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Quantum walks, being the quantum analog of classical random walks, are expected to provide a fruitful
source of quantum algorithms. A few such algorithms have already been developed, including the “glued trees”
algorithm, which provides an exponential speedup over classical methods, relative to a particular quantum
oracle. Here, we discuss the possibility of a quantum walk algorithm yielding such an exponential speedup
over possible classical algorithms, without the use of an oracle. We provide examples of some highly sym-
metric graphs on which efficient quantum circuits implementing quantum walks can be constructed and discuss
potential applications to quantum search for marked vertices along these graphs.
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I. INTRODUCTION

The considerable ongoing interest in quantum algorithms
has been sparked by the possibility of practical solutions to
problems that cannot be efficiently solved by classical com-
puters. In other words, the opportunity to achieve exponen-
tial speedups over classical techniques by harnessing en-
tanglement between densely encoded states in a quantum
computer. Quantum walks have been the focus of several
recent studies �see, for example, �1–5�� with particular inter-
est in possible algorithmic applications of the walks �6–10�.
A few such algorithms have already been developed, perhaps
the most notable being the “glued trees” algorithm developed
by Childs et al. �6�, in which quantum walks are shown to
traverse a family of graphs exponentially faster than any pos-
sible classical algorithm, given a certain quantum oracle.

In this paper we discuss the possibility of a quantum walk
algorithm providing such an exponential speedup over pos-
sible classical algorithms without the use of an oracle. First,
we present a formal construction of quantum walks and show
that they can be implemented classically in a time that scales
polynomially with the size of the state space. We then con-
sider an efficient quantum implementation of quantum walks
to be one in which the resources required scale logarithmi-
cally with the size of the state space and present examples of
graphs for which such an implementation is possible.

II. QUANTUM RANDOM WALKS

Quantum walks can be thought of as the quantum analog
of simple classical random walks. They are a unitary process
and can be naturally implemented by quantum systems. The
discrete-time walk consists of a unitary operator U=SC,
where S and C are termed the shifting and coin operators,
respectively, acting on the state space.

Consider a discrete-time quantum walk along a general
undirected graph G�V ,E�, with vertex set V= �v1 ,v2 ,v3 , . . .�,
and edge set E= ��vi ,v j� , �vk ,vl� , . . .�, being unordered pairs
connecting the vertices. The quantum walk acts on an ex-
tended position space, in which each node vi with valency di

is split into di subnodes. This space then consists of all states
�vi ,ai�, where vi�V and 1�ai�di. The shifting operator
acts on this extended position space, with its action defined
by

S�vi,ai� = �v j,aj� ,

for some v j �V such that �vi ,v j��E. The coin operator com-
prises a group of unitary operators, or a set of coins, each of
which independently mix the probability amplitudes associ-
ated with the group of subnodes of a given node. For ex-
ample, given a vertex vi with valency di, the coin can be
represented by a unitary �di�di� matrix.

This definition is necessarily vague, allowing significant
freedom in the construction of shifting and coin operators,
depending on the desired properties. If, for example, a spe-
cific labeling of the vertices of the graph was not known, the
shifting and coin operators may be required to act symmetri-
cally with respect to any arbitrary labeling. This means that
the coin matrix must be symmetric and the shifting can take
place only along edges, with S2 equaling the identity opera-
tor.

Consider an undirected graph, having order n and k edges,
with no self-loops or multiple edges between pairs of verti-
ces. Then the above definition yields a state space with 2k
states. The shifting operator S can then be represented by a
�2k�2k� permutation matrix, and if we group the states de-
rived from a common vertex, the coin operator C can be
represented by a �2k�2k� block diagonal matrix. Since k has
an upper bound of n�n−1� /2, it follows that a step of the
walk, U=SC, can be simulated efficiently on a classical com-
puter, in a time that scales with O�n6�. In fact, the shifting
operator, being a permutation of the 2k states, can be imple-
mented more efficiently with an upper bound scaling of
O�n4� �11�, as can the coin operator, containing n blocks of
size at most n. Hence, quantum walks on graphs can be
classically simulated in polynomially time, scaling with
graph size. So for even the possibility of exponential speed-
ups, quantum implementations must scale logarithmically
with graph size.

