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this analysis, we introduce alternative sets of conditions, which are expressed in terms of local symplectic
invariants.
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I. INTRODUCTION

Statistical moments of second order represent a key ele-
ment of the quantum mechanical paradigm. Besides provid-
ing the “language” in which the uncertainty principles are
expressed, they serve as indicators in a number of applica-
tions of the theory, with both applied and fundamental inter-
est. In particular, second moments are central to the descrip-
tion of bosonic fields in second quantization �as is the case,
for instance, in quantum optics, where second order coher-
ence is characterized in terms of second moments� and of
nonrelativistic particles in first quantization. Such systems
do, in fact, share the same formal description �1�, which
hence extends its domain to a variety of fields ranging from
atomic physics to quantum optics, from superconductors’
physics to nanomechanical systems.

During the last decade, the rise of quantum information
science has renewed the focus on these areas because of their
potential for coherent quantum manipulations, and has con-
comitantly brought new problems and questions to the atten-
tion of theorists, which resulted in the birth of the field of
“continuous variable” �CV� quantum information �2� �see
Refs. �3–5� for some literature on CV quantum computation,
CV quantum teleportation, and CV quantum key distribution,
respectively�. A systematic analysis of the properties of con-
tinuous variable quantum states inferred from the structure of
their second moments has been thereby carried out, which
lead to a well-established, extensive theoretical picture �see,
for instance �6–9��. Such an analysis proved to be most rel-
evant also in view of the experimental prominence of the
class of Gaussian states �10,11�, which are completely deter-
mined by their first and second moments. In first, seminal
endeavors �6,7�, the qualitative characterization of the quan-
tum correlations �“entanglement”� of Gaussian states of two
degrees of freedom has been successfully achieved. Now,
while very well established and relatively simple, this result
is still often expressed in a nonrigourous or incomplete man-
ner, which is prone to confound the unacquainted reader.
Because it constitutes one of the basic building blocks on
which the theoretical characterization of Gaussian states has
been constructed, it seems to us extremely important for it to
be re-derived and re-expressed in a rigourous manner and
full detail: this is one of the motifs and central aims of the
present paper.

In general, the main question we will address and rigour-
ously answer is the following: �i� What are the algebraic
conditions that a 4�4 real symmetric matrix V must satisfy
in order to represent the correlation matrix of a two-mode
bosonic system �12�? Then, we shall move on to answer a
closely connected question: �ii� What are the algebraic con-
ditions to be satisfied by V in order to represent the correla-
tion matrix of a separable �or entangled� Gaussian state of
two bosonic modes?

Both these questions are thoroughly answered providing
complete sets of conditions, which are expressed in terms of
global or local symplectic invariants. In particular, the set of
local conditions, i.e., given in terms of local invariants, is
completely new in literature. Then, by specifying some of
these algebraic results in the case of positive-definite matri-
ces, we can make a direct comparison with the previous
work of Ref. �6� and provide a rigorous and correct interpre-
tation of its seminal results.

The paper is organized as follows. In Sec. II we review
basic notions about bosonic states, correlation matrices, and
symplectic transformations. In Sec. III we present the math-
ematical tools to be used in the derivations of Secs. IV and V.
In Sec. IV we provide two sets of algebraic conditions for the
physical genuinity of the correlation matrix of two bosonic
modes. These conditions are expressed in terms of global or
local symplectic invariants. In Sec. V we provide similar
conditions for separability. Next, in Sec. VI, we specify some
of our results for making a direct comparison with the pre-
vious achievements of Ref. �6�. Finally, Sec. VII is for con-
clusions. Notice that in the paper we will denote by M�n ,R�
the set of n�n real matrices. Then, we use the compact
notation

S�n,R� = �M � M�n,R�:M = MT� , �1�

for the set of the n�n symmetric real matrices, and

P�n,R� = �M � S�n,R�:M � 0� , �2�

for the set of the n�n positive-definite real matrices. We
will also consider the set �group� of proper rotations

SO�n� = �M � M�n,R�:MTM = I, det M = 1� . �3�
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II. BOSONIC SYSTEMS AND SYMPLECTIC
TRANSFORMATIONS

A. Correlation matrix of a bosonic system

Let us consider a bosonic system composed by n modes,
labeled by an index k. Such a system can be described by an
infinite-dimensional Hilbert space H= �k=1

n Hk and a vector
of quadrature operators x̂T

ª �q̂1 , p̂1 , ¯ , q̂n , p̂n�. In particular,
these operators satisfy the commutation relations

�x̂l, x̂m� = 2i�lm, �4�

where l ,m=1, ¯ ,2n and �lm are the entries of the simplec-
tic form

� = �
k=1

n

�, � ª � 0 1

− 1 0
� . �5�

Let us denote by D�H� the space of density operators acting
on H. It is known that an arbitrary density operator �
�D�H� has an equivalent representation in a real symplectic
space K=K�R2n ,�� called the phase space. This is a real
vector space which is spanned by the singular eigenvalues
xT= �q1 , p1 , ¯ ,qn , pn� of x̂T �representing the “continuous
variables” of the system� and associated to a symplectic
product u ·v=uT�v. In this space, � corresponds to a qua-
siprobability distribution known as the Wigner function W
=W�x�. In general, such a function is fully characterized by
the entire set of its statistical moments �13�. However, in the
particular case of Gaussian states, the Wigner function is
Gaussian and, therefore, fully characterized by the first and
second moments only. These two moments are also known as
the displacement vector dª 	x̂
 and the correlation matrix
�CM� V, whose generic entry is defined by

