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We show that the thermal entanglement in a spin system using only magnetic-susceptibility measurements is
restricted to the insulator materials. We develop a generalization of the thermal entanglement witness that
allows us to get information about the system entanglement with variable local spin lengths that can be used
experimentally in conductor or insulator materials. As an application, we study thermal entanglement for the
half-filled Hubbard model for linear, square, and cubic clusters. We note that it is the itinerancy of electrons
that favors the entanglement. Our results suggest a weak dependence between entanglement and external spin
freedom degrees.

DOI: 10.1103/PhysRevA.79.052337 PACS number�s�: 03.67.Mn, 75.45.�j, 75.10.Lp

I. INTRODUCTION

The manipulation of quantum systems in an entangled
state that can be used as a quantum information channel is
one of the main challenges of science today. Information
theory, teleportation, and cryptography are just some of the
areas that may advance enormously through the amount of
technological applications, which can potentially make use
of entanglement �1–4�. It is also of great interest to explore
the role played by entanglement systems in order to under-
stand the basis of quantum mechanics �3,4�. However, even
the quantification of entanglement remains an open question.
Current research is focusing on measures for precisely quan-
tifying entanglement �5–7�. As an example, entanglement of
indistinguishable particles calculated using different mea-
sures has shown that a same quantum state can have several
different characterizations because of the lack of individual
identity of the entangled particles �8–11�.

The use of uncertainty relations has provided an efficient
approach for obtaining one of the most precise experimental
measures of entanglement �12�. A quantitative evaluation of
the entangled states can be defined in terms of expectation
values of a convenient witness operator. This operator, called
the entanglement witness, is defined as taking positive values
for separable states and negative ones for entangled states.
Thus, an appropriate uncertainty relation allows us to choose
macroscopic properties which define an entanglement wit-
ness.

A good level of interest has been focused on the special
case of entanglement in macroscopic properties which has
been particularly motivated by experiments that have shown
the presence of entanglement in solid-state systems �13–16�.
Wieśniak et al. �17� recently explored some aspects of the
connection between entanglement and magnetic susceptibil-
ity for an arbitrary Hamiltonian with spin length s.

Experimental observations of thermal entanglement in
spin systems using susceptibility measurements have been
reported. Souza et al. �13� studied the compound
Na2Cu5Si4O14. They found entanglement confined to the
small clusters, with tripartite entanglement being stronger
than bipartite entanglement. A similar result was obtained by
Vértesi and Bene �14� in the Na2V3O7 system that formed a

nanotubular structure of weakly coupled nine-site rings.
Brukner et al. �15� and Bose and Tribedi �16� showed en-
tanglement in antiferromagnetic spin systems.

Since these experimental susceptibility measurements are
applicable to systems with spins localized in sites of the
lattice, they are in accordance with the entanglement witness
as defined by Wieśniak et al. �17�. However, this powerful
tool is not adequate for systems with variable local spin
lengths, which is an important feature for conductor materi-
als. The present work addresses this issue. We will show that
new aspects of the entanglement can appear when we con-
sider systems with variable local spin lengths. The extension
of the entanglement witness across variable local spins can
be related to the itinerant electron models such as Hubbard
and Falikov-Kimball.

In this paper, we investigate the Hubbard model �18�. The
purpose was to choose appropriated macroscopic variables in
order to define an entanglement witness adequate for the
Hubbard model, or any other model that can be applied to
systems with variable local spin lengths.

There are some works about entanglement associated to
the Hubbard model �8,19–25�. For example, the entangle-
ment for the Hubbard dimer was investigated by Dowling
et al. �8� and Zanardi �19�. Gun et al. studied the entangle-
ment entropy on the extended Hubbard model and proposed
that the entanglement can be used to identify quantum phase
transitions �20�. Larsson and Johannesson found exact ex-
pressions for the local entanglement entropy on the one-
dimensional �1D� Hubbard model at a quantum phase tran-
sition driven by a change in the magnetic field or chemical
potential, related to the zero-temperature spin and charge
susceptibilities �21�. Hudak modeled CeAl2 nanoparticles by
the Hubbard model with negative chemical potential and by
using entanglement entropy he studied the quantum phase
transitions present in this system �22�.

Some experimental results have indicated that the en-
tanglement is restricted to small clusters within the materials
�13,14�. Exploring this fact, we studied the critical tempera-
ture, below which there is thermal entanglement for finite
chains and rings, using the standard direct diagonalization
method �26,27�. This approach is very well suited for small-
sized clusters since it produces exact results for thermody-
namic quantities. Furthermore, it is also interesting to study
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the limit of large clusters. In this case, using the quantum
Monte Carlo approach �28–30� we obtained the temperature
dependence of the entanglement witness for linear, square,
and simple-cubic lattices as described by the Hubbard model.
Summarizing, we will show how the cluster length, itiner-
ancy of the electrons, and system dimensions influence the
thermal entanglement on the Hubbard model using direct
diagonalization and quantum Monte Carlo methods.

