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We introduce a physically motivated classification of pure quantum states describing n qubits. We charac-
terize all multipartite states which can be maximally entangled to local auxiliary systems using controlled
operations. A state has this property if and only if one can construct out of it an orthonormal basis by applying
independent local unitary operations. This implies that those states can be used to encode locally the maximum
amount of n independent bits. Examples of these states are the so-called stabilizer states, which are used for
quantum error correction and one-way quantum computing. We give a simple characterization of these states
and construct a complete set of commuting unitary observables which characterize the state uniquely. Further-
more we show how these states can be prepared and discuss their applications.
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I. INTRODUCTION

Many of the applications in the context of quantum infor-
mation are due to the subtle properties of multipartite en-
tangled states �1�. Thus, the investigation of these properties
is at the heart of quantum information theory. Several en-
tanglement measures which quantify the entanglement of ar-
bitrary multipartite states have been introduced �2�. More-
over, different classes of entangled states have been
identified �3� and a normal form of multipartite states has
been presented �4�. Those investigations are not only rel-
evant in the context of quantum information theory, but are
also of interest in other fields of physics which deal with
many-body systems �5�.

The ultimate goal in this context to cope with the proper-
ties of arbitrary multipartite states is far from being reached.
Therefore, several special classes of multipartite pure states
have been introduced and identified to be useful for certain
tasks. For instance, stabilizer states can be employed for
quantum informational tasks, like quantum error correction,
one-way quantum computing and quantum secret sharing
�6,7�. Another class of states are the topologically ordered
states which are relevant in condensed-matter physics �8�.
Projected entangled pair states have been shown to be very
useful to determine the ground state properties of many-body
Hamiltonians and to simulate many-body systems �9�. Once,
the proper class of states has been identified, the relevant
properties of those states are analyzed. For instance in order
to determine the relationship between phases of matter and
the entanglement properties of the corresponding state. Apart
from that, the characterization of the properties of the states
within a certain class led to applications of multipartite
states. Thus, in order to gain a better understanding of the
properties and applications of multipartite states, classifica-
tions and characterizations of them are required.

Here, we propose an approach to achieve this task. In
contrast to other classifications we do not only consider the
system qubits, but classify multipartite states according to
their ability to get entangled to local auxiliary systems. Here
and in the following, we use the term “local” whenever we
refer to a single site. Before we discuss the operational
meaning of this approach, let us precisely state the situation

we investigate here. We consider an n qubit pure quantum
state ���. Each party uses a local auxiliary qubit to entangle
it to its system qubit in such a way that the global state is a
maximally entangled state between the system and the aux-
iliary qubits �22�. The operations which are used by the par-
ties are so-called controlled operations, which we denote by
Cl, with Cl=�i=0

1 Ul
�i�

� �i�la
�i�, where Ul

�i� are unitary opera-
tions acting on system l and �i�la

�i� is acting on the auxiliary
system attached to l. If there exist local control gates Cl
such that the state C1 � C2 � . . . � Cn����+ ��n, with
�+ �=1 /	2��0�+ �1�� is a maximally entangled state between
the system and the auxiliary systems, we call the state ���
locally maximally entanglable �LME�. Important examples
of these states are all stabilizer states.

The motivation for this investigation is not only that it
leads to a, physically motivated, classification of multipartite
pure states, but also that a state is LME if and only if �iff� it
can be used for a certain task, namely, the optimal local
encoding of independent classical bits.

We will show here that LME states �LMESs� have the
following properties: �i� According to their definition, the
global quantum information of LMESs can be washed out by
local operations. This is due to the fact that the system qubits
are in a maximally mixed state, after successfully attaching
the local auxiliary qubits. This seems to be a crucial property
shared by those states which are useful for one-way quantum
computing, quantum error correction and quantum secret
sharing. Note that the local information can always be
washed out �23�. However, there exist states, e.g. the W state
�3� for which it is not possible to wash out the global infor-
mation in this way. Therefore, these states are fundamentally
different from LMESs. �ii� A state is LME iff it can be used
to encode by local unitary operations the maximum amount
of n independent bits. Each party encodes a bit value by
applying certain local unitary operations to the qubit at his
disposal. We will show that the 2n states obtained in this way
are all orthogonal and therefore globally perfectly distin-
guishable. However, no party can gain locally any informa-
tion about the bits owned by the other parties. �iii� Any
LMES is local unitary equivalent �LU-equivalent� to a state
of the form 	 1