Vlm ª

1

2
	�x̂l�x̂m + �x̂m�x̂l
 , �6�

where �x̂lª x̂l− 	x̂l
. According to the definition of Eq. �6�,
the CM of n bosonic modes is a real and symmetric matrix in
2n dimension, i.e., V�S�2n ,R�. As a direct consequence of
Eq. �4�, such a matrix must also satisfy the uncertainty prin-
ciple �9,14�

V + i� � 0. �7�

In other words, an arbitrary V�S�2n ,R� is a bona fide quan-
tum CM if and only if Eq. �7� holds. Equivalently, we can
introduce the set of n-mode quantum CM’s to be defined as

qCM�n� ª �V � S�2n,R�:V + i� � 0� . �8�

Notice that the condition of Eq. �7� implies a first relevant
constraint on the matrix V:

Lemma 1 (Definite positivity of V�. For every V
�S�2n ,R� satisfying V+ i��0, one has

V � 0. �9�

Proof. Let u�R2n, then 0�uTVu+ iuT�u=uTVu because
� is antisymmetric. Hence V�0. To prove definite positiv-
ity suppose, ad absurdum, that a nontrivial real vector u0
exists such that u0

TVu0=0. Another vector u1�R2n such that
u1

T�u0�0 always exists as nul���=0. As a consequence,

one can always construct a set of complex vectors z=u0
+ iau1, for a�R, such that

0 � �z��T�V + i��z = 2au1
T�u0 + a2u1

TVu1. �10�

Values of a such that the inequality above is violated can
always be found regardless of the values of u1

T�u0 and
u1

TVu1. This implies uTVu�0 for every u�R2n and, there-
fore, V�0. �

According to lemma 1, we then have

qCM�n� � P�2n,R� . �11�

Furthermore, it is trivial to show positive-definite matrices
which violate Eq. �7�, so that we actually have

qCM�n� � P�2n,R� . �12�

Notice that definite positivity is the only requirement for a
real symmetric matrix to be a classical correlation matrix.

B. Symplectic transformations

The most general real linear transformation of the quadra-
tures

S:x̂ → x̂� ª Sx̂ , �13�

must preserve Eq. �4� in order to be a physical operation.
This happens when the matrix S�M�2n ,R� preserves the
symplectic form of Eq. �5�, i.e.,

S�ST = � . �14�

The set of all the matrices S�M�2n ,R� satisfying Eq. �14�
forms the so-called real symplectic group

Sp�2n,R� ª �S � M�2n,R�:S�ST = �� , �15�

whose elements are called symplectic or canonical transfor-
mations. As a consequence, the most general real linear
transformation in phase space S :x→x�ªSx must be sym-
plectic. Its action on the Wigner function is simply given by
W�x�→W�S−1x�, so that the displacement is linearly modi-
fied while the CM is transformed according to the congru-
ence

V → SVST. �16�

Symplectic transformations are very important since every S
acting in the phase space K corresponds to a Gaussian uni-

tary Û�S� acting on the Hilbert space H, i.e., a unitary op-
erator preserving the Gaussian statistics of the quantum
states. These unitaries are the ones generated by bilinear
Hamiltonians and can always be decomposed into single-
mode squeezers and multimode interferometers �10,15�. In
particular, local symplectic transformations

S = �
k=1

n

Sk � Sp�2,R� � ¯ � Sp�2,R� �17�

correspond to local Gaussian unitaries
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Û�S� = �
k=1

n

Ûk. �18�

Local symplectic transformations can always be decomposed
as products of local rotations and local squeezings. In fact,
thanks to the following characterization

Sp�2,R� = �S � M�2,R�:det S = 1� , �19�

we have that every S�Sp�2,R� can be expressed as a prod-
uct of proper rotations

R��� ª � sin � − cos �

cos � sin �
� , �20�

and squeezing matrices

S�	� ª �	1/2 0

0 	−1/2 �, 	 � 0. �21�

Besides, it is also important to identify which quantities of
a CM are preserved under the application of symplectic
transformations. In general, for a given CM V, we say that a
functional

f:V → f�V� � R �22�

is a �global� symplectic invariant if

f�V� = f�SVST� , �23�

for every S�Sp�2n ,R�. Then, we say that f�V� is a local
symplectic invariant if Eq. �23� holds for every S
�Sp�2,R� � ¯ � Sp�2,R� �16�. Notice that we can extend
the notion of symplectic invariance also to a property of a
matrix. For instance, the definite positivity of V is a global
symplectic invariant since V�0⇒SVST�0.

