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We investigate a simple arrangement of coupled harmonic oscillators which brings out some interesting
effects concerning creation of entanglement. It is well known that if each member in a linear chain of coupled
harmonic oscillators is prepared in a “classical state,” such as a pure coherent state or a mixed thermal state,
no entanglement is created in the rotating wave approximation. On the other hand, if one of the oscillators is
prepared in a nonclassical state �pure squeezed state, for instance�, entanglement may be created between
members of the chain. In the setup considered here, we found that a great family of nonclassical �squeezed�
states can localize entanglement in such a way that distant oscillators never become entangled. We present a
detailed study of this particular localization phenomenon. Our results may find application in future solid state
implementations of quantum computers, and we suggest an electromechanical system consisting of an array of
coupled micromechanical oscillators as a possible implementation.
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Nonclassicality of quantum radiation fields is an impor-
tant topic in quantum optics �1–8�. A single-mode radiation
field manifests nonclassical effects when it is in a state
whose P function �also known as coherent state representa-
tion or Glauber-Sudarshan Distribution� is quite singular and
not positive definite �5�. General measures of nonclassicality
have been proposed in the quantum optics literature �4–7,9�.
An important class of field states comprises those states
whose Wigner function is Gaussian �10�. These Gaussian
states attracted much attention since they can be created and
manipulated with reasonably simple optical elements and be-
cause measures of nonclassicality are also known for them
�11–13�.

Equally important in quantum optics, and more recently
in quantum-information science, is the concept of entangle-
ment, a typical quantum mechanical phenomenon which has
been investigated since the beginning of the quantum theory
�14,15�. Nonclassical properties, particularly squeezing and
creation of entanglement, seem to be linked concepts at least
when initially product squeezed states are manipulated with
passive Gaussian operations �16�. In fact, among the differ-
ent measures of nonclassicality of a field state, there is one
which uses the degree of entanglement generated from sepa-
rable Gaussian states when assisted by beam splitters, phase
shifters, auxiliary classical fields, and ideal photodetectors
�13�. Actually, beam splitters have become a useful tool for
entangling light fields, and its capacity as so has been exten-
sively studied �17–19�. Much is known about nonclassicality
of input states and entanglement in the output states of a
beam splitter, but more general setups are still considerably
unexplored. Since a system of two coupled harmonic oscil-
lators in the rotate wave approximation �RWA� is, under cer-
tain conditions, isomorphic to two field modes coupled by a
beam splitter, such general setups seem to be more easily
visualized when considering arrangements of harmonic os-
cillators corresponding to arbitrary weighted graphs. This pa-
per is intended to investigate the effects of squeezing on the
creation of entanglement in a simple arrangement of coupled

harmonic systems. We will show that for a great range of the
relative direction of squeezing of two reference oscillators,
entanglement becomes localized, and no long distance en-
tanglement is created whatsoever.

The dynamics of entanglement in systems consisting of
coupled harmonic oscillators has been studied in great detail
in �20�. In addition to a careful study of the propagation of
entanglement in linear chains, more general geometrical ar-
rangements of the harmonic oscillators have also been con-
sidered in �20�. Among these more general arrangements, we
will be considering the setup depicted in Fig. 1.

This setup may be seen as a small ring coupled to two
chains. In our case, this ring consists of four oscillators,
where two of them are used to allow coupling with the
chains �hubs� and the other two are reference oscillators
where product pure squeezed states may be prepared. With
exception of these two reference oscillators, the rest is ini-
tially prepared in a product of individual vacuum states. The
RWA Hamiltonian for the system depicted in Fig. 1 is given
by ��=m=�=1�
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FIG. 1. A diagram of the interferometric setup used in this pa-
per. Identical oscillators �unit mass and frequency� are initially pre-
pared in the vacuum state except for two reference oscillators �la-
beled with r1 and r2� which are initially prepared in pure squeezed
states. N is the logarithmic negativity �base e� calculated between
the oscillators at the extremes of the chains and c are coupling
constants.
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Hamiltonian �1� can be put into the suitable form,

Ĥ =
1

2�
ij

�piTijpj + qiVijqj� =
1

2
R�V 0

0 T
�RT, �2�

where R= �qr1
,qr2

,q1 , . . . ,qM , pr1
, pr2

, p1 , . . . , pM�T is a vector
grouping position and momentum operators and V and T are
symmetric matrices whose elements can be found from Eq.
�1�. Note that T=V because we are working in the RWA.

