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Different entropies which can characterize the inseparable quantum correlation in a two-electron entangled
artificial atom proposed by Moshinsky are analyzed. The analysis is based on an exact representation for the
trace of the q-order one-body reduced density matrix in terms of the interparticle coupling. The entanglement
spectrum of the model system and the possible role of the entropy-maximum concept to practical applications
of matrices are discussed as well. The ground-state energy, readily obtained from the Schrödinger Hamiltonian,
is recalculated within a density-matrix-functional representation for its components.
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I. INTRODUCTION

The symmetrization postulate states that two fermions,
say electrons, have only antisymmetric states. In other
words, the full state function must change sign when the
electrons are interchanged. When the two electrons are mov-
ing in an external confining field, as in an atom, the spatial
part of the full ground-state function is symmetric. There-
fore, it must be multiplied by an antisymmetric singlet spin-
state function. This construction remains true if, beyond the
confinement, there is interaction between the electrons which
depends on their coordinates. With no coupling between the
two electrons, the spatial wave function is a simple product
of single-particle eigenstates. The product eigenfunctions de-
scribe stationary states of the system, and the position prob-
ability density does not exhibit correlation between the posi-
tions of the two electrons.

In the ground state of the two-electron system the spin
part is a singlet and thus is always maximally entangled.
When there is an interparticle coupling, the spatial function
can show positional correlation. One then expects that
interaction-induced correlation, named as spatial entangle-
ment, can have important effects in various applications.
This spatial entanglement depends on the interplay of the
interelectron interaction and the strength of the external con-
fining field. Currently, the characterization of inseparable
correlation has become one of the most active research fields
and an intense interdisciplinary effort is directed at analyzing
this remarkable feature of quantum mechanics.

The present paper is devoted to a specific application
along this line. Namely, we deduce different entropies moti-
vated by a model two-electron atom introduced by Moshin-
sky �1�. The Hamilton operator of our system is taken as
follows:

Ĥ = −
�2

2m
��1

2 + �2
2� +

1

2
m�0

2�r1
2 + r2

2� +
1

2
m��0

2�r1 − r2�2,

�1�

where � is a convenient coupling parameter; �=0 refers to
the noninteracting case. From now on we shall use Hartree
atomic units, e2=�=m=1. Values ��0 describe a repulsive
electron-electron interaction, whereas ��0 corresponds to
an attractive interaction. The ground state is always bounded

for attractive pair interaction for any 0����, however, a
strong repulsive interaction destabilizes �see Sec. II below�
the system for ��−1 /2.

Of course, since the entropies are not expectation values
of operators of the Hilbert space of the system like most of
the fundamental quantities in position and momentum space,
elucidation of their physical significance is important to un-
derstand their role in characterizing and representing elec-
tronic systems. Detailed knowledge of different entropies,
combined with other concepts of physics �such as the
maximum-entropy principle�, may contribute to the practical
problem of characterization of correlation in a sufficiently
precise way.

The exact solution of Moshinsky’s model was used �2� to
a detailed discussion on the capability of the energy-optimal
Hartree-Fock �HF� method which is based on a product-state
approximation for the spatial wave function. In this standard
method, which may be considered as a variational attempt,
the last term of the rewritten Hamiltonian,

Ĥ = − 1
2 ��1

2 + �2
2� + 1

2�0
2�r1

2 + r2
2� − ��0

2r1 · r2, �2�

does not contribute to the ground-state energy due to parity
considerations in angle integration. The shifted frequency is
�0=�0

�1+�, and the ground-state energy is Egr
HF

=2�D /2��0 in dimension D. This expression gives a �=−1
limit value for the coupling. The �Egr

HF���−Egr
HF��=0��

interaction-energy scales as �D /2���0 for �→0. At �
→−1 �from above� in the repulsive case the HF product
wave function,

	HF�r1,r2� = ��0



�D/2

e−�1/2��0r1
2
e−�1/2��0r2

2
, �3�

becomes more and more extended ��0→0�, showing an ef-
fect of interparticle repulsion. The antisymmetry of the com-
plete two-particle wave function is ensured by multiplying
the spin free part 	HF by the singlet two-particle spin func-
tion. The form of the Hamilton operator and the above
Hartree-Fock expressions show that it is the ��0

2r1 ·r2 term
which results in an inseparable correlation in Moshinsky’s
two-electron model.

