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We illustrate the use of the statistical method of moments for determining the position and momentum
distributions of a quantum object from the statistics of a single measurement. The method is used for three
different, though related, models: the sequential measurement model, the Arthurs-Kelly model, and the eight-
port homodyne detection model. In each case, the method of moments gives the position and momentum
distributions for a large class of initial states, the relevant condition being the exponential boundedness of the
distributions.
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I. INTRODUCTION

One of the main problems of quantum mechanics deals
with the possibility of measuring together the position and
momentum distributions �Q and �P of a quantum system
prepared in a state �. The basic structures of quantum me-
chanics dictate that there is no �joint� measurement which
would directly give both the position and momentum distri-
butions and that, for instance, any determination of the posi-
tion distribution �Q necessarily disturbs the system such that
the initial momentum distribution �P gets drastically
changed.

In recent years two important steps have been taken in
solving this problem. First of all, the original ideas of
Heisenberg �1� have finally been brought to a successful end
with the seminal paper of Werner �2� which gives operation-
ally feasible necessary and sufficient conditions for a mea-
surement to serve as an approximate joint measurement of
the position and momentum distributions, including also the
inaccuracy-disturbance aspect of the problem. The second
breakthrough in studying this question comes from a recon-
struction of the state � from a single informationally com-
plete measurement, notably realized optically by an eight-
port homodyne detection ��3� and pages 147–155 in �4�� �for
a rigorous quantum mechanical treatment, see �5��. In con-
junction with an explicit state reconstruction formula �known
at least for the Husimi distribution �6��, this allows one to
immediately determine the distributions of any given observ-
ables.

If one is only interested in determining the position and
momentum distributions �Q and �P, it is obviously unneces-
sary to reconstruct the entire state; one should be able to do
this with less information. Here we will use the statistical
method of moments to achieve a scheme for position and
momentum tomography, i.e., the reconstruction of the posi-
tion and momentum distributions from the measured statis-
tics �16�. The price for using moments is, of course, that they
do not exist for all states, and even when they do, they typi-
cally do not determine the distribution uniquely. Hence, we

restrict here to the states for which the position and momen-
tum distributions are exponentially bounded. We note that
this is an operational condition and can, in principle, be
tested for a given moment sequence �7�.

We consider three different, though related, measurement
schemes based on the von Neumann model �Sec. III A� and
the balanced homodyne detection technique �Sec. IV C�. The
first model is a sequential measurement of a standard posi-
tion measurement of the von Neumann type �8� followed by
any momentum measurement �Sec. IV A�. The second �Sec.
IV B� builds on the Arthurs-Kelly model �9� as developed
further by Busch �10�, whereas the third �Sec. IV C� model
uses the quantum optical realizations of position and mo-
mentum as the corresponding quadrature observables of a
�single mode� signal field implemented by balanced homo-
dyne detection �11�. In Sec. V we apply the method of mo-
ments to determine both the position and momentum distri-
butions �Q and �P from the actually measured statistics.
Finally, we compare our method with the state reconstruction
method �Sec. VI�. There we also comment briefly the possi-
bility of inverting convolutions. We begin, however, with
quoting the basic no-go results on the position-momentum
joint or sequential measurements.

II. NO JOINT MEASUREMENTS

There are many formulations of the basic fact that posi-
tion and momentum of a quantum object cannot be measured
jointly or, equivalently, that, say, any position measurement
“destroys” all the information on the momentum prior to the
measurement. In this section we recall one of the most strik-
ing formulations of this fact. To do that we fix first some
notations.

Let H be a complex separable Hilbert space and L�H� be
the set of bounded operators on H. Let � be a nonempty set
and A be a � algebra of subsets of �. The set function
E :A→L�H� is a semispectral measure or normalized posi-
tive operator measure �POM� if the set function A
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�X� �� �E�X����C is a probability measure for each �
�H1, the set of unit vectors of H. We denote this probability
measure by p�

E. A semispectral measure E is a spectral mea-
sure if it is projection valued, that is, all the operators E�X�,
X�A, are projections. If H is the Hilbert space of a quan-
tum system, then the observables of the system are repre-
sented by semispectral measures E and the numbers
�� �E�X���, X�A, ��H1, are the measurement outcome
probabilities for E in a vector state �. An observable is called
sharp if it is represented by a spectral measure. Otherwise,
we call it unsharp. Here we consider only the cases where the
measurement outcomes are real numbers, that is, �� ,A� is
the real Borel space �R ,B�R��, or pairs of real numbers, in
which case �� ,A� is �R2 ,B�R2��. The position and momen-
tum distributions �Q and �P are just the probability measures
p�

