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Recently Boyer et al. [Phys. Rev. Lett. 99, 140501 (2007)] suggested the idea of semiquantum key distri-
bution (SQKD) in which Bob is classical and they also proposed a semiquantum key distribution protocol
(BKM2007). To discuss the security of the BKM2007 protocol, they proved that their protocol is completely
robust. This means that nonzero information acquired by Eve on the information string implies the nonzero
probability that the legitimate participants can find errors on the bits tested by this protocol. The BKM2007
protocol uses four quantum states to distribute a secret key. In this paper, we simplify their protocol by using
less than four quantum states. In detail, we present five different SQKD protocols in which Alice sends three
quantum states, two quantum states, and one quantum state, respectively. Also, we prove that all the five
protocols are completely robust. In particular, we invent two completely robust SQKD protocols in which Alice
sends only one quantum state. Alice uses a register in one SQKD protocol, but she does not use any register in
the other. The information bit proportion of the SQKD protocol in which Alice sends only one quantum state
but uses a register is the double as that in the BKM2007 protocol. Furthermore, the information bit rate of the
SQKD protocol in which Alice sends only one quantum state and does not use any register is not lower than

that of the BKM2007 protocol.
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I. INTRODUCTION

Key distribution technique is regarding two parties (Alice
and Bob) to acquire a random bit sequence (i.e., key) with a
high level of confidence that the others cannot know it or
obtain significant partial information about it [ 1-3]. In 1984,
Bennett and Brassard [1] invented quantum key distribution
(QKD) to provide a new key distribution technique which is
called the Bennett-Brassard 1984 (BB84) protocol. QKD
makes use of the subtle properties of quantum mechanics
such as the quantum no-cloning theorem and the Heisenberg
uncertainty principle. Then, Ekert [4] presented a QKD
scheme based on the Einstein-Podolsky-Rosen (EPR) pairs
[5] and Bell’s inequality [6]. It turned out that the key in the
BB84 protocol can be seen to arise from the properties of
entanglement. Bennett er al. [7] simplified Ekert’s protocol
to a protocol without invoking Bell’s inequality. In 1999, Lo
and Chao [2] showed that the BB84 protocol for quantum
key distribution over an arbitrarily long distance of a realistic
noisy channel was unconditionally secure. This proof was
based on fault-tolerant quantum computers and random test-
ing of EPR pairs. Then, in 2000, Shor and Preskill [8] proved
that the BB84 protocol for quantum key distribution is secure
without fault-tolerant quantum computer and without sharing
EPR pairs. The unconditional security of quantum cryptog-
raphy has been further discussed in [9]. It is worth noting
that unconditionally security is impossible for conventional
cryptography whose security is often based on unproven
computational complexity assumptions. Also, the security of
quantum key distribution against the most general attacks by
an eavesdropper with unlimited computation abilities has
been proved in [10].
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One important step in studying security is to prove the
protocol being robust [3]. Robustness of a protocol means
that any attempt of an eavesdropper to obtain information on
the key necessarily induces some error which is detectable
by the legitimate users. Bennett et al. [7] verified that the
adversary learned nothing in their protocol if his tampering
could escape detection, which implies that the protocol is
robust. Later, Scarani et al. [11] proposed a QKD protocol
and showed that it is robust against the number of photons
splitting attacks.

In particular, Boyer et al. [3] divided robustness into three
classes: completely robust, partly robust, and completely
nonrobust. A protocol is said to be completely robust if non-
zero information acquired by Eve on the information string
(INFO string; The definition of INFO string will be given in
Step 7 of SQKD Protocol 1) implies nonzero probability that
the legitimate participants find errors on the bits tested by the
protocol. A protocol is said to be partly robust if Eve can
acquire some limited information on the INFO string without
inducing any error on the bits tested by the protocol. A pro-
tocol is said to be completely nonrobust if Eve can acquire
the INFO string without inducing any error on the bits tested
by the protocol. It is clear that completely robust protocols
are more secure than partly robust protocols. Partly robust
protocols could still be secure, but completely nonrobust pro-
tocols are automatically proven insecure [3]. Indeed, Bras-
sard er al. [12] pointed out that the BB84 protocol is com-
pletely robust when qubits are used by Alice and Bob, but it
is only partly robust if photon pulses are used and sometimes
two-photon pulses are sent. To discuss the security of the
BKM2007 protocol, Boyer et al. [3] proved that their proto-
col is completely robust.