Recent studies, based on the exact solution �1–3�, have
been dedicated to the pair function at electron coincidence
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�4�, the one-particle density matrix �5�, and the so-called
Fisher information �6�. Amovilli and March �7� studied Sh-
annon entropies based on one-particle and two-particle den-
sity functions analytically and the Jaynes entropy by using an
expansion based on nonorthogonal basis functions to model
the natural orbitals of the one-particle density matrix ap-
proximately. This fact gives a particularly strong motivation
to the present work on entropies. In this work we give an
exact representation for the trace of the q-order one-body
reduced density matrix in terms of the interparticle coupling.

The paper is organized as follows. In Sec. II A, we outline
the exact solution for the spatial wave function based on Eq.
�1�. Section II B is devoted to the details of deducing various
entropies and the entanglement spectrum. Comparisons of
the entropies are given there with relevant discussions. The
paper ends with a short summary in Sec. III.

II. THEORY AND RESULTS

In order to provide a self-contained presentation and to
summarize notation, we start by outlining the exact solution
for the spatial wave function in Sec. II A. Then an analysis of
entropies is given in Sec. II B.

A. Wave function and one-particle density matrix

Following the earlier works �1,2�, we introduce the vari-
ables R= �r1+r2� /�2 and r= �r1−r2� /�2 and write the
Hamiltonian �in a.u.� as

Ĥ = −
1

2
� �2

�R2 +
�2

�r2� +
1

2
�+

2R2 +
1

2
�−

2r2, �4�

where �+
2 =�0

2−��0
2=�0

2 and �−
2 =�0

2+��0
2=�0

2�1+2��.
Thus one has two uncoupled harmonic oscillators in Eq. �4�,
and the ground-state space wave function is a product of two
Gaussian functions of the variables R and r. By an inverse
transformation, one arrives at the normalized eigenfunction
of Eq. �1�, given by

	�r1,r2� = ��−�+


2 �D/4
e−�1/2��1�r1

2+r2
2�e�1/2��2r1·r2, �5�

in which �1= ��−+�+� /2 and �2= ��−−�+� are abbrevia-
tions. Again, antisymmetry is ensured by multiplying Eq. �5�
by the antisymmetric spin function,

���1,�2� = − ���2,�1� = 2−1/2�
��1����2� − ���1�
��2�� .

�6�

The quite simple expression, Egr���= �D /2���++�−�
= �D /2��0�1+�1+2��, gives the ground-state energy. Wign-
er’s correlation energy, Ec���= �Egr���−Egr

HF����, behaves as
−�D /8��2�0, while �Egr���−Egr��=0�� as �D /2���0 at
small ��→0� interparticle coupling. The above exact ex-
pressions show that the physical limit is, in fact, �=−1 /2 in
the repulsive case �3�. The destabilization occurs at smaller
absolute value of the coupling than in the HF approximation
showing a remarkable effect of an inseparable correlation.

The one-particle density matrix is based on the standard
definition

��r1,r2� =� 	�r1,r3�	��r2,r3�dr3 �7�

and has the following illustrative form in our case:

��r1,r2� = Ae−a�r1
2+r2

2�ebr1·r2. �8�

Here a= �8�1
2−�2

2� /16�1, b=�2
2 /8�1, and A= ��2a

−b� /
�D/2 using von Neumann’s normalization Tr �=1. The
spin part of the density matrix is 	�3

���1 ,�3�����2 ,�3�
=Is /2, where Is is the identity matrix in the spin space with
Tr Is /2=1.

The diagonal, r1=r2
x, of the one-particle density-
matrix results in the density distribution,

��x� = �2a − b



�D/2

e−�2a−b�x2
, �9�

where �2a−b�=2�+�− / ��++�−�=2�0
�1+2� / �1+�1+2��.

This density distribution, the n2�r1 ,r2�
	2�r1 ,r2� two-
particle density �3,4�, and the ground-state energy, similarly
to the exact eigenfunction, show a clear difference between
the attractive ���0� and repulsive ���0� cases. The dif-
ferent entropies are, however, not able to distinguish be-
tween these physical cases of interparticle coupling as we
will show below.