Q and p�
P defined by Q and P together with a density matrix

�mixed state� �.
An observable M :B�R2�→L�H� has two marginal ob-

servables M1 and M2 defined by the conditions M1�X�
=M�X�R� and M2�Y�=M�R�Y� for all X ,Y �B�R�. Any
measurement of M constitutes a joint measurement of M1
and M2. On the other hand, any two observables E1 and E2
admit a joint measurement �or equivalently a sequential joint
measurement� if there is an observable �on the product value
space� M :B�R2�→L�H� such that E1=M1 and E2=M2. The
following result is crucial1:

Lemma 1. Let M :B�R2�→L�H� be a semispectral mea-
sure, such that one of the marginals is a spectral measure.
Then, for any X ,Y �B�R�, M1�X�M2�Y�=M2�Y�M1�X�, that
is, the marginals commute with each other, and M�X�Y�
=M1�X�M2�Y�, that is, M is of the product form.

Assume that M :B�R2�→L�H� is an observable with, say,
the first marginal observable M1 being the position of the
object. Then M1 and M2 commute with each other, and due
to the maximality of the position observable Q any M2�Y� is
a function of Q. Therefore, M2 cannot represent �any non-
trivial version of� the momentum observable. Similarly, if
one of the marginal observables is the momentum observ-
able, then the two marginal observables are pairwisely com-
mutative, and the effects of the other marginal observable are
functions of the momentum observable.

III. POSITION AND MOMENTUM MEASUREMENTS

It is a basic result of the quantum theory of measurement
that each observable �sharp or unharp� admits a realization in
terms of a measurement scheme, that is, each observable has
a measurement dilation �12�. In particular, this is true for the
position and momentum observables Q and P. However, due
to the continuity of these observables they do not admit any
repeatable measurements �12,13�. In fact, the known realistic
models for position and momentum measurements serve
only as their approximative measurements which constitute
Q and P measurements only in some appropriate limits. Here

we consider two such models, the standard von Neumann
model and the optical version of a Q �P� measurement in
terms of a balanced homodyne detection. Before entering
these models we briefly recall the notion of intrinsic noise of
an observable and the corresponding characterization of
noiseless measurements.

For an observable E :B�R�→L�H� the kth moment opera-
tor is the �weakly defined� symmetric operator E�k�
=�RxkdE with its natural �maximal� domain D�E�k��. In par-
ticular, the number �� �E�k���=�Rxkdp�

E is the kth moment of
the probability measure p�

E. The �intrinsic� noise of E is de-
fined as N�E�=E�2�−E�1�2, and it is known to be positive,
that is, �� �N�E����0 for all ��D�E�2���D�E�1�2�. If the
first moment operator E�1� of E is self-adjoint, then E is
sharp exactly when E is noiseless, that is, N�E�=0 �14�.2 We
recall also that the first moment operator E�1� of an observ-
able alone is never sufficient to determine the actual observ-
able. In statistical terms, the first moment information �ex-
pectation� �� �E�1���, ��H1, does not suffice to determine
the measured observable E.

A. von Neumann model

Consider the von Neumann model of a position measure-
ment of an object confined to move in one spatial dimension
�Sec. VI.3 in �8�; see also, e.g., Sec. II.3.4 in �15��. Let H
=L2�R� be the Hilbert space of the object system and let Q
denote its position operator. We let Q denote the spectral
measure of Q. To measure Q we couple it with the momen-
tum P0 of the probe system, with the Hilbert space K
=L2�R�, and we monitor the shifts in probe’s position Q0,
with the spectral measure Q0. Let U=e−i	Q�P0 be the unitary
measurement coupling, with a coupling constant 	
0, �
�K, 	�	=1, the initial probe state, and let V� :H→H � K
denote the embedding V����=� � �. The actually measured
observable of the object system is then given by measure-
ment dilation formula

E�X� = V�
� U�I � Q0�X�UV�, X � B�R� .

A direct computation shows that E is an unsharp position,
with the effects

E�X� = ��X � f��Q� , �1�

where �X� f denotes the convolution of the characteristic
function �X of the set X�B�R� with the probability density
f�x�=	���−	x��2.

1This result seems to be well known and part of the proof goes
back to Ludwig �theorem 1.3.1 in �27��. However, we were unable
to identify a full proof in the literature, and so we give one in the
appendix.