The question of what a “quantum” protocol should be, in
order to achieve a significant advantage over all classical
protocols, is of great interest [3]. To answer this question in
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the field of quantum cryptography, Boyer er al. [3] recently
suggested the idea of semiquantum key distribution (SQKD)
in which Bob was classical and they invented an SQKD pro-
tocol. For convenience, we call such a protocol BKM2007.
Indeed, the BKM2007 protocol has been proved to be com-
pletely robust [3].

To distribute a secret key, Alice sends four quantum states
in the BB84 [1] and BKM2007 protocols [3]. However, Ben-
nett [13] presented a QKD protocol called the Bennet 1992
(B92) protocol in which Alice sent only two nonorthogonal
quantum states. Though restrictions on Alice in the B92 pro-
tocol are more strict than that in the BB84 protocol, many
researchers have proved that it is still unconditionally secure
[14-16]. Phoenix et al. [17] presented a QKD protocol called
the PBCOO protocol in which Alice sent three quantum
states. Also, Boileau et al. [18] proved that the PBCOO pro-
tocol is unconditionally secure. In addition, Mor [19] sug-
gested a very surprising QKD scheme by using only three
orthogonal pure states.

It is natural to ask whether there exists a high-secure
SQKD protocol in which Alice sends less than four quantum
states. Especially, is there a completely robust SQKD proto-
col in which Alice sends only two quantum states? In this
paper, we present five different SQKD protocols in which
Alice sends less than four quantum states. Furthermore, we
prove that all the five protocols are completely robust.

First, we construct a completely robust SQKD protocol in
which Alice sends three quantum states. Though Alice sends
less quantum states in the SQKD protocol than those in the
BKM?2007 protocol, the proportion of information bits (INFO
bits) in our SQKD protocol is higher than that in the
BKM?2007 protocol.

Then, we present two completely robust SQKD protocols
in which Alice sends only two quantum states. Alice uses an
N-bit register in one SQKD protocol, but she does not use
any register in the other. The INFO bit proportion of the
SQKD protocol in which Alice uses a register is the same as
that in the BKM2007 protocol. When Alice does not use any
register in the other SQKD protocol, she must send double
number of quantum bits to obtain the same number of INFO
bits.

Finally, we present two completely robust SQKD proto-
cols in which Alice sends only one quantum state. Similarly,
Alice uses a register in one SQKD protocol, but she does not
use any register in the other. The INFO bit proportion of the
SQKD protocol in which Alice uses a register is the double
of that in the BKM2007 protocol. In particular, the rate of
INFO bit of the SQKD protocol in which Alice sends only one
quantum state and does not use any register is not lower than
that of the BKM2007 protocol.

The remainder of this paper is organized as follows. In
Sec. II, we present some preliminaries about semiquantum
key distribution. In Sec. III, we present an SQKD protocol in
which Alice sends three quantum states and we prove that it
is completely robust. In Sec. IV, we first point out that it is
very difficult to construct an SQKD protocol in which Alice
sends only two quantum states by a mock SQKD protocol;
then, we suggest a technique to remedy the weakness of the
above mock protocol by Alice using a register, and we con-
struct an SQKD protocol in which Alice sends only two
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quantum states, and prove that the SQKD protocol is com-
pletely robust; finally, we propose another SQKD protocol in
which Alice sends only two quantum states to reform the
foregoing SQKD protocol by removing the use of quantum
register, and we prove that it is also completely robust. In
Sec. V, we invent two SQKD protocols in which Alice sends
only one quantum state to improve the two SQKD protocols
in Sec. IV. Furthermore, we show that they are completely
robust. To conclude, we sum up our work in Sec. VL.

II. PRELIMINARIES

In this section, we briefly recall some notations and ter-
minologies concerning SQKD. Other notations and termi-
nologies which we do not interpret can be found in
[3,20-22].