III. SYMPLECTIC ANALYSIS

Here, we review some basic tools that can be used for the
symplectic manipulation of the CM’s. In particular, the cen-
tral tool in this trade is Williamson’s theorem �17�, which
ensures the possibility of carrying out the symplectic diago-
nalization of real matrices in even dimension under the defi-
nite positivity constraint �as in the case of the CM’s�.

Lemma 2 (Williamson’s theorem). For every V
�P�2n ,R�, there exists a symplectic matrix S�Sp�2n ,R�
such that

SVST =�

1


1

�


n


n

� ª W � 0, �24�

where the n positive quantities �
1 , ¯ ,
n� are the “symplec-
tic eigenvalues” of V, and the diagonal matrix W is its “Wil-
liamson form” �or “normal form”�.

The symplectic spectrum �
1 , ¯ ,
n� can be computed as
the standard eigenspectrum of the matrix i�V where the
modulus must be understood in the operatorial sense �18�.

The corresponding Williamson form W is unique up to a
permutation of the symplectic spectrum �i.e., of the bosonic
modes�. Fixing this permutation, the diagonalizing symplec-
tic matrix S of Eq. �24� is defined up to local rotations
�k=1

n Rk with Rk�SO�2�. For the sake of completeness, we
report in Appendix A a simple proof of Williamson’s theo-
rem, originally presented in Ref. �19�. Using this proof, we
show in Appendix B an algorithm which finds the diagonal-
izing symplectic matrix S of Eq. �24�. This algorithm is not
the fastest but it can be helpful in studying problems like the
optimal discrimination of Gaussian states �20� and the quan-
tum illumination �21�.

Let us consider the case of a 4�4 positive-definite matrix
V�P�4,R�, as in the case of CM’s describing two bosonic
modes. This matrix can be expressed in the block form

V = � A C

CT B
� , �25�

where A, B�S�2,R�, and C�M�2,R�. In this case the
symplectic spectrum �
1 ,
2�ª �
− ,
+� can be computed via
the simple formula �22�


� =���V� � ���V�2 − 4 det V

2
, �26�

where

��V� ª det A + det B + 2 det C . �27�

Here, the quantities det A, det B, and det C are local sym-
plectic invariants, while det V and ��V� are global symplec-
tic invariants, which can also be written as

det V = 
−
2
+

2, ��V� = 
−
2 + 
+

2 . �28�

Another important tool in the symplectic analysis is the re-
duction to standard form by local symplectic transformations
�6,7�. In general, such a reduction holds for symmetric ma-
trices V�S�4,R� with positive diagonal blocks, as we easily
show in the following. In particular, it can be applied to
positive-definite matrices V�P�4,R� and, therefore, to CMs
V�qCM�2�.

Lemma 3 (Standard form). For every

V = � A C

CT B
� � S�4,R� , �29�

with A ,B�0, there exists some S�Sp�2,R� � Sp�2,R� such
that

SVST =�
a c+

a c−

c+ b

c− b
�ª VI, �30�

where the real parameters a ,b ,c+ ,c− satisfy

det A = a2, det B = b2, det C = c+c−, �31�

and

det V = det VI = �ab − c+
2��ab − c−

2� . �32�
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Proof. Let us consider a pair of single-mode symplectic
transformations SA, SB�Sp�2,R� and a pair of single-mode
proper rotations R��A�, R��B��SO�2�. By applying the local
symplectic transformation

S = R��A�SA � R��B�SB �33�

to the matrix V, we get

SVST = � A� C�

C�T B�
� , �34�

where

A� ª R��A��SAASA
T�RT��A� , �35�

B� ª R��B��SBBSB
T�RT��B� , �36�

C� ª R��A��SACSB
T�RT��B� . �37�

Since A ,B�P�2,R�, we can apply Williamson’s theorem.
This means that we can choose SA and SB such that

A� = R��A�aI RT��A� = aI , �38�

B� = R��B�bI RT��B� = bI , �39�

where a�b� is the symplectic eigenvalue of A�B� while the
angle �A��B� is arbitrary. Since the pair ��A ,�B� can be cho-

sen freely, we can always choose a pair ��̄A , �̄B� in Eq. �37�
such that C�=diag�c+ ,c−� �23�. As a consequence, Eq. �34� is
globally equal to Eq. �30�. Finally, since the transformation
of Eq. �33� is local and symplectic, all the determinants rela-
tive to the blocks and the global matrix are preserved, so that
Eqs. �31� and �32� are trivially implied. �

IV. GENUINENESS OF A TWO-MODE CORRELATION
MATRIX

By applying the symplectic tools of Sec. III, we can
now derive very simple algebraic conditions for characteriz-
ing the genuineness of a two-mode CM. In other words,
starting from a generic 4�4 real and symmetric matrix
�V�S�4,R��, we give the algebraic conditions that such a
matrix must satisfy in order to represent the CM of two
bosonic modes, i.e., a bona fide two-mode quantum CM
�V�qCM�2��. As a consequence of Williamson’s theorem,
we have the following algebraic conditions in terms of glo-
bal symplectic invariants �9�.