B. Quantum entropies of the ground state

Following recent studies �8,9� on spatial entanglements of
two electrons, first we calculate the linear entropy L from the
following equation,

L = 1 − ���� , �10�

using the reduced density matrix to the purity ����=Tr �2.
The square is given by

�2�r1,r2� =� ��r1,r3���r3,r2�dr3, �11�

and one has a quite simple form,

���� =� �2�r,r�dr , �12�

to the implementation of a measure on the interaction-driven
spatial entanglement. Using Eq. �8� and performing the inte-
grations in the above equations, we obtain

L = 1 − �D, �13�

where �=2��+�− / ��++�−�, i.e., the ratio of the geometric
and arithmetic means of frequencies introduced at Eq. �4�;
����� �0,1�. In the noninteracting ��=0� case �=1. For
small values of � we get ����=1− �D /8��2, which results
in a quadratic dependence of L on coupling, as in the case of
the dimensionless correlation energy Ec��� /�0.

Notice at this point that a similar quadratic deviation from
unity in the corresponding � at small coupling appears in the
one-dimensional problem �9� of interaction-induced orbital
entanglement of two electrons incident on a quantum dot in a
spin-singlet state. In our problem and in the HF approxima-
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tion, �HF���=1 �as in the noninteracting, �=0, case� inde-
pendently of the sign of the �allowed� coupling parameter.
The exact purity behaves as ����→0 for �→� in the at-
tractive case and for �→−1 /2 �from above� in the repulsive
case. Therefore, the effect of an inseparable correlation is
robust in these measures. A destabilization, due to a finite
interparticle repulsion in a given confinement field, results in
a similar effect in L as an infinite interparticle attraction in
the same external field.

A logical extension of the above concept is to investigate
Rényi’s entropy �10� of order q,

Sq =
1

1 − q
ln Tr �q for 0 � q � �, q � 1, �14�

where, in the most general case, � is the one-particle density
matrix containing spin variables as well. Considering the re-
mark after Eq. �8� easily follows �q=�qIs /2q with Tr �q

=21−q Tr �q resulting in the simple expression

Sq = ln 2 +
1

1 − q
ln Tr �q. �15�

The lower bound of Sq is ln 2 instead of the usual relation
Sq�0. As we have already emphasized in �11�, the presence
of the term ln 2 is a strict consequence of indistinguishability
of electrons, leading to a lack of information, which mani-
fests in a minimum amount of the entropy. We have shown
that this is a special case of a more general result obtained
from the Pauli principle for density operators, related to the
N-representability problem of �. As the constant ln 2 is a
natural consequence of the Pauli principle, we will simply
omit this term in the following discussions. Thus the remain-
ing problem is to calculate the qth power of the density ma-
trix �. Below we will show that it is possible to derive a
closed analytic form of �q for arbitrary positive powers q.

For any integer n�1 the powers of � can be defined by
recursion

�n+1�r1,r3� =� ��r1,r2��n�r2,r3�dr2. �16�

Using explicit form �8� one can verify the general expression

�n�r1,r2� = Ane−an�r1
2+r2

2�ebnr1·r2, �17�

where the constants are obtained �a1=a and b1=b� by the
recursive formulas,

an+1 = a −
b2

4�a + an�
= an −

bn
2

4�a + an�
, �18�

bn+1 =
bbn

2�a + an�
, �19�

An+1 = 
D/2AAn�a + an�−D/2. �20�

The second equality of Eq. �18� is based on the fact that
�2an−bn��2an+bn�= �2a−b��2a+b�, which in turn follows
from

2an + bn =
Pn�a,b�
Qn�a,b�

�2a + b� , �21�

2an − bn =
Qn�a,b�
Pn�a,b�

�2a − b� . �22�

Recurrence relations �18� and �19� imply

�Pn+1

Qn+1
� = �2a + b 2a − b

2a + b 2a + b
��Pn

Qn
� = �2a + b�n�1 �2

1 1
�n�1

1
� ,

�23�

in which �=��2a−b� / �2a+b�=2��+�− / ��++�−�=2�1
+2��1/4 / �1+�1+2��. Note at this point that the ���� func-
tion has its maximum at �=0. It becomes zero in the limit-
ing cases, i.e., �=−1 /2 for repulsion and �→� for attrac-
tion.