We call Bob classical if Bob can measure, prepare, and
send quantum states only in the fixed orthogonal quantum
basis set {|0),|1)} [3]. Similarly, we call the fixed computa-
tional basis {|0),|1)} classical.

The setting of SQKD is as follows [3]: (1) Alice and Bob
have laboratories that are perfectly secure; (2) they use qu-
bits for their quantum communication; (3) they have access
to an unjammable public classical communication channel;
(4) a quantum channel leads from Alice’s laboratory to the
outside world and back to her; (5) Bob can access a segment
of the channel, and whenever a qubit passes through that
segment Bob can either let it go undisturbed or measure the
qubit and send a fresh qubit in the classical |0) and |1) basis.

Statement 1. The first three postulates are the same as
those in QKD protocols; the fourth and the fifth postulates
are added for the SQKD protocols. Though the fourth postu-
late cannot be absent in SQKD protocols, it can be found in
some QKD experiments too [23]. So, the fifth postulate is the
essential difference between SQKD and QKD.

Theorem 1. The BKM2007 SQKD protocol is completely
robust [3].

For convenience, we use |+) and |-) to denote J(_)\U%ﬁ
Q\U%ﬁ, respectively. Z basis and X basis stand for the bases
{10),]1)} and {|+),|-)}, respectively.

and

III. SQKD PROTOCOL IN WHICH ALICE SENDS ONLY
THREE QUANTUM STATES

We follow the BKM2007 protocol’s ideas of SQKD [3],
but use only three of the four BB84 states [1], as in Ref. [19],
to construct an SQKD protocol described in the following.

SQKD Protocol 1: Alice sends three quantum states

(1) Alice creates an N=6n(l1+06) random string a
€{0,1,2}", where n is the desired length of the INFO string,
and 6>0 is a fixed parameter. The ith bit of a is denoted by
a;. Then, she creates and sends the quantum states |¢,)
® ) ® - ®[hy), where
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|0>, ifa,-=0
|y =111, if ¢;=1, i=12,...,N
|+>, if ai=2.

(2) When each qubit arriving, Bob chooses randomly ei-
ther to reflect it (CTRL it) or to measure it in the Z basis and
resend it in the same state he found (SIFT it). Bob sends the
first qubit to Alice after receiving the last qubit, in the same
order he received them (This amounts to Alice sending a
qubit only after receiving the previous one and Bob resend-
ing a qubit immediately after receiving it [3]).

(3) Alice measures each qubit in the basis she sent it.

(4) Alice announces which states were |+)’s and Bob an-
nounces which ones he chose to SIFT. It is expected that
approximate %’ Z-sieT bits [Z-swer- bits denote the bits pro-
duced by the process that Alice sends quantum states in the Z
basis (in some other protocols, only state |0) is sent) and Bob
chooses to SIFT] form the sifted key. They abort the protocol
if the number of Z-strr bits is less than 2#; this happens with
exponentially small probability.

(5) Alice checks the error rate on the CTRL bits (CTRL bits
denote the bits produced by the process that Bob chooses to
CTRL). If either the X error rate or the Z error rate is higher
than some predefined threshold Pcyg;, she and Bob abort the
protocol.

(6) Alice chooses at random 7 Z-siet bits to be TEST bits.
She announces which are the chosen bits. Bob announces the
value of these TEST bits. Alice checks the error rate on the
TEST bits. If it is higher than some predefined threshold
Prgst, they abort the protocol.

(7) Alice and Bob select the first n remaining Z-siFt bits to
be used as INFO bits (INFO string).

(8) Alice announces error correction code (ECC) and pri-
vacy amplification (PA) data [3,20,24-26]; Alice and Bob
use them to extract the m-bit final key from the n-bit INFO
string.

In this paper, similar to Z-siFT bits, Z-CTRL bits denote the
bits produced by the process that Alice sends quantum states
in Z basis (in some protocols, only state |0) is sent) and Bob
chooses to CTRL. Similarly, X-sirr (X-CTRL) bits denote the
bits produced by the process that Alice sends quantum states
in X basis (in fact, only the state |+) is sent in all our proto-
cols) and Bob chooses to SIFT (CTRL).