Theorem 4. An arbitrary V�S�4,R� is a quantum CM if
and only if it satisfies

V � 0, 
− � 1, �40�

or, equivalently,

V � 0, det V � 1, ��V� � 1 + det V . �41�

Proof. For every V�P�4,R�, the application of William-
son’s theorem to Eq. �7� gives V+ i��0⇔
−�1 �recalling
that 
− is the smallest symplectic eigenvalue�. Since V+ i�
�0⇒V�0 �see lemma 1�, we can write V+ i��0
⇔ �V�0∧
−�1� which proves the bona fide condition of

Eq. �40� for a generic V�S�4,R�. Under the definite posi-
tivity assumption V�0, one can also use Eq. �26� to prove
the equivalences


− � 1 ⇔ ��V� − 2 � ���V�2 − 4 det V ⇔ max�2,2�det V�

� ��V� � 1 + det V ⇔ �det V � 1

2�det V � ��V� � 1 + det V .
�

�42�

According to Eq. �28� the condition 2�det V���V� in Eq.
�42� corresponds to 2
−
+�
−

2 +
+
2, which is trivially satis-

fied. Then, we have


− � 1 ⇔ �det V � 1

��V� � 1 + det V ,
� �43�

which states the equivalence between to Eqs. �40� and �41�,
where the underlying assumption V�0 is also shown. �

Notice that, crucially, Williamson’s theorem could be ap-
plied to V because of its definite positivity, which thus im-
plies the existence of well-defined symplectic eigenvalues
�24�. The condition 
−�1 alone is therefore not, by itself,
fully equivalent to the uncertainty principle V+ i��0, un-
less definite positivity is also assumed. The essential role of
the prescription V�0, often neglected in the literature, is
especially clear in the formulation of Eq. �41�: in fact, the
other two inequalities in Eq. �41� only depend on the squared
symplectic eigenvalues and cannot thus distinguish between
positive and negative eigenvalues.

Besides the algebraic requirements of the previous theo-
rem, we can derive an alternative set of conditions by apply-
ing the reduction to standard form. These conditions are ex-
pressed in terms of local symplectic invariants.

Theorem 5. An arbitrary

V = � A C

CT B
� � S�4,R� �44�

is a quantum CM if and only if it satisfies

A,B � 0, �45�

��V� � 1 + det V , �46�

2�det A det B + �det C�2 � det V + det A det B . �47�

Proof. Under the assumption A ,B�0, the matrix V can be
reduced to the standard form VI of Eq. �30� via a local sym-
plectic transformation S. Since S�ST=�, the Heisenberg
principle can be written in the equivalent form �25�

V + i� � 0 ⇔ VI + i� � 0. �48�

Since the matrix VI+ i� is Hermitian, its four eigenvalues
+

+ ,−
+ ,+

− ,−
− are real. It is then easy to show that

2�
+ = a + b + �� � 2�
 , �49�

2�
− = a + b − �� � 2�
 , �50�

where
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� ª 4 + �a − b�2 + 2�c+
2 + c−

2� � 4, �51�

and


 ª 4�a − b�2 + �c+ + c−�2�4 + �c+ − c−�2� � 0. �52�

Since +
− is the minimum eigenvalue, we have that

VI + i� � 0 ⇔ +
− � 0 ⇔ a + b − �� + 2�
 � 0

⇔ ��a + b�2 � � + 2�


a + b � 0
�

⇔ ���a + b�2 − ��2 � 4


�a + b�2 − � � 0

a + b � 0.
� �53�

Last condition a+b�0 in Eq. �53� is trivially included in
A�0 and B�0 which gives a�0 and b�0 �for congruence
with the diagonal matrices aI and bI�. The other two condi-
tions

��a + b�2 − ��2 � 4
 , �54�

and

�a + b�2 − � � 0, �55�

can be recast in terms of the local symplectic invariants. In
fact, by inserting Eqs. �51� and �52� in Eq. �54�, we get

a2 + b2 + 2c+c− � �ab − c+
2��ab − c−

2� + 1, �56�

which is equivalent to Eq. �46� by using Eq. �32� and
��V�=��VI�=a2+b2+2c+c−. Finally, by inserting Eq. �51�
in Eq. �55�, we get 2ab−c+

2 −c−
2 �2, which is equivalent to

2a2b2 − ab�c+
2 + c−

2� � 2ab , �57�

since ab�0. In terms of local symplectic invariants, last
inequality is equal to

2 det A det B − I4 � 2�det A det B , �58�

where

I4 ª Tr�A�C�B�CT�� = ab�c+
2 + c−

2� �59�

is another local symplectic invariant. In fact, the quantity I4
is connected to the other local symplectic invariants by

det V = det A det B + �det C�2 − I4, �60�

which holds for every V�S�4,R�. Using Eq. �60� in Eq.
�58�, we then get Eq. �47�. �

V. SEPARABILITY OF A TWO-MODE CORRELATION
MATRIX

Few years ago, Ref. �6� showed how to extend the partial
transposition and the Peres entanglement criterion �26� to
bipartite bosonic systems. In fact, partial transposition
PT:�AB→ �̃AB corresponds in phase space to a “local time
reversal” which inverts the momentum of only one of two
subsystems. This means that we have the following transfor-
mation for the Wigner function:

