�, and oscillating nucleus �with memory, dashed
line� as investigated in Ref. �11�. The dotted-dashed line represents
the memory criterion according to Table I and formula �25�. For the

pulse Ṫs,0 is reaching finite amplitudes at later times but not exceed-

ing 40% of Ṫs,0
crit.
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mDtu =
1

n
�zp̃ − �zvext, �A5�

where the stress-tensor � has taken the form of a generalized
pressure p̃. Naturally the latter still contains the hydrostatic
pressure p and dynamical contributions from �zz.

APPENDIX B: QUANTUM FLUID DYNAMICS

While the classical hydrodynamic equations just represent
a continuum approximation to the classical mechanics of
point particles, many-body quantum mechanics based on the
continuous wave function can be exactly transformed into
quantum fluid dynamics �QFD� �28�.

The derivation for a single-particle wave function ��r , t�
�12� starts by inserting ��r , t�=R�r , t�ei��r,t� with R and �
real into

i��t��r,t� = �−
�2

2m
�2 + vext�r,t����r,t� . �B1�

Separating real and imaginary parts of the equation, realizing
that R2= ���2=n, and defining u= �

m �� one arrives at

Dtn = − n � · u �B2�

and

mDtuj = −
1

n
�iPij − � jvext, �B3�

where

Pij =
�2

4m
� ��in��� jn�

n
− �ij�

2n� �B4�

is the quantum stress tensor �14,24,28�. The obtained equa-
tions show a strong analogy to the continuity and Navier-
Stokes equations for classical fluids as presented before.

The QFD equations for the time-dependent two-electron
singlet KS system can be derived in the same way using
R2= ���2=n /2 and vs instead of vext or by evaluating the gen-
eral many-particle form of the noninteracting stress tensor
Psij �24–26� for the time-dependent singlet KS wave func-
tion. After all factors of 2 have canceled out, we are left with

Dtn = − n � · us �B5�

and

mDtusj = −
1

n
�iPsij − � jvs, �B6�

where Psij is given by Eq. �B4�. Consequently the only dif-
ference to the one particle case is that the effective potential
vs still contains two density-dependent contributions vhx and

vc. The most appropriate way to deal with vhx is via a sepa-
rate Poisson equation,

	vhx = − 2
e2n , �B7�

as in the theory of conducting fluids �60�. On the other hand
the unknown vc is clearly related to internal forces within the
system. In analogy with Eq. �A2� it thus makes sense to
define the correlation contribution to the stress tensor accord-
ing to

�pc = n � vc �B8�

and group it together with Psij so that �29�

mDtusj = −
1

n
�i�Psij + �ijpc� − � j�vhx + vext� . �B9�

It is also interesting to note that the QFD point of view
opens up connections to other fields of physics. The Made-
lung fluid concept �12� for instance is also employed in the
study of solitary waves and the nonlinear Schrödinger equa-
tion �43�.

APPENDIX C: BEYOND THE 1D TWO-ELECTRON
SYSTEM

The basic structure of the QFD equations is not modified
for systems of more than two electrons in three dimensions.
Thus the adiabatic approximation can still be interpreted as
neglecting xc contributions that depend on gradients of the
velocity field.

We have seen that in 1D velocity gradients can occur only
for compressive flow, which leads to dissipation of classical
kinetic energy and can be detected by the proposed criterion.
In three dimensions shear flow is another possible source of
dissipation through internal friction. Quite appropriately Ts,0
is governed by

Ṫs,0�t� = −	 �� jusi�Ps,0jid
3r , �C1�

which means that it is not only sensitive to compression,
where � ·us�0 �i= j�, but also to shear velocity gradients
�i� j� multiplied by off-diagonal elements of Ps,0ji. As the
time-scale argument based on the xc kernel does also remain
valid the criterion can thus be formulated as in one dimen-
sion.

Of course the presence of more than two particles means
that different single-particle currents can contribute to the
total current. Whether this will lead to additional nonadia-
batic effects that are not detected by the proposed criterion
cannot be established at present. However the violation of
the breakdown criterion should still provide a definitive
warning signal for an ongoing TDKS calculation.
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