Theorem 2. The SQKD Protocol 1 is completely robust.

Proof. Because the proof of complete robustness of the
BKM?2007 protocol [3] does not use the state |-) sent by
Alice, it can be used to prove the complete robustness of
SQKD Protocol 1. |

Statement 2. Though Alice sends less quantum states in
our SQKD Protocol 1 than those in the BKM2007 protocol,
the proportion of INFO bits in SQKD Protocol 1 has been
increased and the SQKD Protocol 1 is also completely ro-
bust.

IV. TWO SQKD PROTOCOLS IN WHICH ALICE SENDS
ONLY TWO QUANTUM STATES

At first glance, it seems to be a simple work to constitute
an SQKD protocol in which Alice sends only two quantum
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states. We first describe a mock protocol which is clearly
insecure. The first four steps of the mock SQKD protocol, in
which Alice sends only two quantum states, is described in
the next section. Recall that Z-sier bit, Z-CTRL bit, X-siFr bit,
and X-CTRL bit are defined as in Sec. III.

Mock SQKD Protocol: Alice sends two quantum states

(1) Alice generates a random string a € {0, 1}, where N is
a predefined integer number. Then, she creates and sends the

qubits |@,),|da), ..., |py), Where
| > |0>, if a,»=0 . 1.2 N
L T

After Alice sends the first qubit, she sends a qubit only after
receiving the previous one.

(2) Bob generates a random string b € {0, 1}". When the
ith qubit arriving, he chooses to SIFT it if b;=1 or CTRL it if
b;=0. Bob denotes the measure result by c; if he SIFT’s it,
otherwise, c¢;=-1.

(3) Alice measures each qubit in the basis she sent it.

(4) Bob announces all the stations i satisfying ¢;=1. Alice
chooses at random 7 instances i with ¢;=1 to generate INFO
bits which must satisfy a;=b,.

At first glance, this protocol may look like a nice way to
transfer secret bits from Alice to classical Bob. However, it is
completely nonrobust because all bits in the INFO string sat-
isfy a;=b;=1.

Fortunately, we have found a technique to remedy the
weakness of the above mock protocol. To conquer the defect
of the mock protocol, the INFO string must include 0 and 1.
We can achieve it if all the X-siFr bits become the INFO bit. It
is necessary to make Alice and Bob know all X-strr bits. If
Alice measures all qubits in Z basis after Bob announces the
SIFT instances, she can know all X-sirr bits. Also, Bob can
know all X-siFr bits if he knows which one sent by Alice is
quantum state [0). We give an SQKD protocol using only
two quantum states in the following.

SQKD Protocol 2: Alice sends two quantum states

(1) Alice generates a random string a € {0, 1}", where N
=8n(1+0), n is the desired length of the INFO string, and
0>0 is a fixed parameter. Alice creates and sends qubits

[d1), |20, ... | Py, Where
| i) 0. if a=0 1.2.....N
v |+>’ lf aj=1 e

After Alice sends the first qubit, she sends a qubit only after
receiving the previous one.

(2) Bob generates a random string b € {0,1}". When the
ith qubit arriving, he chooses to CTRL it if ;=0 or SIFT it if
b;=1.

(3) Alice uses an N-qubit register to save all qubits com-
ing back from Bob.

(4) Bob announces b after Alice receives the last qubit.
Alice checks the number of X-sirr bits. They abort the pro-
tocol if the number of X-siFr bits is less than 2n. This case
happens with exponentially small probability.
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FIG. 1. The running procedure of SQKD Protocol 2.

(5) Alice measures each CTRL bit in the basis she sent it
and measures each SIFT bit in the Z basis. Then, Alice checks
the error rate on the CTRL bits. She and Bob abort the proto-
col if the error rate is higher than the predefined threshold P,.

(6) Alice announces a. Alice and Bob check the error rate
on the Z-sirt bits. They abort the protocol if the error rate is
higher than the predefined threshold P,.