PT:W�x� → W̃�x� ª W��x� , �61�

where

� ª �1

1
� � �1

− 1
� . �62�

For the corresponding CM V�qCM�2�, the PT transforma-
tion is given by

PT:V → Ṽ ª �V� , �63�

where the partially transposed matrix Ṽ belongs to P�4,R�
�25� but not necessarily to qCM�2�. By writing V in the
block form of Eq. �25�, one easily checks that the action of
the PT transformation � reduces to the following sign flip

det C → − det C , �64�

at the level of the local symplectic invariants. As a conse-

quence, the positive-definite matrix Ṽ has

��Ṽ� = det A + det B − 2 det C ª �̃�V� , �65�

and symplectic eigenvalues


̃� =��̃�V� � ��̃�V�2 − 4 det V

2
. �66�

Once the PT transformation has been extended, also the
Peres criterion can be consequently extended via the logical
implication

�AB separable ⇒ �̃AB � D�H� ⇒ Ṽ � qCM�2� , �67�

which becomes an equivalence for Gaussian states under 1
�n mode bipartitions �6,8�.

Theorem 6 (Separability). Let us consider a Gaussian state
�AB with CM V�qCM�2�. Then, �AB is separable if and
only if

Ṽ � qCM�2� , �68�

or, equivalently,


̃− � 1, �69�

or, equivalently

�̃�V� � 1 + det V . �70�

Proof. The proof of Eq. �68� follows exactly the same
steps of the one in Ref. �6�, where the P representation is
exploited �see Ref. �27� for recent connections between P
representation and separability.� In order to prove Eqs. �69�
and �70�, let us apply theorem 4 to the positive-definite ma-

trix Ṽ�P�4,R�. Then, we get

Ṽ � qCM�2� ⇔ 
̃− � 1 ⇔�det Ṽ � 1

�̃�V� � 1 + det Ṽ
�

�71�

where Eq. �69� is trivially proven. Now, since det Ṽ
=det��V��=det V�1, the first condition in Eq. �71� is al-
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ways satisfied and, therefore, the separability condition is
reduced to Eq. �70�. �

Let us now derive the algebraic conditions that a generic
symmetric matrix must satisfy to represent the CM of a sepa-
rable or entangled Gaussian state. The following corollary
gives an easy recipe to check if a symmetric matrix is a good
or bad candidate for this aim.

Corollary 7. An arbitrary

V = � A C

CT B
� � S�4,R� �72�

represents the CM of a separable Gaussian state if and only if
it satisfies

V � 0, 
− � 1, 
̃− � 1, �73�

or, equivalently,

V � 0, det V � 1, ��V� � 1 + det V , �74�

or, equivalently,

A,B � 0, ��V� � 1 + det V , �75�

2�det A det B + �det C�2 � det V + det A det B , �76�

where ��V�ªdet A+det B+2det C. Instead, it represents
the CM of an entangled Gaussian state if and only if it sat-
isfies

V � 0, 
− � 1, 
̃− � 1, �77�

or, equivalently,

V � 0, det V � 1, ��V� � 1 + det V � �̃�V� ,

�78�

or, equivalently,

A,B � 0, ��V� � 1 + det V � �̃�V� , �79�

2�det A det B + �det C�2 � det V + det A det B . �80�

Proof. In order to represent the CM of a separable Gauss-
ian state, the symmetric matrix V�S�4,R� must simulta-
neously satisfy

V � qCM�2�, Ṽ � qCM�2� . �81�

The bona fide condition V�qCM�2� is equivalently ex-
pressed by the conditions of Eqs. �40� and �41� in theorem 4.

Then, for every V�qCM�2�, the separability condition Ṽ
�qCM�2� is equivalent to Eqs. �69� and �70� in theorem 6.
By combining Eq. �40� with Eq. �69� and Eq. �41� with Eq.
�70�, one easily gets Eqs. �73� and �74�, where

max���V� , �̃�V���1+det V⇔��V��1+det V. According
to theorem 6, for every V�qCM�2� the entanglement con-

dition is expressed by 
̃−�1 or, equivalently, by �̃�V��1
+det V. Then, it is trivial to derive the corresponding Eqs.
�77� and �78�. The proof of Eqs. �75� and �76� and Eqs. �79�
and �80� is the same as before except that now we have to
combine the Eqs. �45�–�47� of theorem 5 with Eq. �70� for

the separability and with �̃�V��1+det V for the entangle-
ment. �

VI. RELATION WITH THE PREVIOUS WORK
BY SIMON

In order to make a direct comparison with the previous
work by Simon �6�, we have to specify some of our results,
given for arbitrary symmetric matrices V�S�4,R�, to the
case of positive-definite matrices, i.e., V�P�4,R�. As an
immediate consequence of theorem 4, we have the following
result.