Many of the currently proposed “natural” physical imple-
mentations of quantum walks �12–15� cannot achieve this, as
the walks evolve on nodes that are implemented by physical
states on which operations are directly performed. Hence the*brendan@physics.uwa.edu.au
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resource requirements grow polynomially with the state
space. In order to achieve an exponential gain, the nodes
need to foremost be encoded by a string of entangled states,
such as qubits in a quantum computer, making use of
memory that grows exponentially with the number of qubits.
In addition, the number of elementary gates required to per-
form the walk needs also grow logarithmically with the size
of the state space.

So far, this has only been found to be possible for struc-
tures with a high degree of symmetry—where symmetry in
this case refers to the ability to characterize the structure by
a small number of parameters, increasing at most logarithmi-
cally with the number of nodes. Note that this may not nec-
essarily imply that the structure has geometric or combina-
torial symmetry in the typical sense of the terms. For
instance, sparse graphs with efficiently computable neigh-
bors fall into this category and as a consequence of �16,17�
have been shown to allow efficient implementations of quan-
tum walks. Here sparse graphs of order n are defined as in
�16� to have degree bounded by O(poly log�n�), with the
further condition that the neighbors of each vertex are effi-
ciently computable. Possessing efficiently computable neigh-
bors implies the existence of an O(log�n�) sized function
characterizing the graph, such that the information contained
in the O�n� edges can be compressed to size O(log�n�). This
compression seems to require the presence of some kind of
structure to the system, for example, the graph cannot con-
tain more than O(log�n�) completely random edges. An in-
teresting open question is whether sparse graphs can have no
automorphisms apart from the identity.

III. EFFICIENT QUANTUM CIRCUIT IMPLEMENTATION

In this section, we give examples of a few such graphs for
which relatively simple quantum circuits can be designed to
efficiently implement quantum walks along them. First, we
will look at a simple cycle. To implement a quantum walk
along it, we first note that each node has two adjacent edges,
and hence two subnodes. Proceeding systematically around
the cycle, we assign each node a bit-string value in lexico-

graphic order, such that adjacent nodes are given adjacent
bit-strings. For a cycle of order 2n, n qubits are required to
encode the nodes, and an additional qubit to encode the sub-
nodes. The coin operation can be implemented by a single
Hadamard gate acting on the subnode qubit, and the shifting
operation by a cyclic permutation of the node states, in
which each state �or bit-string� is mapped to an adjacent state
�either higher or lower depending on the value of the subn-
ode qubit�.

This permutation can be achieved via “increment” and
“decrement” gates, shown in Fig. 1, made up of generalized
CNOT �CNOT� gates. These gates produce cyclic permutations
�in either direction� of the node states. The resulting shifting
operator is S= �Incr. � �1�+Decr. � �0��. Here the tensor
space description separates the node and subnode states. So
to implement a walk along a cycle of size 2n we require n
+1 qubits. O�n� additional ancillary qubits may also be re-
quired for the generalized CNOT gates involved in the cyclic
permutations depending on the specific implementation used.
The number of elementary gates required is limited to O�n�,
hence both memory and resource requirements scale loga-
rithmically with graph size. An example of the circuit for a
cycle of size 16 is given in Fig. 2. Note that although this
specific implementation requires a cycle of order 2n, only
trivial alterations are required to efficiently implement cycles
of any size. For instance, an equivalent circuit for a cycle of
size 25 is given in Fig. 3.

A similar method can be used to efficiently implement a
walk along a 2n dimensional grid or hypercube, by partition-
ing the labels of the nodes into n distinct sets corresponding
to each coordinate. An example for the two-dimensional
�2D� �4�4� hypercycle is given in Fig. 4. As an extension, a
quantum circuit implementing a walk along a twisted toroi-
dal supergraph as shown in Fig. 5 is given in Fig. 6. This
structure was employed by Menicucci et al. �18� to set up
QC-universal toroidal lattice cluster states.