2The self-adjointness of the first moment operator is crucial for
this condition. Indeed, if, for instance, one restricts the spectral
measure of the momentum observable P in L2�R� by a projection

Q�I� , I= �a ,b�, to get a POM P̃ :Y �Q�I�P�Y�Q�I� �L2�I� acting on

L2�I�, one has P̃�k�= P̃�1�k for all k, and thus also N�P̃�=0, though

the first moment P̃�1� is only a densely defined symmetric operator
�30�. This is also an example of the variance free observables as
discussed in �31�. A noiseless observable is variance free, but due to
the domain conditions the reverse implication may not be true.
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1. Limiting observable

The actually measured observable E depends on two pa-
rameters: the coupling constant 	 and the initial probe state
�, that is, E=E	,�. The structure of the effects �Eq. �1��
suggests that the semispectral measure E comes close to the
spectral measure Q whenever the convolution �X� f comes
close to �X. This evident fact can be quantified in various
ways.

Due to the convolution structure of E, the geometric dis-
tance between the observables E and Q can easily be com-
puted �2�, and one finds that

d�E,Q� =
1

	

 �x����x��2dx ,

showing that whenever the integral is finite, the geometric
distance tends to zero as 	 increases or ���x��2 becomes more
sharply concentrated around the origin. It follows from the
definition of the geometric distance that d�E ,Q�=0 implies
E=Q. However, this does not settle the question of the limit
E→Q in either of the two possible intuitive meanings. For
that we use the method of moments.

In order to be able to determine the moment operators of
the unsharp position observable E, we assume that �
�C↓


�R�, so that in particular ��D�Q0
k� for each k�N. In

that case the moment operators E�k� can all be computed,3

and they turn out to be polynomials of degree k of Q, that is,
D�E�k��=D�Qk� and

E�k� = �
i=0

k �k

i

	−i���Q0

i ��Qk−i. �2�

Therefore, in particular, on D�E�2��=D�Q2�, one has N�E�
= 1

	2 Var�Q0 ,��I, suggesting, again, that, for a fixed �, if 	 is
large, then the noise N�E� is small, or, for a fixed 	, if
Var�Q0 ,�� is small, then, again, N�E� would be small. But,
again, the precise meaning of the limit E→Q in either of the
cases 	→
 or Var�Q0 ,��→0 waits to be qualified.

Consider first the limit 	→
 so that the operator mea-
sures are actually E	, with the moment operators E	�k� of
Eq. �2�. Let D be the linear hull of the Hermite functions, so
that D�D�Qk�=D�E	�k�� for all k �and for all 	� and

lim
	→


���E	�k��� = ���Qk�� �3�

for all ��D and k�N. Due to the exponential boundedness
of the Hermite functions, the moments �� �Qk��, k�N, of
the probability measure p�

Q determine it uniquely �19�. Since
D is a dense subspace, the probability measures p�

Q, ��D,
determine, by polarization, the spectral measure Q of Q. To
conclude that on the basis of the statistical data �Eq. �3�� the
observable E	 would converge to Q, one needs to know that
also E	 is determined by its moment operators E	�k�, k�N,

on D. Again, for all ��D, the probability measures p�
E	

are

exponentially bounded, so that each p�
E	

is determined by its

moments p�
E	

�k�= �� �E	�k���, k�N. Hence, by polarization,
E	 is determined by the numbers �� �E	�k���, k�N , �
�D.

Let now 	n, n�N, be an increasing sequence of the cou-
pling constants, with 	n→
, and let �En�n�N be the sequence
of the semispectral measures E	n. The above results show
that Q is the moment limit of the sequence �En�n�N on D,
that is, we may write

lim
n→


En = Q �4�

�on D in the sense of moment operators� �for further techni-
cal details, see �11��. We remark that in this case also the
effects En�X� tend weakly to the projections Q�X� for all X

�B�R� whose boundaries X̄�X�̄ are of Lebesgue measure
zero �11�.

The corresponding limits for the case Var�Q0 ,��→0 can
similarly been worked out, for instance, if � is chosen to be
the Gaussian state �n�x�= � n

� �1/4e−nx2/2, and one considers the
limit n→
.

2. Indirectly measured observable

In addition to obtaining limit �4�, formula �2� can also be
solved directly for the numbers �� �Qk��, ��D , �N. In-
deed, one may write recursively

���Qk�� = ���E�k��� − �
i=1

k �k

i

	−i���Q0

i �����Qk−i��,

k � N . �5�

These numbers are the moments of the probability distribu-
tions �Q for �= ������. Due to the exponential boundedness
of these distributions they are uniquely determined by their
moments �� �Qk��, k�N, and by the density of D, the po-
larization identity then implies that this statistics is sufficient
to determine also the position observable Q. Though the ac-
tually measured observable in this model is the unsharp po-
sition E	,�, the measurement statistics allows one to deter-
mine also directly, without any limit considerations, the
“unobserved” sharp position Q. In Sec. VI we discuss still
another method to obtain the position distribution �Q, �
= ������, from the actually measured distribution f ��Q by
inverting the convolution.