The organization of this paper is as follows. Entanglement
witness for constant and variable local spin is presented in
Sec. II, the results in Sec. III, and the conclusions in Sec. IV.

II. ENTANGLEMENT WITNESS

The total magnetic susceptibility at null magnetic field

� = �x + �y + �z =
�M� 2� − �M� �2

��B�2NkBT
�1�

has been a useful variable to study the witness of thermal
entanglement. Here, M� is the total magnetization of N spins
and � . . . � is the thermodynamic average. Considering si to be
the length of the ith spin in the system, the entanglement
condition for a thermal state of N spins of same length s
�si=s for i=1, . . . ,N� is given by �17�

� �
s

kBT
. �2�

The above condition is deduced based on the method of
entanglement detection using the uncertainty relations �12�.
In summary, an arbitrary thermal state of spin s has the fol-
lowing conditions:

�S� i
2� = s�s + 1�

�S� i�2 � s2,
�3�

where S� i is the spin vector of the individual site i. Therefore,
if the thermal state is actually a product of N states
of individual spins, the variance of magnetization would
be the sum of variances of individual sites NkBT�

=�i=1
N �S� i

2�− �S� i�2� �s�s+1�−s2�=s, which is also valid for
the general case of separable states due to the convexity of
the mixture.

However, we notice that entanglement condition �2� fails
if the N individual spins have different lengths si�s. Itiner-
ant systems are an example of this phenomenon because the
N individual sites can have different spin lengths due to the
variety of ways in which they can be filled with particles. It
can also occur in localized systems since the sites can be
filled in different ways. Thus, Eq. �3� must be generalized as
follows:

�i=1

N
�S� i

2� = N�L0�

�S� i�2 � smax
2 ,

�4�

where smax is the largest spin length which the individual
sites can take and Lj �

1
N�i=1

N S� i ·S� i+j is the spin spin-
correlation function. Therefore, we can rewrite the condition
for entanglement �2� as

� �
�L0� − smax

2

kBT
. �5�

Note that this is also valid for sites with same spin si=s
because �L0�=s�s+1�, smax=s, and consequently the condi-
tion above is reduced to Eq. �2�.

Particularly, assume an N-sites system in which the basis
states are given by 	n1↑ ,n1↓� � . . . � 	nN↑ ,nN↓�, where ni�=0
or 1 �due to the Pauli exclusion principle� is the number of
electrons with � orientation of Sz at the individual state i.
Thus, si=0 for 	0,0� �vacuum state� or 	1,1� �singlet state of
two electrons� and si=1 /2 for 	1,0� or 	0,1� �single-electron
states�. Therefore, smax=1 /2 and taking into account isotropy
Lj

x=Lj
y =Lj

z �and consequently �x=�y =�z�, the generalized
condition of thermal entanglement can be expressed as

E � �z −
�L0

z� − 1/12

kBT
� 0. �6�

Note that if the individual state can only assume single elec-
tron states �	1,0� or 	0,1��, si=s=1 /2 is fixed, �L0

z�=1 /4 and
the condition of entanglement above reduces to Eq. �2� as
hoped.

The generalization of the entanglement witness for vari-
able local spins introduces, besides the magnetic susceptibil-
ity, L0 as an experimental measurement. Called local mo-
ment, the quantity L0 shows the degree of localization of
electrons. This measurement is much less common and more
difficult that the magnetic susceptibility. However, it can be
obtained by neutron-diffraction methods �31–33�.

III. RESULTS

Using witness �6�, we investigated the thermal entangle-
ment for the half-filled itinerant electron systems described
by the Hubbard model. The Hamiltonian is

H = − t �
�ij��

�ci�
† cj� + H.c.� + U�

i

ni↑ni↓, �7�

where ci�
† �ci�� are the creation �annihilation� operators for

electrons at site i, ni�=ci�
† ci�, U is the on-site Coulomb

�electron-electron� interaction, and t is the nearest-neighbor
hopping integral representing the overlap of electron wave
functions.

We have obtained exact results for linear chains and rings
with two, four, and six sites using the numerical method of
direct diagonalization of small clusters over the canonical
and the grand canonical ensembles �26,27�. We have ob-
served that witness �6� for small odd numbers of sites pro-
vides no information about entanglement due to E�0 for all
T since �z diverges at null temperature �26�.

It is illustrated in Fig. 1 that there is a critical temperature
Tc where E�Tc�=0 and the system is entangled for T�Tc
because E�T�Tc��0. Therefore, we can understand Tc as
the highest temperature below which the system is certainly
entangled since there is no certainty about the entanglement
when E�T�Tc��0 �12�.