(7): Alice selects n measure results of X-siFr bits to be
TEST bits at random. Alice and Bob check the error rate on
the TEST bits. They abort the protocol if the error rate is
higher than P,.

(8) Alice and Bob select the first n remaining measure
results of X-siFT bits to be used as INFO bits.

(9) Alice announces ECC and PA data; she and Bob use
them to extract the m-bit final key from the n-bit INFO string.

The effect of Bob measuring a qubit in the Z basis and
resending it in the same state he found is equal to the effect
of Bob setting the qubit as a control bit through a CNOT gate
and measuring the other qubit which is described in Fig. 1. It
must be noticed that Bob’s CNOT operation implements only
on the stations satisfying b;=1. We use |0) and |0%) to de-
note Eve’s and Bob’s initial states, respectively; |¢*)=|¢;)
®|hy) @ -+ @ |y is Alice’s sending state. Eve’s attack may
consist of two unitary operators Uy and Up. Uy acts on the
qubits |y as they go from Alice to Bob and Eve’s ancilla
bits [0F). And Uy acts on the qubits as they go back from
Bob to Alice and Eve’s ancilla bits after she uses the attack
Upg. Any attack, where Eve would make Uy depending on a
measurement made after applying Ug, can be implemented
by unitary operators Uy and Uy with controlled gates. |E)
and |F) denote Eve’s states after she uses attacks Uy and Up,
respectively; |¢/8) is the final combining state of Alice and
Bob.

In Fig. 1, we assume that the final combining state of
Alice and Bob |¢"8) is not entangled with Eve’s final state
|F). In fact, Eve’s final state |F) is independent of |¢/'B) if the
attack (Ug,Up) induces no error on CTRL and TEST bits in
SQKD Protocol 2, which will be justified in Lemma 1 and
Lemma 2. If the attack (Ug,Up) induces no error on CTRL
and TEST bits, the final combining state of Alice and Bob
|¢/B) is in the tensor product form |A8)=|i)® |y ® -+
® |4y where

) cil o), if ;=0

Vi = c;(x|00y + y|11)), if b;=1 and |¢;) =x|0) +y|1),
(1)

and c; is a complex number with |¢,|=1, i=1,2, ... ,N.
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Lemma 1. Alice’s final state p'4 is a product state p'4
=p/"®p®---®py' in SQKD Protocol 2. If the attack
(Ug,Upy) induces no error on CTRL and TEST bits, then p'4
satisfies the following conditions:

(1) If ;=0, then pi,A=|¢i><¢i;

(2) If b;=1, then Alice’s ith final state p;* and Bob’s ith
final state p; B are entangled, and their combining state is

pi % = (x]00) + | 11)) (00| + 511

), if | =x|0)+y[1),
2)

i.e.,

|¢i>=ci(x|00>+y|11>)’ if |¢’i>=x|0>+)’|1>, (3)

where ¢; is a complex number with |c/|=1.

Proof. Because Alice sends a qubit only after receiving
the previous one, the qubits she received are in the tensor
product form, i.e., p“=p/*@p;t®--- @ p/t.

(1) The case of b;=0.

The ith bit is a CTRL bit. p/* #|#;)(#,| can be detected by
Alice as an error with some nonzero probability.

(2) The case of b;=1.

The probability of the ith bit being a TEST bit is about %
Also, if [¢;)=x[0)+y[1), p{**# (x{00)+y[11))(F00[+5(11])
can be detected by Alice and Bob as an error with some
nonzero probability when the ith bit is a TEST bit. |

By Lemma 1, we can know that the final combining state
of Alice and Bob |¢/8) satisfies Eq. (1) if the attack (Ug, Up)
induces no error on CTRL and TEST bits in SQKD Protocol 2.

Lemma 2. If the attack (U, Up) induces no error on CTRL
and TEST bits in SQKD Protocol 2, then Eve’s final state |F)
is independent of the final combining state of Alice and Bob
|[4%).

Proof (By induction). Because Alice sends a qubit only
after receiving the previous one after she sends the first one,
Eve’s attack can only act on one qubit every time. For con-
venience, we use ( U(i), Ufé)) to denote Eve’s attack on the ith
qubit. Eve does not know the value of a and b when she
attacks, so Eve’s attacks Uy and Uy are independent of a and
b.