2n �i1,. . .,in=0
1 ei�i1,. . .,in�i1 , . . . , in�, where �ik� denotes

the computational basis and all ��i�
�i1,. . .,in
are real. The
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entanglement contained in this state is completely deter-
mined by the classical phases ��i� and their correlations. �iv�
Any LMES can be prepared by applying generalized phase
gates to a product state. The number of qubits on which the
phase gates are acting depends on the correlations of the
phases ��i�. Thus, LMESs can be entangled in many differ-
ent, but hierarchical ways. Product states but also stabilizer
states are all LME. Stabilizer states or more generally,
weighted Graph states �6,10�, are for instance those LMESs
which require only two-qubit phase gates for their prepara-
tion. �v� For any LMES ���, one can construct a complete
set of commuting unitary observables such that ��� is the
unique eigenstate with eigenvalue one for all these observ-
ables �the so-called generalized stabilizer�. This cannot only
be used to construct frustration free Hamiltonians for which
��� is the unique ground state �9�, but also to design dissi-
pative processes for which ��� is the unique stationary state
�11�.

The sequel of the paper is organized as follows. In Sec. II,
we introduce a standard form of multipartite states. Any mul-
tipartite state can be transformed into its unique standard
form by local unitary operations. In Sec. III, we show that a
state is LME iff it can be extended to an ON–basis by inde-
pendent local unitary operations. Using these results we de-
rive a simple characterization of all LMESs and demonstrate
their properties. Next, we show that the three-qubit W state is
not LME and that, in fact, two of the three parties can protect
some information in the state.

II. NOTATION AND TRACE DECOMPOSITION

Let us start by introducing our notation. By X, Y, and Z
we denote the Pauli operators. The subscript of an operator
will always denote the system it is acting on, or the system it
is describing. For instance �i is the single qubit reduced state
of system i of a state ���, i.e. �i=trall but i�������� and
�Wi�=tr�������Wi� denotes the expectation value of the op-
erator Wi acting on system i. Wi denotes the ith power of the
operator W with W0
1 for any operator W. We denote
by i the classical bit–string �i1 , . . . , in� with ik� �0,1�
∀ k� �1, . . . ,n�, e.g. �0�= �0, . . . ,0�. We say that a state, ���
is LU equivalent to ��� ����LU���� if there exist local uni-
tary operators, U1 , . . . ,Un, such that ���=U1 � ¯ � Un���.

In order to investigate LMESs we introduce the trace de-
composition of multipartite states. Let ��� be an n qubit state
with single qubit reduced states ��i�. We write each single
qubit reduced state �i in its spectral decomposition,
�i=Ui

†DiUi, with Di=diag��1
i ,�2

i �, where 	�k
i are the

Schmidt coefficients of the bipartite splitting qubit i and the
rest �12�. We call any such decomposition, U1 � ¯

� Un���, trace decomposition of ���. The trace decomposi-
tion has the property that the reduced states are all diagonal
in the computational basis. In this paper we will only make
use of the trace decomposition. However, it should be noted
that this decomposition can be used to define a unique stan-
dard form of multipartite states �13�. For Di�” 1∀ i the trace
decomposition can be easily made unique, by requiring that
�1

i ��2
i , and imposing certain conditions on the phases of the

coefficients of the states in the computational basis. If

�i=
1
21, for some system i, the standard form can be defined

as lim�→0������, where ������ denotes the unique standard
form of 	1−����+	��0� �24�. Any state can be transformed
by local unitary operations into its standard form �13�. Thus,
it is easy to verify that if the standard forms of two states are
equivalent, then the states are LU equivalent. Note that the
standard form coincides with the Schmidt decomposition
�12� for two qubits and can be generalized to d-level sys-
tems.

III. LME STATES

A. Basic properties

Let us now characterize the LMESs. First of all, we show
that a state is LME iff it is extendable by independent local
unitary operations to an ON basis.

Lemma 1. An n-qubit state ��� is LME iff there exists for
each party l a unitary operation Ul such that the set
�U1

i1 � . . . , � Un
in����il=0,1, forms an ON–basis.

Proof. Only if: If ��� is LME then there exist
control operations Cl=�iVl

�i�
� �i�la

�i� such that
���=C1 � C2 � . . . � Cn����+ ��n is maximally entangled
in the splitting system versus auxiliary systems.
Applying �Vl

�0��† to each system l does not change the
entanglement properties and therefore �1,. . .,n

= 1
2nE1 � . . . �En��������= 1

2n1, where El�	�=	+Ul	Ul
†, with

Ul= �Vl
�0��†Vl

�1�. Since E1 � . . . �En��������=�i��i���i�, with
��i�=U1

i1 � . . . � Un
in��� is a sum of 2n projectors, this can

only be fulfilled if ���i�� is an ON–basis. To see the inverse,
one only has to define Cl=1 � �0��0�+Ul � �1��1�. �

Note that the proof implies that after successfully
attaching the auxiliary qubits, each of the system
qubits is maximally entangled with the rest since its reduced
state is then �i+Ui�iUi