Figure 2 exhibits Tc versus U for 1D systems. A compari-
son between results for different ensembles shows a good

ANDRE M. C. SOUZA AND FRANCISCO A. G. ALMEIDA PHYSICAL REVIEW A 79, 052337 �2009�

052337-2



agreement at large Coulomb interaction, but not at small
ones. We have found a rich dependence on U and N. With
fixed N for small U / t, we see that the value of Tc increases as
the value of U / t is increased and tends to a maximum value.
All curves have presented a value of interaction U which
produces the maximum Tc �global maximum of Tc vs U�. For
the strong Coulombian interaction U� t, we notice that all
curves present a hyperbolic behavior Tc	U−1. We will define
the parameter 
�N ,U��ANkBTc / �4t2 /U�, where AN is a

function of N. 
�N ,U� is convenient to compare our results
with the Heisenberg model ones, considering that in the
asymptotic regime U� t there is an equivalence between the
half-filled Hubbard and the Heisenberg models with ex-
change interaction J=4t2 /U �34�.

For the grand canonical ensemble, as the size of an even
sites system increases, the values of the maximum
global Umax and Tc

max also increase. Although the canonical
ensemble has a similar increasing relation between Umax and
N, there is no monotonic behavior of Tc

max versus N. We
performed a numerical extrapolation using the grand canoni-
cal ensemble for linear chains with two, four, and six sites.
Our extrapolation analysis predicts kBTc

max=0.712t at
Umax=4.1t in the thermodynamic limit. We also obtained

�� ,��
1.568�0.003, which is very close to the exact
value 
�� ,��=kBTc /J=1.6 for 1

2 −s Heisenberg model �17�.
The direct diagonalization approach is very suitable for

small-sized clusters, but becomes inefficient when the sys-
tem has its size increased. On the other hand, the quantum
Monte Carlo �QMC� method �28,29� is an efficient approach
to study large systems. Using it we have studied the en-
tanglement witness for linear, square, and cubic lattices.

The QMC method treats the exponentials of the grand
partition function with the Suzuki-Trotter decomposition
scheme. Using a discrete Hubbard-Stratonovich transforma-
tion it converts the electron-electron interaction into one of
free electrons interacting with a time-dependent Ising field.
With it we compute the relative weights of the Ising field
configurations. The algorithm follows the lines of those for
classical systems, except for the Boltzmann weight that is
expressed as a sum over Ising spins of a product of determi-
nants. For the Hubbard model at half filling, the product of
determinants is always positive. We have used the imaginary
time discretization of the QMC �=0.125 �30�.

Figure 3 shows the QMC results for a 64-site ring, and for
100-site square and cubic lattices. Our Tc cannot be esti-
mated accurately for large U / t because the QMC becomes
unstable at low temperatures and with strong Coulombian
interaction �30�.

Furthermore, we include in Fig. 3 the thermodynamic
limit extrapolation obtained through the linear-chain results
from the direct diagonalization for small clusters. Note that
the extrapolation is consistent with the simulation. Notice
that for different lattices, the results for Tc are similar reveal-
ing no new behavior.

IV. CONCLUSION

Wesniak et al. �17� suggested that magnetic susceptibility
can be a macroscopic �thermodynamical� spin entanglement
witness without complete knowledge of the specific model
�Hamiltonian� of the solid. However, we observed here that
its applicability is restricted to the insulator materials be-
cause local features of the spin length affect the deviation of
the witness. We have developed a generalization that allows
us to get information about system entanglement with vari-
able local spin lengths such as found in itinerant electron
systems. Moreover, our witness is also valid for fixed local
spin lengths and consequently, it can be used experimentally
in conductor or insulator materials.

FIG. 1. Temperature dependence of the witness given by expres-
sion �6� for the four site linear chain of the half-filled Hubbard
model using the grand canonical ensemble with U=0, 4, and 8. We
adopt units kB=1 and t=1.

FIG. 2. Coulombian interaction dependence of the critical tem-
perature for the finite one-dimensional half-filled Hubbard model.
We adopt units kB=1 and t=1. The solid and dashed lines are re-
lated to chains and rings, respectively. Each curve is labeled by its
number of sites.
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As an application, we studied thermal entanglement for
the one, two and three dimensional half-filled Hubbard
model. We obtained the critical temperature Tc below which

the system is certainly entangled. We have shown that there
is a Coulombian repulsion that presents a global Tc maxi-
mum. This feature is relevant for quantum information sci-
ence since it reveals the optimal Coulombian repulsion ref-
erent to the highest temperature where the system is
definitely entangled. In addition, the decrease in Tc for
t�U indicates that the itinerancy of electrons favors the en-
tanglement. Furthermore, at the asymptotic regime U� t we
show, through a numerical extrapolation to the thermody-
namic limit, that Tc is in accordance with the exact result for
the 1

2 −s Heisenberg model. A recent study has shown that
higher spin length increases the Tc. �17� Since higher spin
length means higher internal degrees of freedom, the above
result shows a strong favoring of entanglement according to
the increases in the internal degrees of freedom. In this work,
from the results of Tc for linear, square, and cubic lattices,
we notice that an increase in the external spin degrees of
freedom produces similar results. These results suggest that
the dependence between entanglement and internal spin de-
grees of freedom is far stronger than between entanglement
and external spin degrees of freedom.
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