Corollary 8. An arbitrary V�P�4,R� is a two-mode
quantum CM V�qCM�2�, i.e., V+ i��0, if and only if


− � 1, �82�

or, equivalently,

det V � 1, ��V� � 1 + det V , �83�

or, equivalently,

det V � 1, �84�

det A det B + �1 − det C�2 − I4 � det A + det B , �85�

where I4ªTr�A�C�B�CT��.
Proof. By applying theorem 4 under the assumption V

�0, one trivially derives the equivalent conditions in Eqs.
�82� and �83�. In order to prove Eqs. �84� and �85�, let us
reduce the positive-definite matrix V to its standard form of
Eq. �30�. Under local symplectic transformations, we then
have the equivalence

��V� � 1 + det V ⇔ a2 + b2 + 2c+c− � 1

+ �ab − c+
2��ab − c−

2� . �86�

Note that Eq. �86� can be equivalently written as

a2b2 + �1 − c+c−�2 − ab�c+
2 + c−

2� � a2 + b2. �87�

In terms of local symplectic invariants, last relation can be
written as in Eq. �85�, where Eq. �59� has been also used. �

Notice that Eq. �85� corresponds to the Eq. �17� of Ref.
�6�, up to notation factors �28�. In Ref. �6�, this condition is
incorrectly claimed to be equivalent to the Heisenberg prin-
ciple V+ i��0 �this equivalence is claimed under the posi-
tivity contraint V�0, which is a sufficient condition for the
reduction to standard form used in the corresponding proof
of Ref. �6��. In order to have a full equivalence with the
Heisenberg principle V+ i��0, the supplementary condi-
tion of Eq. �84� is mandatory. It is indeed rather simple to
construct a positive-definite matrix V�P�4,R� which satis-
fies Eq. �85� but violates V+ i��0. As an example, let us
consider the following real and symmetric matrix
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V�x� =
1

2�
1 + 4x 0 − 1 + 4x 0

0 1 + 4x 0 − 4x

− 1 + 4x 0 1 + 4x 0

0 − 4x 0 1 + 4x
� , �88�

which is positive-definite for every x�0. It is easy to verify
that the Hermitian matrix V+ i� has the following real ei-
genvalues:

� =
1

4
�1 + 8x � �17 − 16x + 64x2� , �89�

�� =
1

4
�3 + 8x � �17 − 16x + 64x2� . �90�

Since − is the minimal eigenvalue, the Heisenberg principle
V+ i��0 is equivalent to −�0, which gives

x � 1/2. �91�

Now, let us explicitly compute Eqs. �84� and �85�. It is easy
to show that Eq. �84� is equivalent to

x�8x + 1� � 1 ⇔ x � ��33 − 1�/16 � 0.3, �92�

while Eq. �85� �Simon’s genuineness condition� is equivalent
to

1

2
+ x�8x − 5� � 0 ⇔ 0 � x �

1

8
OR x �

1

2
. �93�

From Eq. �93�, one can see that Simon’s condition alone
does not exclude the matrices V�x� for 0�x�1 /8, which
are clearly unphysical since they violate the Heisenberg con-
dition of Eq. �91�. A complete equivalence with Eq. �91� is
retrieved by coupling Eq. �93� with Eq. �92�, where the latter
equation excludes the nonphysical region 0�x�1 /8.

This imprecision in Simon’s work leads to a common
misunderstanding of the subsequent separability condition
�Eq. �19� of Ref. �6��, which in our notation corresponds to

det A det B + �1 − det C�2 − I4 � det A + det B . �94�

In this condition, the Heisenberg principle is erroneously
claimed to be included �in fact, it is only partially included�.
Hence, Simon’s separability condition of Eq. �94� is actually
valid only if V�qCM�2�, i.e., the positive-definite matrix
V�P�4,R� is already known to be a bona fide quantum
CM. In other words, the separability criterion of Eq. �94�
must be tested on positive-definite matrices which are al-
ready known to describe the second statistical moments of a
physical quantum state. However, under this assumption of
physicality, Simon’s separability criterion of Eq. �94� dis-
plays a redundant modulus and must be simplified to

det A det B + �1 + det C�2 − I4 � det A + det B . �95�

Criterion 9 (Separability). Let us consider a two-mode quan-
tum state �AB having quantum CM

V = � A C

CT B
� � qCM�2� . �96�

The separability of �AB implies

�̃�V� � 1 + det V , �97�

or, equivalently,

det A det B + �1 + det C�2 − I4 � det A + det B . �98�

In particular, if �AB is a Gaussian state, then it is separable if
and only if Eq. �97� �or Eq. �98�� holds.