†=1. We are going to show now that
these unitary operations are of a special form.
Note that �U1

i1 � . . . � Un
in����il=0,1 is an ON-basis iff

��V1U1V1
†�i1 � . . . � �VnUnVn

†�in�V1 � ¯ � Vn�����il=0,1 is an
ON–basis, implying that a state is LME iff any LU-
equivalent state is LME. Therefore, we can restrict ourselves
to some trace decompositions of the state ���. For �i�” 1 and
�i diagonal the necessary condition, �i+Ui�iUi

†=1, can only
be fulfilled by Ui=Rzi

���XiRzi
�−��, where Rzi

��i�
ei�i/2Zi.
For
�i�1, we also find that Ui=ViXiVi

† for some unitary Vi �up to
a global phase�. This is due to the fact that Ui��� must be
orthogonal to ��� �lemma 1� and therefore tr�Ui�=0. Thus,
we only have to consider X operations which implies that a
state ��� is LME iff ���LU���, where �Xi1 � . . . � Xin����,
is an ON-basis, i.e., ���Xi1 � . . . � Xin���=0∀ i�0. Using all
that it is now easy to show the following theorem:

Theorem 2. A state ��� is LME iff ��� is LU equivalent to
a state ��� with

��� =	 1

2n�
i

ei�i�i� 
 Uph
� � + ��n, �1�

where �i�R and Uph
� denotes the diagonal unitary operator

with the entries ei�i �25�.
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Proof. As we have seen before, ��� is LME iff
���LU��� with ���Xi1 � . . . � Xin���=0∀ i�0 or, equiva-
lently, ���LU��� with ���Zi1 � . . . � Zin���=0∀ i�0. We
write ��� in the computational basis, ���=�i�i�i� and use
that �ik��ik�=1 /2�1+ �−1�ikZ�k. Then we have ��i�2= ��i��i��
=2−n��1+ �−1�i1Z�1 � ¯ � �1+ �−1�inZ�n�. Since all expecta-
tion values of the operators where at least one Z operator
occurs vanish we have ��i�2=2−n. �

Thus, a state is LME iff there exists a product basis such
that all the coefficients of the state in this basis are phases.
The control gates used to create the maximally entangled
state between the system �described by ��� in Eq. �2�� and
auxiliary qubits are the two-qubit 
-phase gates,

C̃= �0��0� � 1+ �1��1� � Z. Note that, given an n qubit LMES
�Eq. �2�� one can construct an n+1 qubit LMES by entan-

gling an additional qubit via C̃ to some system j. The phases
would change to �i1,. . .,in+1

=�i1,. . .,in
+
ijin+1. In this way one

can attach arbitrarily many qubits.
Since there are 2n real parameters many multipartite states

have the property of being LME. For instance any two-qubit
state is LME. This can be easily verified using the
Schmidt decomposition �standard form� of the state, ���
=��00�+	1−�2�11�, with ��R, ��0 and choosing U1=X
and U2=Y. Prominent examples of LMESs are all stabilizer
states �which are LU equivalent to the graph states� and the
weighted graph states �6,10�. There the phases �i are qua-
dratic functions of the index i= �i1 , . . . , in�, i.e. �i=
iT�i,
where the n�n matrix � is the so-called adjacency matrix
�10�. Note that any product state is LME, however, it is very
simple to distinguish product states from entangled states
using this notion. If ��� is a product state then the state
C1 � . . . � Cn����+ �n is maximally entangled between the
system and the auxiliary systems iff each party creates a
maximally entangled state �locally�. Thus, considering the
difference between the local entanglement �each qubit with
its auxiliary system� and the global entanglement allows us
to distinguish product states from entangled states. Similar
arguments can be used to distinguish biseparable states from
truly multipartite entangled states �13�. In the following we
consider the general LMES ��� given in Eq. �1� and denote
by ��i�
��i1,. . .,in

�=Zi1 � ¯ � Zin��� the elements of the
ON-basis ����
��0��

B. Applications

Let us now discuss some applications of LMESs. An
LMES can be used to encode classical information locally. If
n parties share the LMES ��� �Eq. �1��, each party can en-
code a single bit value by applying either 1 �corresponding to
the bit value 0�, or Z �corresponding to the bit value 1�, to the
qubit at his possession. The 2n states obtained in this way are
globally perfectly distinguishable �since they are all orthogo-
nal due to Lemma 1�, but locally, no information can be
gained. Note that for instance for the W state, which is not
LME, as we shall see below, it is possible to find local uni-
tary operations Vi � Wi � Ui such that �Vi � Wi � Ui�W�� is an
ON–basis �14�. However, in this case the unitary operators
which generate the ON–basis depend on each other which
prevents us from using the state to encode locally n indepen-