Basis step

We consider the effect of (U, U") acting on the first
qubit.

Case 1: a;=1. By a,=1, we know |¢,)=|+). We denote
the combining state of Eve and Alice by x|7)/0,)
+y|7m)|1,) after the attack U on the first qubit. Note that
the effect of Bob measuring a qubit in the Z basis and re-
sending it in the same state he found is equal to the effect of
Bob setting the qubit as a control bit through a CNOT gate
and measuring the other qubit. When b;=1, we know that the
combining state of Eve, Alice, and Bob is x|7,)/00)
+y|7)|11) after Bob uses CNOT gate.

By the case »;=1 in Lemma 1, we obtain

U F(| 770>|00>AB) = |776>|00>AB (4)

and
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UF(|771>|11>AB):|77{>|11>AB' (5)

Therefore, according to the linearity of unitary operations,
the combining state of Eve, Alice, and Bob is x|7)|00)
+y|n|11) after the attack Uy. However, by the case b;=0 in
Lemma 1, the final combining state of Eve, Alice, and Bob is

IF >00)+ 1)
1 .
Therefore,
, , 00) +[11)
x| 76|00} + y[ 7| 11) = |F1>\—2 (6)
Consequently,
|F\)=do|m) = di| ), (7)

where d,, and d, are two complex numbers with |dy|=|d,]|
=1. By Eq. (7), we know that Eve’s final state is independent
of the final combining state of Alice and Bob when a;=1.

Case 2: a,= =|0). By Lemma 1, we
can assume that

U U10)|00) =|F1)[00). 8)
Note that, by the above case (a¢;=1), we have

00) +11 00) +|11
| >+| ) |1>| >%| ) ©)

\

U U 0g)

= F(M\Ug&) —|00), and the linearity
of unitary operations, we have

UL U011y = ([Fy) = [Fi)|ooy +[F)[11).  (10)

Since |0)|00) and |0z)|11) are orthogonal, by Eq. (8) and
D=|F)[00)+|F)|11) are also or-
thogonal. Hence, since |F ) and |F {) are unit vectors, we
obtain

|F{>= |F1>-

From Case 1 (a;=1) and Case 2 (a;=0), we know that
Eve’s final state is independent of the final combining state
of Alice and Bob despite the value of a;. Thus, Eve is left
with no information on the first qubit, and Eve’s final state
|F,) and the combining state of Alice and Bob |¢;) are in
tensor product form |F;)|i,).

The Induction Step

Assume that Eve does not know any information on the
first k qubits and the combining state of Eve, Alice, and Bob
is |F)|4) @ |Fo)|h) ® - - ®|Fy)| ) after Alice sends and re-
ceives the first k qubits.

Now, we consider the effect of (U¥*), U¥*) acting on
the (k+1)-th qubit. Because Eve has no information on the
first k qubits, the effect of (U¥*!, U%*D) acting on the (k
+1)-th qubit is completely similar to that of (U(l) U(l)) act-
ing on the first one. Thereby, we can prove similarly that
Eve’s final state |F},,) is independent of the final combining
state of Alice and Bob ¢, ) despite the value of ay,,.

Consequently, Eve does not know any information on the
first k+1 qubits, and the combining state of Eve, Alice, and
Bob is [F)|g) @F)|h) ® - @[Fi)|ihsr) after Alice
sends and receives the first k+1 qubits.

PHYSICAL REVIEW A 79, 052312 (2009)

Conclusion

By induction, we know that the final combining state of
Eve, Alice, and Bob is |F))|i)) ®|F)|h) @ -+ Q |F\)|thy),
and Eve’s final state |F) is independent of the final combin-
ing state of Alice and Bob ). [ |

Theorem 3. The SQKD Protocol 2 is completely robust: if
any attack (Uy, Up) inducing no error on TEST and CTRL bits,
Eve is left with no information on the INFO string.