The vector �
Pn

Qn
� can be expressed in closed form using the

eigenvector decomposition of the initial constraint �
P1

Q1
�= � 1

1 �.
Using Eqs. �21� and �22� one gets the exponents of �n,

an =
2a + b

4
�� �1 + ��n + �1 − ��n

�1 + ��n − �1 − ��n +
�1 + ��n − �1 − ��n

�1 + ��n + �1 − ��n� ,

�24�

bn =
2a + b

2
�� �1 + ��n + �1 − ��n

�1 + ��n − �1 − ��n −
�1 + ��n − �1 − ��n

�1 + ��n + �1 − ��n� ,

�25�

and �2a+b�= ���++�−� /2�= ��0 /2��1+�1+2�� in terms of
the physical variables. The normalization coefficient in Eq.
�17� satisfies according to Eq. �20�,

An+1 = 
nD/2An+1zn
−D/2, �26�

where

zn = 

i=1

n

�a + ai� . �27�

As Eq. �18� implies

a + an = 2a −
b2

4�a + an−1�
�28�

we have

zn = 2azn−1 +
b2

4
zn−2 �29�

and using standard techniques zn can be expressed as a linear
combination of the two particular solutions in the form zn
=�n. We arrive finally at

An = �2a − b


�

�2��2n

�1 + ��2n − �1 − ��2n�D/2

. �30�

It is clear that all formulas �24�, �25�, and �30� can straight-
forwardly be extended for arbitrary positive noninteger val-
ues n→q as well. Moreover, the extension satisfies
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ap+q = ap −
bp

2

4�ap + aq�
= aq −

bq
2

4�ap + aq�
, �31�

bp+q =
bpbq

2�ap + aq�
, �32�

Ap+q = 
D/2ApAq�ap + aq�−D/2, �33�

corresponding to the functional equation of the product prop-
erty �p+q=�p�q for arbitrary p�0 and q�0.

Based on this fact and due to the above details, we can
write

�q�r1,r2� = �Tr �q��2aq − bq



�D/2

e−aq�r1
2+r2

2�ebqr1·r2, �34�

where the trace of �q, i.e., the input to different entropies, is
given by

Tr �q = � �2��q

�1 + ��q − �1 − ��q�D

�35�

in terms of the previously introduced informative ����
=2�1+2��1/4 / �1+�1+2��. Due to the special character of
the ���� function, to any −1 /2���0 repulsive coupling
there exists a corresponding attractive one ���0 for which
����=�����. Therefore, all entropic quantities depending on
trace �35� have the dual property Sq���=Sq����. As a simple
and nice illustration one can consider S2���=D ln�1 /��.

For small enough interparticle coupling ��→0� we have
the �=1−�2 /8 expansion; thus the asymptotic forms of en-
tropies are Sq���=D�q / �q−1����2 /16� for q�1 and Sq���
=D�1 / �1−q����2 /16�q for q�1. Therefore, for small cou-
pling we have a �2 scaling, as in Wigner’s correlation en-
ergy, in all higher-order �q�1� entropies. Notice that a simi-
lar quadratic scaling can be obtained from the so-called
correlation Shannon entropies defined by Amovilli and
March �7�. On the other hand, only S1/2 scales linearly �simi-
larly to the interaction energy� with the coupling as S1/2���
= �D /2���� in the perturbative limit. A combination of these
details with the additional constraint based on the maximum-
entropy principle suggests the �1 /2��q�1 range to practi-
cal applications of density matrices �q.

Motivated partly by this possibility of practical nature, we
investigate the �2aq−bq� /�0 quantity which is a measure of
the spatial extension of �q�r ,r� /Tr �q. We interpret this ra-
tio, a kind of density distribution, as a physical quantity. It is
a monotonically growing function of the coupling �� �
−0.5,�� for q�1 /2. At q=1 /2 one gets �2a1/2−b1/2�=�0 for
all ��0, where Tr �1/2= �1+2��D/8 and S1/2= �D /4�ln�1
+2��. When −�1 /2����0, one gets �2a1/2−b1/2�
=�0

�1+2� and S1/2=−�D /4�ln�1+2��. For q�1 /2 there is
a maximum in �2aq−bq� /�0 at �=0. This behavior for q
�1 /2 is similar to one in ����. Thus, the ratio
�q�r ,r� /Tr �q is uniquely determined by the interaction
strength � only for q�1 /2, otherwise the repulsive and at-
tractive cases are not distinguishable.