Since Hamiltonian �2� is quadratic in the position and
momentum operators, initial Gaussian states will remain
Gaussian at all times, and this facilitates the study of en-
tanglement because a computable entanglement measure is
known for such states �21�. Entanglement properties of
Gaussian states are contained in the covariance matrix whose
elements are given by

�ij = 2 Re tr���Ri − �Ri	��Rj − �Rj	�� , �3�

where the expectation values are evaluated with the system
density operator �. For a bipartite system composed of sub-
systems A and B, an entanglement measure called logarith-
mic negativity can be written as a function of the covariance
matrix as �21�

N = − �
j

ln�min�1, 
� j
TB
�� , �4�

where � j
TB are the symplectic eigenvalues of the covariance

matrix �TB, evaluated from the system density operator after
partial transposition of system B. Actually, there is no need
to work with the system density operator since the effect of
partial transposition of � on the covariance matrix is easily
obtained from the transformation �TB =P�P, where for a bi-
partite system consisting of two oscillators �20�

P = �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
� . �5�

The time evolution of the covariance matrix for quadratic
Hamiltonian �2� is given by the simple expression �20�

��XX�t� �XP�t�
�PX�t� �PP�t� � = E�t���XX�0� �XP�0�

�PX�0� �PP�0� �E†�t� , �6�

where

E�t� = exp� 0 T

− V 0
�t� . �7�

We now have all the tools needed to study the dynamics of
entanglement in this system.

It is a well known fact that initial “classical states,” such
as coherent or thermal states, are not capable of generating
entanglement in a linear chain of RWA-coupled harmonic
oscillators. Many papers have then studied the problem of
the entangling capacity of RWA coupling and its dependence
on the initial state of the oscillators �17–19�. Although non-
classical states are needed for generating entanglement using
this coupling, not all nonclassical states lead to entangle-
ment. Two RWA-coupled harmonic oscillators �with lower-
ing operators a and b� which are initially prepared in pure
squeezed states 
raei�a	 and 
rbei�b	, respectively, will never
become entangled with the interaction H=g�a†b+b†a� when
ra=rb and relative angle �b−�a=�. In this case, there is just
one relative direction of squeezing in the domain �0,2��
which does not generate entanglement, namely, �b−�a=�.

We will now see that the setup depicted in Fig. 1 presents
a very rich structure concerning the dependence of the dy-
namics of entanglement upon relative direction of squeezing
of the two reference oscillators. We will show that there is a
great range of the relative direction of squeezing of the two
reference oscillators r1 and r2 for which no entanglement
between the oscillators 1 and M is created whatsoever. As
mentioned before, with exception of the two reference oscil-
lators, all other oscillators are initially prepared in individual
vacuum states. Preparation of squeezed states of linear
coupled harmonic oscillators outside RWA has been studied
in �22�, where a time dependent localization of entanglement
also appears. We will show that for the interferometric setup
treated here, perfect localization of entanglement occurs and
it is time independent for a great family of squeezed states.

In Fig. 2, we plot the time evolution of the entanglement
between the oscillators at each extreme of the chain consid-
ering M =38. The reference oscillator r1 is initially prepared
in the pure squeezed state 
r1ei�1	 and the reference oscillator
r2 is prepared in the pure squeezed state 
r2ei�2	, with r1
=r2=r. This initial preparation was used for all plots shown
in this paper. It is interesting to notice that for any fixed time,
the entanglement decreases as the relative angle of squeezing
���2−�1 increases. This relative angle of squeezing is de-
picted in Fig. 3.

As � increases, it comes to a point that no entanglement is
created between oscillators 1 and M at any instant of time.
This time independence was verified numerically for many
different values of M. We provide an analytical exact result
for M =2 later on this paper. In contrast to the case of just
two RWA-coupled oscillators, � is not unique in the interval
�0,2��. Actually, there is now a continuum of values of �
which forbids the creation of entanglement. As one keeps
increasing �, it comes to a point where entanglement starts
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arising again. This range of � which forbids creation of en-
tanglement between 1 and M depends on the squeezing pa-
rameter r for the initial preparation we have been considering
so far. In Fig. 4, we present the variation in � as a function of
the squeezing parameter r for a fixed time ct=58. This time
is approximately the first local maximum of the entangle-
ment for ct�80 as one can see in Fig. 2. It is clearly shown
in Fig. 4 that the increasing in the squeezing parameter r
leads to the increasing in the range of � for which no en-
tanglement can be created. This clearly indicates that the
statement that squeezing favors entanglement creation has to
be seen in context. Here, we found an example that the more

squeezed the reference oscillators, the more resistant to en-
tanglement creation the setup becomes in the particular sense
that the range of values of � allowing entanglement creation
between 1 and M decreases. As r increases, the system be-
comes then more selective concerning entanglement genera-
tion between the extremes of the chain.