Proof. By Lemma 2, we can deduce easily that the SQKD
Protocol 2 is completely robust. |

In the SQKD Protocol 2, Alice uses registers for knowing
all X-sirr bits. Can we construct an SQKD protocol in which
Alice sends only two quantum states and does not use any
register? An SQKD protocol is described in the next section
in which Alice sends only two quantum states without using
any register.

SQKD Protocol 3: Alice sends two quantum states
without any register

(1) Alice generates a random string a € {0,1}", where N
=16n(1+06), n is the desired length of the INFO string, and
6>0 is a fixed parameter. Alice creates and sends qubits

|O>, a;=0 .
| = i=1,2,...,N.
|+>, a[=]

After Alice sends the first qubit, she sends a qubit only after
receiving the previous one.

(2) Bob generates a random string b € {0, 1}. When the
ith qubit arriving, he chooses to CTRL it if b;=0 or SIFT it if
bi=1.

(3) Alice generates a random string ¢ {0, 1}". She mea-
sures the ith bit in the Z basis if ¢;=0 and measures the ith bit
in the X basis if ¢;=1.

For convenience, in the following, X-sir-Z (Z-siFr-Z,
Z-ctrL-Z) bits denote the X-sier (Z-siFt, Z-cTRL) bits produced
by the process that Alice measures in the Z basis. Similarly,
X-ctrL-X bits denote the X-cTrL bits produced by the process
that Alice measures in the X basis. It is expected that ap-
proximate % X-siFT-Z bits form the sifted key.

(4) Alice announces ¢ and Bob announces b. They check
the number of X-siFr-Z bits. They abort the protocol if the
number of X-siFr-Z bits is less than 2n.

(5) Alice checks the error rates on the Z-cTrL-Z, X-CTRL-X,
and Z-sirT-Z bits, respectively. She and Bob abort the proto-
col if any one is higher than the predefined threshold P,.

(6) Alice chooses at random n measure results of X-sirr-Z
bits to be TEST bits. She and Bob check the error rate on the
TEST bits. They abort the protocol if the error rate is higher
than P,.

(7) Alice and Bob select the first n remaining measure
results of X-siFr-Z bits to be used as INFO bits.

(8) Alice announces ECC and PA data; she and Bob use
them to extract the m-bit final key from the n-bit INFO string.

Theorem 4. The SQKD Protocol 3 is completely robust.

Proof. 1t is similar to the proof of Theorem 3. |
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V. TWO SQKD PROTOCOLS IN WHICH ALICE SENDS
ONLY ONE QUANTUM STATE

It is nature to think whether there are SQKD protocols in
which Alice sends only one quantum state after constructing
SQKD protocols in which Alice sends only two quantum
states. By analyzing the proofs of Lemma 2 and Theorem 3,
we find that the state |0) sent by Alice is not necessary.
Therefore, we can construct an SQKD protocol in which
Alice sends only one quantum state. The SQKD protocol in
which Alice sends only one quantum state is described in the
following.

SQKD Protocol 4: Alice sends one quantum state
(1) Alice creates and sends N qubits |+)®V, where N
=4n(1+06), n is the desired length of the INFO string, and
6>0 is a fixed parameter. After Alice sends the first qubit,
she sends a qubit only after receiving the previous one.

(2) Bob generates a random string b € {0, 1}. When the
ith qubit arriving, he chooses to CTRL it if ;=0 or SIFT it if
bi=1.

(3) Alice uses an N-qubit register to save all qubits com-
ing back from Bob. Bob announces b after Alice receives the
last qubit. They abort the protocol if the number of SIFT bits
is less than 2n.

(4) Alice measures each CTRL bit in the X basis and mea-
sures each SIFT bit in the Z basis. Then, Alice checks the
error rate on the CTRL bits. She and Bob abort the protocol if
the error rate is higher than the predefined threshold P,.

(5) Alice chooses at random n measure results of SIFT bits
to be TEST bits. Alice and Bob check the error rate on the
TEST bits. They abort the protocol if the error rate is higher
than P,.

(6) Alice and Bob select the first n remaining measure
results of SIFT bits to be used as INFO bits.