Now, we outline the result for the von Neumann entropy
S1 which can be derived by a limiting �q→1� procedure. In
order to perform this L’Hospital procedure for a �0/0�-type

expression, we use the �= �1−�� / �1+�� variable change to
Eq. �35�. Thus we get

Tr �q = ��1 − ��q 1

1 − �q�D

. �36�

Applying also the �ax��=ax ln�a� standard rule of derivation,
we easily obtain the

S1 = − D ln�1 − �� − D
�

1 − �
ln��� , �37�

expression in terms of �. For small coupling one has ���
→0�=�2 /16. With this we get a S1��2 ln�1 /�2� character-
istic dependence at small values of the interelectron cou-
pling. Thus, in contrast to numerical results �8� for Hook’s
atom, in the case of Moshinsky’s atom the linear and von
Neumann entropies do not scale onto each other.

It may have a general interest to note at this point that S1
is equivalent to the entropy of a single harmonic oscillator
specified by frequency �̄=��+�−=�0

�1+2� and tempera-
ture �T� defined from �=tanh��̄ /2kBT�. Furthermore, it can
be written �12�, alternatively, as �S1 /D�=−	n=0

� pn ln pn in
terms of the eigenvalues pn of the one-dimensional density
matrix; 	n=0

� pn=1. The pn are natural occupation numbers to
the spectral �13� representation of the one-particle density
matrix. Since the one-dimensional �D=1� trace is equal to
	n=0

� �pn�q, we get the simple pn= �1−���n representation;
����� �0,1�.

The deviations of the natural occupation numbers from 1
or 0 describe, beyond the HF approximation, the phenom-
enon of correlation on the one-particle level. For example, in
the weak entanglement ��→0� limit p0���− p1���=1
−�2 /8. This difference clearly shows the role of correlation,
and thus it can be interpreted �14� as a quasiparticle weight
similarly to the renormalization of the electron-gas momen-
tum distribution. Furthermore, a correlation tail �14� can be
defined from �	n=1

� pn�=�. This measure becomes �2 /16 in
the investigated limit.

Other interesting interpretation can be based on the re-
cently introduced �15� concept of entanglement spectrum.
Namely, using the so-called “excited state” eigenvalues �n,
the von Neumann entropy is given, alternatively, as �S1 /D�
=	n=0

� �n exp�−�n�. From pn=exp�−�n� and pn= �1−���n we
get the following simple expression,

�n = − ln�1 − �� − n ln � , �38�

for the spectrum of excited state eigenvalues. At weak en-
tanglement ��→0� one gets an “energy gap,” �1���
−�0���=ln�16 /�2�, which becomes infinite in the limit of a
simple product state with vanishing entropy. We stress the
point that the entanglement spectrum is a property of the
ground-state wave function itself, so it allows direct com-
parison between approximate states and exact ones.

At the end of this section we turn our attention to a pos-
sible further application of the results obtained above. As an
active research field of considerable practical importance, we
mention the density-matrix-functional theory, where the ba-
sic goal is to express the total energy of an interacting system
in terms of one-particle density matrices. Such a theory does
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not rely on the concept of a fictitious noninteracting system
used in current density-functional theory. Here we recalcu-
late the ground-state energy of our two-electron model atom
using the above-obtained ��r1 ,r2� matrix, its diagonal ��r�,
and the two-particle density n2�r1 ,r2�, which is the diagonal
of the second-order density matrix �3,4�. Considering the
normalizations of these inputs, we can write

Egr = 2� t�r�dr + 2
1

2
�0

2� r2��r�dr

+
1

2
��0

2� � �r − r��2n2�r,r��drdr�, �39�

where the exact kinetic energy density �5�, t�r�, is given
by the following informative expression: t�r�
= 1

2 ��r ·�r���r ,r���r�=r= �����2 / �8���+b�D /2��. This last
form shows the important role of an inseparable correlation
via the b-proportional �second order in � at small coupling�
term. Performing the integrations in the above equation we
obtain

Egr��� =
D

4
�0�1 + �1 + 2�� +

D

4
�0

�1 + �1 + 2��
�1 + 2�

+
D

2
�0

�

�1 + 2�
�40�

in the same order of terms as in Eq. �39�. In the HF approxi-
mation, i.e., using the wave function of Eq. �3� with �0 as
variational parameter and n2