dent classical bits. Apart from that, LMESs can also be used
to implement certain non–local unitary operations. In order
to see that, we use the Jamiołkowski isomorphism which is a
one-to-one mapping between quantum states and
quantum operations �15�. For an LMES ���, the operation

which corresponds to the state C̃1 � . . . � C̃n����+ �n is U�

=�i��i��i�=Uph
� H�n, where H is the Hadamard gate. Thus,

having ��� at ones disposal, one can implement �up to local
Pauli operators� the unitary operation U� on an arbitrary
state using only local operations �15�. Note that ��� can also
be employed to implement certain transformations on a state
describing less than n qubits. For instance, for the one-way
quantum computer �7�, it was possible to show that the spe-
cial properties of the used LMESs, the 2D-cluster states �16�
allow for the implementation of an arbitrary unitary operator.

C. Generation

Let us now briefly discuss how LMESs can be generated.
We write any LMES ��� as

��� = U1,. . .,n � Uik1
,. . .,ikn−1

¯� Ui� + �n, �2�

where Uik1
,. . .,ikl

is a phase gate acting on l qubits. For in-

stance, U123 maps �111�123 to ei123�111�123, with 123�R
and leaves the rest unchanged. It is straightforward to see
that in this hierarchical way the 2n phases �i can be gener-
ated. Thus, any LMES can be prepared using generalized
phase gates, which could result from a generalized Ising in-
teraction. If ��i� is a polynomial of degree k �as a function of
i= �i1 , . . . , in�� then the corresponding state can be prepared
using only k-body interactions. E.g. graph states or weighted
graph states, where the phases �i are polynomials of degree 2
can be created using only two–qubit phase gates. This shows
that the correlations in the coefficients are directly related to
a preparation scheme and therefore to the entanglement con-
tained in the state. In order to discuss different methods for
the preparation of any LMES ���, we construct its general-
ized stabilizer �6�. We define Wk=U�ZkU�

† =Uph
� Xk�Uph

� �†.
Then Wk���= ���∀ k iff ���= ���. Note that all these unitary
observables have as a common eigenbasis the basis ���i��
and that Wk

2=1. Similarly to the stabilizer states, we have
�W�WW= ������, where W denotes the group generated by
�W1 , . . . ,Wn�. Depending only on the phases �i, which define
the LME, ���, the generators of the generalized stabilizer
can be quasi–local, i.e. act non trivially on a small set of
�neighboring� qubits �13�. In this case, the methods devel-
oped in �11� can be employed to derive a quasi–local dissi-
pative process for which the unique stationary state is ���.
Apart form that, one can also easily construct frustration free
Hamiltonians for which the unique ground–state is ���, e.g.
H=1−�W�WW.

IV. NON-LME STATES

An example of a state which is not LME is the three qubit
W state, �W�= 1

	3
��001�+ �010�+ �100��. Due to the fact that

�W� is already in its standard decomposition, the unitary
operations we have to consider are of the form
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Ui=Rzi
�2�i�XiRzi

�−2�i�. Since �Ui � Uj��cos��i−� j� it is
impossible that all these expectation values vanish for any
pair of unitary operations. Consequently �W� is not LME and
it is only possible to choose U1, U2 such that the set
��W� ,U1 � 1�W� ,1 � U2�W� ,U1 � U2�W�� is orthogonal, for
instance with U1=X, U2=Y. One can also show that if two
parties maximally entangled their system qubit with a local
auxiliary qubit then the third party cannot adequately en-
tangle his auxiliary qubit to his system qubit, even if he
would apply a general two-qubit gate �26�. Thus, two of the
three parties can protect some information in the state by
entangling their system to auxiliary systems.

V. CONCLUSION

A deep understanding of the manipulation and description
of LMESs might lead, similarly to its simplest subclass, the
stabilizer states, to applications of multipartite states. We
plan to investigate the entanglement properties of LMESs
with the aim to find both, operational entanglement measures
and applications of multipartite states. Moreover, we will
generalize the known quantum informational tasks, which
use stabilizer states, like quantum computing, and quantum

communication tasks �17� employing more general LMESs.
It should be noted here that LMESs can have �13�, in con-
trast to stabilizer states, an exponentially large quantum Kol-
mogorov complexity �18�. Those states are necessarily
highly entangled �19�. It might also be feasible to define the
minimal set of reversible entangled states for LMESs �20�.
Furthermore, this notion can also be used to study the sepa-
rability problem �13�. Apart from that, considering a re-
stricted set of LMESs, where for instance only certain three
qubit phase gates are required to generate the states, might
allow us to generalize the well–known Gottesman-Knill
Theorem �12�. Identifying a large enough subset of these
states might also be relevant for the simulation of quantum
systems �21�. Furthermore, the states which are not LME
might be used for protecting information and avoiding cer-
tain errors.
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