Proof. The proof is straightforward. Since V is a quantum
CM, it is positive-definite and satisfies the condition det V
�1. Now, suppose that the corresponding two-mode state
�AB is separable. Then we have

�AB separable ⇒ �̃AB � D�H� ⇒ Ṽ � qCM�2�

⇔ Ṽ + i� � 0. �99�

By applying corollary 8 to the positive-definite matrix Ṽ
=�V�, we have

Ṽ + i� � 0 ⇔ det Ṽ � 1, ��Ṽ� � 1 + det Ṽ . �100�

Since det Ṽ=det V, we have that det Ṽ�1 is automatically
satisfied in the previous Eq. �100�. Then, we get

�AB separable ⇒ �̃�V� � 1 + det V , �101�

where �̃�V�ª��Ṽ� is defined in Eq. �65�. Using Eq. �60�,
one easily proves the equivalence between Eqs. �97� and
�98�. Finally, the full equivalence which holds for Gaussian
�AB is a direct application of theorem 6. �

This criterion represents a simplification of Simon’s sepa-
rability criterion. Now, it is important to notice that the sepa-
rability criterion becomes a bit more involved when arbitrary
positive-definite matrices V�P�4,R� are considered, with-
out any other a priori assumption. For a generic V
�P�4,R�, both the Heisenberg principle �V+ i��0� and

the separability property �Ṽ+ i��0� must be explicitly con-
sidered and combined together, in order to get a complete set
of algebraic conditions. Thanks to these conditions, one eas-
ily checks when a positive-definite matrix V�P�4,R� can
represent the quantum CM of a Gaussian state �AB which is
separable or entangled. By applying corollary 7, we get the
following criterion for positive-definite matrices.

Criterion 10. An arbitrary V�P�4,R� represents the CM
of a separable Gaussian state if and only if

det V � 1, �102�

��V� � 1 + det V , �103�

or, equivalently,

det V � 1, �104�

det A det B + �1 − det C�2 − I4 � det A + det B .

�105�

Instead, it represents the CM of an entangled Gaussian state
if and only if

det V � 1, �106�
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��V� � 1 + det V � �̃�V� , �107�

or, equivalently,

det V � 1, �108�

�1 + det C�2 � det A + det B − det A det B + I4

� �1 − det C�2. �109�

The proof is a trivial application of corollary 7, together
with Eq. �60�, used to state the equivalences between Eqs.
�103� and �105�, and between Eqs. �107� and �109�. Accord-
ing to Eq. �109�, positive-definite matrices with det C�0
can only be associated to separable Gaussian states �6�. No-
tice that the original Simon’s separability criterion, i.e., Eq.
�105�, must be coupled with the mandatory condition of Eq.
�104� in order to investigate correctly the separability prop-
erties of a generic positive-definite matrix.

VII. SUMMARY

In theorem 4, we have rederived and explicitly stated all
the precise algebraic conditions a symmetric matrix must
satisfy to represent the CM of a two-mode bosonic �or ca-
nonical� quantum system, including the �critical and often
neglected� definite positivity condition. Such conditions are
expressed in terms of global symplectic invariants. In theo-
rem 5, we have derived a new and alternative set of condi-
tions, which are expressed in terms of local symplectic in-
variants. In these local conditions the positivity check is
restricted to the submatrices A and B. Finally, in theorem 6,
the necessary and sufficient condition for the separability of
two-mode Gaussian states has been reviewed and cast in a
compact form. We should stress that such a condition is valid
only under the assumption that physicality is also met �V
�qCM�2��. In corollary 7, both the physicality and separa-
bility have been explicitly taken into account. Then, we have
derived a complete set of �global or local� conditions that a
generic symmetric matrix must satisfy in order to represent
the CM of a separable �or entangled� Gaussian state of two
bosonic modes. In Sec. VI, some of our results have been
specified for positive-definite matrices and a comparison
with the previous results by Simon has been thoroughly pre-
sented. The rigourous agreement with all the conditions here
considered should constitute a constant reference in both the
theoretical practice and the analysis of experimental data in-
volving quantum systems of two canonical degrees of free-
dom.
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APPENDIX A: SIMPLE PROOF OF WILLIAMSON’S
THEOREM

Let us construct the diagonalizing symplectic according to
the decomposition

S = W1/2RV−1/2, �A1�

with a suitable R�SO�2n�. In fact

SVST = �W1/2RV−1/2�V�V−1/2RTW1/2� = W1/2RIRTW1/2

= W1/2IW1/2 = W . �A2�

Notice that Eq. �A1� is well defined since V and W are
positive-definite �therefore, nonsingular�. However, the rota-
tion R in Eq. �A1� is not arbitrary but must be chosen in
order to make S symplectic.

Let us apply Eq. �A1� to the symplectic condition S�ST

=�. Then, we have

�W1/2RV−1/2���V−1/2RTW1/2� = �

⇔ R�V−1/2�V−1/2�RT = W−1/2�W−1/2

⇔ RXRT = Y , �A3�

where

X ª V−1/2�V−1/2, Y ª W−1/2�W−1/2 �A4�

are antisymmetric �because V and W are symmetric, while
� is antisymmetric�. In particular, we have

Y = �
k=1

n � 0 
k
−1

− 
k
−1 0

� . �A5�

Now the existence of R in Eq. �A3� is assured by the follow-
ing theorem on the block-diagonalization of real antisymmet-
ric matrices �specialized to even dimensions� �29�

Theorem 11. For every A=−AT�M�2n ,R�, there exists a
�unique� O�SO�2n� such that

OAOT = �
k=1

n

ak� ª Ã , �A6�

where the �unique� block diagonal form Ã has ak�0.