HF�r ,r��, one gets the

Egr
HF��0� =

D

2
�0 +

D

2

�0
2

�0
+

D

2
�

�0
2

�0
, �41�

decomposition which results, of course, in �0=�0
�1+� af-

ter variation.
The decomposition of the total energy in Eq. �40� gives a

rigorous background to test various approximations �16–19�

for the interaction term, the last term in Eq. �39�. Namely, the
exact results obtained in the present work for the density ��r�
and a density matrix �q�r1 ,r2� allow a detailed research via
ansatz kernels to be used in Eq. �39� instead of the exact
two-particle density. Interestingly, for the present two-
electron system, a simple inspection �based on the above
energies� shows that a form of �2��r1���r2�−���
=0,r1����=0,r2�� reproduces the last term of Eq. �40� ex-
actly. Further details on the capability of different approxi-
mations will be published �20� elsewhere.

III. SUMMARY

Motivated by the exact solution for the space-wave func-
tion of a two-electron entangled model atom, different entro-
pies which can characterize inseparable quantum correlation
are derived. Our main result here is the exact expression for
�q���, where 0�q��, in terms of the interparticle coupling
−0.5����. The entropies are analyzed and compared with
appropriate previous results on the role of correlation in
other two-electron systems.

The practical applicability range of the detailed math-
ematical results for entropies, based on the q-order one-
particle density matrix, is investigated by using the
maximum-entropy principle as an additional constraint. A
proposal is made to density-matrix-functional theory, which
rests on one-particle density matrices, by calculating exactly
the electron-electron interaction term of the ground-state en-
ergy of Moshinsky’s two-electron model atom.

ACKNOWLEDGMENTS

We are thankful to Professor P. Lévay and Professor N. H.
March for useful discussions. One of us �I.N.� thanks Profes-
sor P. M. Echenique for generous hospitality at the DIPC.
This work was supported partly by the Hungarian OTKA
�Grant No. T049571�.

�1� M. Moshinsky, Am. J. Phys. 36, 52 �1968�.
�2� L. E. Ballentine, Quantum Mechanics �World Scientific, Sin-

gapore, 1998�.
�3� E. R. Davidson, Reduced Density Matrices in Quantum Chem-

istry �Academic, New York, 1976�.
�4� N. H. March, I. A. Howard, I. Nagy, and A. Rubio, Phys. Lett.

A 288, 101 �2001�.
�5� C. Amovilli and N. H. March, Phys. Rev. A 67, 022509

�2003�.
�6� A. Nagy, Chem. Phys. Lett. 425, 154 �2006�.
�7� C. Amovilli and N. H. March, Phys. Rev. A 69, 054302

�2004�.
�8� J. P. Coe, A. Sudbery, and I. D’Amico, Phys. Rev. B 77,

205122 �2008�.
�9� A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. Lett.

100, 226805 �2008�.
�10� M. Ohya and D. Petz, Quantum Entropy and Its Use �Springer,

Berlin, 1993�.

�11� P. Lévay, Sz. Nagy, and J. Pipek, Phys. Rev. A 72, 022302
�2005�.

�12� M. Srednicki, Phys. Rev. Lett. 71, 666 �1993�.
�13� P. O. Löwdin, Phys. Rev. 97, 1474 �1955�.
�14� P. Ziesche, O. Gunnarsson, W. John, and H. Beck, Phys. Rev.

B 55, 10270 �1997�.
�15� H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

�2008�.
�16� R. L. Frank, E. H. Lieb, R. Seiringer, and H. Siedentop, Phys.

Rev. A 76, 052517 �2007�.
�17� S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U.

Gross, Phys. Rev. B 78, 201103�R� �2008�.
�18� M. Piris, X. Lopez, and J. M. Ugalde, J. Chem. Phys. 128,

134102 �2008�, and references therein.
�19� N. N. Lathiotakis and M. A. L. Marques, J. Chem. Phys. 128,

184103 �2008�, and references therein.
�20� I. Nagy and J. Pipek, Chem. Phys. Lett. �to be published�.

MEASURES OF SPATIAL ENTANGLEMENT IN A TWO-… PHYSICAL REVIEW A 79, 052501 �2009�

052501-5