Other highly symmetric structures, such as the complete
2n+1 graph, a complete 2n graph with self-loops and a bi-
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FIG. 1. Increment and decrement gates on n qubits producing

cyclic permutations in the 2n bit-string states.
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FIG. 2. �Color online� Quantum circuit implementing a quantum
walk along a 16-length cycle.
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FIG. 3. Quantum circuit implementing a quantum walk along a
25-length cycle.
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FIG. 4. �Color online� Quantum circuit implementing a quantum
walk along a 2D hypercycle.
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nary tree also allow efficient implementations of quantum
walks with a qubit-based quantum circuit. Walking along the
complete 2n graph, using the Hadamard coin operator, can be
naturally implemented using only single qubit gates and
CNOT gates �n Hadamard gates and 3n CNOT gates�. The
circuit for a complete 2n graph �n=3�, in which each node
has a self-loop, is shown in Fig. 7, and is fairly intuitive.
Alternatively, if the Grover coin operator is used, n+3 extra
single qubit gates, one extra Cn−1NOT gate �which is a gener-
alized CNOT gate with n−1 control bits and one target bit�,
and n Hadamard gates are required, as shown in Fig. 8. Here

M =
1
	2


 1 1

− 1 1
�

is a permutation of the Hadamard operator. Note that even
using the Grover coin Gn, the coin operator is still mostly
separable, requiring only single qubit operators apart from
the one Cn−1NOT gate.

Walks along highly symmetric variants of the complete
graph �as opposed to sparse graphs, such as those considered
previously� can also be efficiently implemented. For instance
we consider the complete graph on 2n vertices, together with
an arbitrary labeling of the nodes from 1 to 2n. Removing
edges between nodes whose labels differ by a multiple of 2
leads to a regular graph of degree 2n−1 shown in Fig. 9 for
n=3. This is then a complete bipartite graph and a walk
along such a graph can be efficiently implemented by the
circuit of Fig. 9, an even simpler circuit than for the com-
plete 2n graph.

Given the results of Childs et al. �6� and Cleve et al. �19�,
in which quantum walks are shown to traverse a family of

glued trees exponentially faster than any possible classical
algorithm, relative to a quantum oracle, we decided to look
into quantum walks along glued trees in the nonoracular set-
ting. Note that the algorithm presented in �6� employs
continuous-time quantum walks, while in �19� it was shown
to also be implementable by discrete-time quantum walks.
Both require the use of a quantum oracle. In the nonoracular
case, efficient implementation of a quantum walk along the
glued trees is not possible given random interconnections
between the central levels �as in Fig. 10�a��, since this would
be equivalent to performing a random permutation of 2n

states in time O(poly�n�). Instead we are restricted to con-
sidering regular interconnections such as those of Fig. 10�b�.
Here “regular” interconnections are those that can be com-
pletely characterized by O(poly�n�) parameters. The algo-
rithm of �6� requires a symmetric coin operator—hence we
use the Grover coin, defined on d dimensions by �Gd�i,j =

2
d

−�i,j, the only purely real symmetric coin �11�. We also re-
strict the shifting operator to S2= I, where I is the identity
operator. In this case an efficient quantum circuit can be
constructed, for example that of Fig. 11, for tree depth 4
�with 62 nodes�. Here the G3 gate represents a three-
dimensional Grover coin operator acting on two qubits �mix-
ing three of the four states, while the fourth is not accessed�.
The RR and RL gates represent a cycling of the values in the
bit string to the right and left, respectively, performed by a
series of swap gates. For a tree depth of l, the circuit requires
l+log2 l+5 qubits, together with O�l� elementary gates.

Related to the problem of which structures quantum walks
can be efficiently implemented on is the question of which
permutations of a set of states can be efficiently imple-
mented. Given a set of n qubits encoding 2n quantum states,
we wish to know which permutations of these states can be
implemented using O(poly�n�) elementary gate operations.
Cyclic rotations of the states �relative to the lexicographic
order of their bit-strings� can be implemented efficiently as
shown above. In fact any rotation of the states can be per-
formed efficiently by first decomposing it into a series of

(a) (b)