APPENDIX B: FINDING THE DIAGONALIZING
SYMPLECTIC MATRIX

Let us show a possible procedure for deriving the proper
rotation O that block-diagonalizes a generic antisymmetric
matrix A as in theorem 11. We can easily prove the following
connection between the block-diagonalization of A and its
unitary diagonalization

Theorem 12. The proper rotation O performing the block-
diagonalization of Eq. �A6� is given by

O = �U†, �B1�

where

� =
1
�2

�
k=1

n

�, � ª

1
�2

� i − i

1 1
� , �B2�

and U is an arbitrary unitary performing the diagonalization
of A, i.e.,

U†AU = �
k=1

n

iak�− 1

1
�ª AD. �B3�
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Proof. First, let us prove how A can be transformed into
the diagonal form AD of Eq. �B3� by a unitary matrix. From
Eq. �B2�, we have that

�†�ak��� = iak�− 1

1
� . �B4�

As a consequence, by applying � to Eq. �A6�, we get

�†OAOT� = �†Ã� = �
k=1

n

iak�− 1

1
� = AD. �B5�

In other words, there exists a unitary OT� that diagonalizes
A according to Eq. �B3�.

Then, let us prove that, for every unitary U diagonalizing
A according to Eq. �B3�, we can write Eq. �B1� where O
performs the block diagonalization of Eq. �A6�. For proving
this, let us consider the orthonormal eigenvectors
�u1 , ¯ ,u2n� of A

Au1 = − ia1u1, Au2 = ia1u2, �B6�

]

Au2n−1 = − ianu2n−1, Au2n = + ianu2n, �B7�

more compactly denoted by �u2k−1 ,u2k�k=1
n with

Au2k−1 = − iaku2k−1, Au2k = iaku2k. �B8�

These vectors are unique up to phase factors �
ª ��1 , ¯ ,�2n�, i.e., up to the replacements

u2k−1 → u2k−1ei�2k−1, u2k → u2ke
i�2k. �B9�

This means that, for every choice of �, we have an equiva-
lent unitary matrix U=U��� in the diagonalization of A.
Now, by conjugating Eq. �B8�, one easily checks that

u2k−1 = u2k
� . �B10�

As a consequence, the most general unitary matrix that di-
agonalizes A has the specific form

U = �u2
� u2 ¯ u2n

� u2n� . �B11�

Let us explicitly compute the matrix product �U†. By apply-
ing

� =
1
�2�

i − i

1 1
0

�

0
i − i

1 1
� �B12�

to the conjugate matrix

U† =�
u2

T

u2
†

]

u2n
T

u2n
†
� =�

u2,1 u2,2 u2,2n−1 u2,2n

u2,1
� u2,2

� u2,2n−1
� u2,2n

�

�

u2n,1 u2n,2 u2n,2n−1 u2n,2n

u2n,1
� u2n,2

� u2n,2n−1
� u2n,2n

�
� ,

�B13�

one explicitly gets

�U† =
1
�2�

�1,1 �1,2 �1,2n−1 �1,2n

�1,1 �1,2 �1,2n−1 �1,2n

�

�n,1 �n,2 �n,2n−1 �n,2n

�n,1 �n,2 �n,2n−1 �n,2n

� , �B14�

where

�k,j ª − 2 Im�u2k,j�, �k,j ª 2 Re�u2k,j� . �B15�

From Eqs. �B14� and �B15�, we have that �U† is real for
every choice of U in Eq. �B3�, i.e., for every choice of the
phases � in the corresponding eigenvectors. More strongly,
we have �U†�SO�2n� �since �U† real implies �U† or-
thogonal with det= +1�. Then, from Eq. �B3�, we easily get

�U†AU�† = �AD�† = Ã . �B16�

In conclusion, for every diagonalizing unitary U, the proper
rotation �U† corresponds to the unique proper rotation O
that performs the block-diagonalization of Eq. �A6�. �

Both theorem 11 and theorem 12 can be applied to the Eq.

�A3�, by setting O=R, A=X and Ã=Y. These theorems al-
low to reduce the computation of the rotation R in Eq. �A3�
to a unitary diagonalization. In fact, we have just to find a
unitary U that diagonalizes X, i.e.,

U†XU = �
k=1

n

i
k
−1�1

− 1
� , �B17�

and then construct

R = �U†. �B18�

Once that we have R, we use Eq. �A1� to get the symplectic
S. Here is the complete algorithm:

�1� Find the symplectic spectrum of V, i.e., its Williamson
form W.

�2� Compute the matrices W1/2 �immediate� and V−1/2

�needs orthogonal diagonalization�.
�3� Construct the matrix XªV−1/2�V−1/2.
�4� Find the eigenvectors of X and construct the corre-

sponding unitary U.
�5� Compute R=�U†.
�6� Compute S=W1/2RV−1/2.
By construction, this algorithm reduces the determination

of S to unitary diagonalizations. Actually, this task can be
achieved via faster methods when the symplectic spectrum is
nondegenerate. In general, the determination of S is equiva-
lent to the construction of a symplectic basis �30�.
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