(7) Alice announces ECC and PA data; she and Bob use
them to extract the m-bit final key from the n-bit INFO string.

Lemma 3. If the attack (Ug, Uy) induces no error on CTRL
and TEST bits in the SQKD Protocol 4, then Eve’s final state
|F) is independent of the final combining state of Alice and
Bob |/15).

Proof. Observing the proof of Lemma 2, we find that it
can be used to the proof of SQKD Protocol 4 if we omit the

discussion of the state |0) sent by Alice. |
Theorem 5. The SQKD Protocol 4 is completely robust.
Proof. 1t is straightforward by Lemma 3. |

In SQKD Protocol 4, Alice uses registers for knowing all
X-sirr bits. However, in SQKD Protocol 3, Alice does not
use registers. Can we construct an SQKD protocol in which
Alice sends only one quantum state and does not use any
register? An SQKD protocol in which Alice sends only one
quantum state and does not use any register is described in
the following.

SQKD Protocol 5: Alice sends only one quantum state
without register

(1) Alice creates and sends N qubits |+)®", where
N=8n(1+0), n is the desired length of the INFO string, and
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6>0 is a fixed parameter. After Alice sends the first qubit,
she sends a qubit only after receiving the previous one.

(2) Bob generates a random string b € {0, 1}. When the
ith qubit arriving, he chooses to CTRL it if b;=0 or SIFT it if
bi=1.

(3) Alice generates a random string ¢ € {0, 1}". She mea-
sures the ith bit in the Z basis if ¢;=0 and measures the ith bit
in the X basis if ¢;=1.

For convenience, in the following, stFr-Z (siFr-X) bits de-
note the bits produced by the process that Bob chooses to
SIFT and Alice measures in the Z basis (X basis). Similarly,
ctrL-Z (ctre-X) bits denote the bits produced by the process
that Bob choose to CTRL and Alice measures in the Z basis (X
basis). It is expected that approximate %’ SIFT-Z bits form the
sifted key.

(4) Alice announces ¢ and Bob announces b. They check
the number of siFr-Z bits. They abort the protocol if the num-
ber of siFT-Z bits is less than 2n.

(5) Alice checks the error rate on the ctrr-X bits. She and
Bob abort the protocol if the error rate is higher than the
predefined threshold P,.

(6) Alice chooses at random n measure results of siFr-Z
bits to be TEST bits. Alice and Bob check the error rate on the
TEST bits. They abort the protocol if the error rate is higher
than P,.

(7) Alice and Bob select the first n remaining measure
results of siFt-X bits to be used as INFO bits.

(8) Alice announces ECC and PA data; she and Bob use
them to extract the m-bit final key from the n-bit INFO string.

Theorem 6. The SQKD Protocol 5 is completely robust.

Proof. 1t is similar to the proof of Theorem 5. |

VI. CONCLUSION

In this paper, we have simplified and improved the
BKM?2007 protocol investigated by Boyer et al. [3]. We have
constructed five SQKD protocols in which Alice sends less
than four quantum states. To study their security, we have
proved that they are completely robust. Though Alice sends
less quantum states in our SQKD Protocol 1 than that in the
BKM?2007 protocol, the proportion of INFO bits in SQKD
Protocol 1 has been increased. Alice sends only two quantum
states in SQKD Protocol 2 and SQKD Protocol 3. In addi-
tion, Alice sends only one quantum state in SQKD Protocol 4
and SQKD Protocol 5. It is worth noting that Alice does not
use any register in SQKD Protocol 3 and SQKD Protocol 5.
In particular, though the restrictions on Alice in SQKD Pro-
tocol 5 are stricter than those in the BKM2007 protocol, in
which Alice sends only one quantum state and does not use
any register, the rate of INFO bits of SQKD Protocol 5 is not
lower than that of the BKM2007 protocol.

The BKM?2007 protocol [3] and our SQKD protocols
have been discussed in the idealized scenario. An interesting
problem worthy of further consideration is what they are in
the practical implementation. In the practical quantum key
distribution, we should consider imperfect qubits sources,
noisy channels, channel losses, and detection processes as in
[2,12]. We would like to explore this question in future.
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