The reason why entanglement does not propagate in the
situation just described seems to reside in the fact that the
entanglement between the oscillators M /2 and �M +2� /2 is
zero for the range of � which forbids creation of entangle-
ment between 1 and M. Entanglement is created just between
M /2, r1 and r2, and also between �M +2� /2, r1 and r2, but no
bipartite entanglement between M /2 and �M +2� /2 exists for
such a range of �. This localized entanglement persists for all
times. From the point of view of propagation of entangle-
ment, there is no entanglement being propagated to oscilla-
tors 1 and M because the hubs M /2 and �M +2� /2 are not
entangled for all times. It is clearly displayed in Fig. 2 that
the oscillators 1 and M take time to get entangled. This is
also in accordance with the view of entanglement being cre-
ated in the center of the setup �in the ring� and then being
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FIG. 2. Time evolution of the
logarithmic negativity for differ-
ent relative angles of squeezing.
We have used M =38 and r=1.
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FIG. 3. Phase-space representation of the two squeezed states
considered in this paper. The reference oscillators are prepared in
squeezed states 
rei�1	 and 
rei�2	 with same squeezing but with a
general relative angle of squeezing �=�2−�1.
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FIG. 4. Logarithmic negativity at ct=58 as a function of the
relative angle of squeezing � in the case M =38.
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propagated. Propagation of entanglement is also carefully
studied in �20,23�.

It is worthwhile to notice that the range of values of �
seems to be independent of the number of oscillators in the
chains. We numerically tested this conjecture for M ranging
from 2 to 98. In Fig. 5, we show this independence for some
values of M. In this plot, we considered the maximum en-
tanglement for times ct�80, but another choices would lead
to similar results since the localization is time independent.
As one could expect, the entanglement decreases with the
distance �number of oscillators in the chains�.

Since our results seemed to be independent of M, we
exactly solved the problem for the ring only �this situation
corresponds to M =2�. In fact, the essence of the entangle-
ment localization lies in the properties of the ring. The only
symplectic eigenvalue that can be smaller than 1 in the case
M =2 reads

�TB = �
cos2�ct� + sin2�ct��cosh�2r� − sinh�2r�
cos��/2�
�
�1/2.

�8�

One can easily see that in order for �TB to be smaller than 1
�creation of entanglement between oscillators 1 and 2�, the
following inequality must be satisfied for

�cos�

2
�� �

cosh�2r� − 1

sinh�2r�
. �9�

It is worthwhile to notice that this inequality does not depend
on the coupling constant c. For r=1, one can see that in-
equality �9� is satisfied for −1.410 05	�	1.410 05. Then,
if 1.410 05	�	4.873 13, the oscillators 1 and M �M =2�
will not get entangled. This is in accordance with numerics
for M =38 shown in Fig. 4. Applying now Eq. �9� for r
=1.75, entanglement is created between those oscillators if
−0.688 22	�	0.688 22. Consequently, if 0.688 22	�
	5.594 96 oscillators 1 and 38 will not get entangled. Again,
the case with more oscillators shown in Fig. 4 agrees com-
pletely with the simple setup M =2. Although the dependence
of � on r and c is independent of the number of oscillators,
the amount of entanglement and its dynamics changes com-
pletely with M. As an example, we show in Fig. 6 the time
evolution of the entanglement between the oscillators 1 and
M for M =4. When compared with the plot shown in Fig. 2,
we can see that the frequencies involved in the evolution and
the amount of entanglement available for the two oscillators
at the extremes of the chain change with M. However, the
localization as a function of � will be the same.