FIG. 5. �Color online� “Twisted” toroidal lattice graph. Each
node in the representation on the left contains four subnodes of the
graph, as indicated on the right.
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FIG. 6. Quantum circuit implementing a quantum walk along
the twisted toroidal of Fig. 5 of dimension 8�8�4.
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FIG. 7. �Color online� Quantum circuit implementing a quantum
walk along a complete 16-graph.
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FIG. 8. Quantum circuit implementing a quantum walk along a
complete 8-graph using a Grover coin.
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rotations of size 2m for some integer m. For instance, an
incremental rotation of seven states applied to the 32 states
represented by five qubits is explicitly shown in Fig. 12.
Generalized control-not operations can also be used to trans-
pose pairs of states differing in label by a single qubit. Simi-
larly, any two states differing by m qubits can be efficiently
transposed using 2m−1 generalized CNOT operations. For
example, given 16 states encoded by four qubits, the lexico-
graphically first and tenth states �represented by �0000� and
�1001�, respectively� can be transposed via three controlled
swap operations, as shown in Fig. 13. Using this method any
transposition of states on n qubits can be performed using a
maximum of 2n−1 generalized CNOT gates, or 2n2−3n
C2NOT gates. This may not be the optimal way to implement
a particular transposition, however, it does scale logarithmi-
cally with the number of states.

Using similar methods, other permutations with essen-
tially binary characters can also be efficiently implemented,
such as swapping every second state or performing some
given internal permutation to each consecutive group of
eight states �or 2m states, for some fixed integer m�. Note that
permutations which may not seem to have a binary character
can be transformed to efficiently implementable permuta-

tions. For instance, if we wished to split the set of states into
groups of six and swap every fourth element, we could
achieve this by expanding the state space—embedding each
group of six into a group of eight, with the last two states
remaining unused “empty states.”

For simplicity, given an implementation on qubits, the
preceding examples have all been essentially binary in na-
ture. Efficient implementations using qubits are equally pos-
sible on other nonbinary structures such as ternary trees or
complete 3n graphs. For example, implementing the com-
plete 3n graph �with self-loops� using a qubit circuit requires
many more two-qubits gates, given the need to approximate
a 9D Hadamard or Grover coin operator over 16 states, with-
out mixing into the other seven states. As would be expected,
a more natural implementation is possible if qutrits are used
instead. In this case, the coin operator is again nearly sepa-
rable if using the Grover coin operator and completely sepa-
rable if using a qutrit equivalent of the Hadamard operator.
Here we take a qutrit equivalent of the Hadamard operator to
be an operator Tn acting on n qutrits satisfying

��T1���a,b =
1
	3

e�i2�/3ab, a,b � �0,1,2�, and

�Tn�� = �T1�� � �Tn−1��.

Qutrit circuits implementing a quantum walk along the
complete-3n graph using the T coin operator or the Grover
coin operator can then be constructed as in Fig. 14. Never-
theless, the use of a more natural base still provides a poly-
nomial efficiency gain.
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FIG. 9. �Color online� Quantum circuit implementing a quantum
walk along a complete 16-graph with every second edge removed.

FIG. 10. Binary glued trees with random �a� and regular �b�
interconnections between the central levels.
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FIG. 11. Quantum circuit implementing a quantum walk along a
glued tree with a regular labeling of the nodes.
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FIG. 12. A rotation of seven states, split into the composite

powers of 2, being three rotations of size 4, 2, and 1 states,
respectively.
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IV. CONCLUSIONS

We have presented here a set of highly symmetric graphs
all amenable to exact efficient quantum circuits implement-
ing quantum walks along them. The examples considered
here are quite simple and more complex variations can still
be efficiently implemented such as composites of highly
symmetric graphs, symmetric graphs with a small number of
“imperfections,” as well as graphs possessing a certain
bounded level of complexity.

Quantum walks have been used to search for marked ver-
tices along highly symmetric graphs including the hypercube
complete graphs and complete multipartite graphs �8,20�.
These studies have dealt with the computational complexity
of such searches relative to an oracle—looking at the number
of steps of a quantum walk required to find a marked vertex,
with individual steps of the walk itself largely left to the
oracle. In such cases searching using quantum walks has
yielded a quadratic speedup over classical search algorithms.

In a practical implementation of such a search algorithm,
the computations performed by the oracle �that is, perform-
ing a step of the walk in which the coin operator differs for
marked and unmarked nodes� would of course affect the run-
ning time. The work presented here can be used to efficiently
implement such an oracle—using O(log�n�) elementary
gates for a graph of order n—given a highly symmetric
graph such as those considered in �8,20� and in this paper.
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FIG. 13. A transposition of the �0000� and �1001� states.
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FIG. 14. Qutrit-based quantum circuit implementing a quantum
walk along a complete 3n graph.
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