It may be interesting to look at this relation between � and
the entanglement from a different point of view, i.e., by fix-
ing � and changing r. In Fig. 7, we show how the entangle-
ment between 1 and M, for the simple case M =2, depends
on the squeezing parameter for different values of �. It is
clear that once � is fixed, there is an upper bound for r.
Above that upper bound, no entanglement is generated re-
gardless the fact that the more squeezed the initial state is,
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FIG. 5. First local maximum of the logarithmic negativity in the
domain ct�80 as a function of the relative angle of squeezing � for
different numbers M of oscillators in the chains. We considered r
=1.
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the more nonclassical it becomes. The results shown in Figs.
4, 5, and 7 are consequences from inequality �9�.

It is now important to make a brief comment about the
choice of the system depicted in Fig. 1. Our primary aim in
this paper is to show the strong dependence of the perfect
localization of entanglement on the phase difference of two
squeezed reference oscillators. Chains of arbitrary length are
used in order to emphasize the localization of entanglement
in the central structure. We realized that this phenomenon
occur when at least one further oscillator is coupled to both
reference oscillators. We have chosen the configuration de-
picted in Fig. 1 since it is the simplest situation one can have
where at least two hubs are available for further connections.
More involved choices are displayed in Fig. 8.

Finally, we would like to connect our study with applica-
tions in a solid state setup. Nowadays, microelectromechani-
cal systems �MEMSs� can be manufactured and controlled
with impressive precision. If cooled down to sufficiently low
temperatures, these systems would operate as harmonic os-
cillators in the quantum regime. The coupling constants be-
tween neighbor MEMS are controlled by means of voltages
biases. Experimental realization of a large array of doubly
clamped beams made of gold fabricated on top of a silicon
nitrite membrane is reported in �24�. Previous theoretical
proposals studying entanglement of coupled harmonic oscil-
lators have also suggested this electromechanical setup as a
potential candidate for physical implementation �25,26�. De-
coherence lowers the Q factors for the MEMS, and values of
Q=103–104 are realistic nowadays �24,26�. According to
�25�, most of the dissipation and decoherence is expected to
come from the coupling of each gold beam with the degrees
of freedom of the silicon substrate to which the resonator is
connected to �phononic modes�. This leads to a simple
Gaussian decoherence model for noise in these coupled
MEMSs �25�. It is shown in �25� that entanglement creation
and propagation are surprisingly robust against noise caused
by the coupling with the substrate. Indeed, eight MEMS os-
cillators with natural frequencies of 5 GHz and cooled down
to temperatures about 10 mK would dynamically lead to
logarithmic negativities about 0.2 for Q=103 and c=0.3 in

the scheme presented in �25�. This is a strong motive for
quoting MEMS reported in �24� as a possible future imple-
mentation of the ideas presented here.

To summarize, we have studied the dynamics of entangle-
ment in a simple arrangement of coupled harmonic oscilla-
tors with special emphasis on the relation between squeezing
and creation of entanglement. We have found that for a great
family of squeezed states for two reference oscillators there
is a strong localization of entanglement. We performed a
careful analysis of the parameters involved and concluded
that both the magnitude of the squeezing parameters and
their phases are important in the creation of entanglement in
our setup. We have shown that the main features of entangle-
ment localization for an arbitrary number of oscillators in our
setup depend only on the central oscillators �ring� and could
be reproduced in the simple case of four oscillators. We then
provided an analytical expression �involving the relative
angle of squeezing, squeezing parameter, and coupling con-
stant� that captures all aspects of the entanglement localiza-
tion. Our results may be useful in situations where one
wishes to control entanglement generation and distribution in
solid state systems where the distance between the coupled
quantum systems is so small that the use of flying qubits
�typically photons� is not appropriate. In these cases, besides
local control of the initial state of each quantum system, one
has in general to appeal to the external control of the cou-
pling constants to process quantum-information. Here, we
provide a way to generate and localize entanglement that
does not involve external control of the coupling constants
but only local control of the individual �not entangled� initial
quantum states. Finally, we suggested a system consisting of
capacitively coupled microelectromechanical resonators to
implement the ideas presented in this paper.
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FIG. 8. Examples of different configurations �structures� which
localize entanglement. Chains of arbitrary length can be coupled to
such structures through the open lines �hubs� in order to study en-
tanglement creation and propagation. Depending on the relative
angle of squeezing of the two reference oscillators r1 and r2, no
entanglement will be generated between the members of the chains
coupled to these structures.
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