B. Balanced homodyne detection observable

The balanced homodyne detection scheme is a basic mea-
surement scheme in many quantum optical applications, in-
cluding continuous variable quantum tomography as well as
continuous variable quantum teleportation. Such a measure-
ment scheme determines an observable Ez which depends on
the coherent state �z�, z�C, of the auxiliary field. An impor-
tant property of these observables is that on the level of
statistical expectation values they agree with the quadrature
observables Q�= 1

�2
�e−i�a+ei�a��, z=rei�, of the relevant field

mode, with the annihilation operator a. The explicit structure
of these observables Ez has been studied in great detail and,
in particular, their moment operators are determined �11�.

3Some of the technical details behind these computations have
been studied in �32�.
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To express the relevant results here, we let D�a� stand for
the domain of the annihilation operator �which, in terms
of the fixed number basis ��n��n�N�H, is D�a�= ���
�H ��n�Nn��n ����2�
�� and N=a�a is the corresponding
�self-adjoint� number operator. The first and the second mo-
ment operators of such a balanced homodyne detection ob-
servable Ez, z=rei�, are known to be as follows:

Ez�1��D�a� = Q��D�a�,

Ez�2��D�a2� = �Q��D�a��2 + 1
2r−2N .

Here, e.g., Ez�k� �D�ak� denotes the restriction of the kth mo-
ment operator Ez�k� of Ez to the domain D�ak�, k=1,2. By
definition, the noise operator N�Ez� has the domain
D(N�Ez�)=D�E�2���D�E�1�2�, which includes the set
D�N�=D�a2� because of the above operator relations. Hence,
1
2r−2N�N�Ez�. But N�Ez� is symmetric and N is self-adjoint,
so that N�Ez�= 1

2r−2N. This would again suggest that in the
limit r= �z�→
, the intrinsic noise N�Ez� goes to zero and
thus the measured observable would approach the quadrature
observable Q�. Like in the previous case �Sec. III A�, this
limit requires further considerations.

Actually, the restrictions of all the moment operator Ez�k�
on the domains D�ak�, k�N, can be determined, and they are
of the form

Ez�k��D�ak� = �Q��D�ak��k +
1

r2Ck�r,�� , �6�

where Ck�r ,��=�n,mn+m�k
cn,m

k �r ,���a��nam, and each cn,m
k is a

bounded complex function on �1,
�� �0,2�� �11�. Let
Dcoh=lin��w� �w�C�, so that Dcoh is a dense subspace con-
tained in all D�ak�, k�N. For each unit vector ��Dcoh, the

probability measure p�
Ez

is exponentially bounded so that it is
determined by its moment sequence �� �Ez�k��� , k�N.
Since Dcoh is dense, these probability measures define again
the whole operator measure Ez �11�.

Let now �rn� be a sequence of positive numbers converg-
ing to infinity. For this choice, let zn���=rnei�, where the
phase �� �0,2�� is also fixed, and let En be the correspond-
ing balanced homodyne detection observable. By the above
results it now follows that the spectral measure Q� is the
only moment limit of the sequence of observables �En�.
Moreover, for any unit vector �, limn→
 p�

En
�X�= p�

Q��X� for

all X�B�R� whose boundary X̄�X�̄ is of Lebesgue measure
zero �11�. In this sense one can say that the high amplitude
limit of the balanced homodyne detection scheme serves as
an experimental implementation of a quadrature observable.

Again, one may solve the statistical moments �� �Q�
k��

from Eq. �6� for all ��D�ak�. However, in this case they are
not directly expressible in terms of actually measured mo-
ments �� �Ez�k���. The high amplitude limit is needed for
that end.

To close this section we mention that in a recent paper
Man’ko et al. �20� proposed to use the first and second mo-
ments of the measurement statistics of the �limiting� bal-
anced homodyne detection observables associated with the
phases � ,�+ �

2 ,�+ �
4 to empirically test the uncertainty rela-

tions for the conjugate quadratures �associated with � ,�+ �
2 �.

Clearly, for any ��D�a2�, with the choice �=0 and nota-
tions Q0=Q , Q�/2= P,

Var��Er�Var��Eir� = ��Er�2�� − �Er�1��2���Eir�2�� − �Eir�1��2�

= ��Q2� + 1
2r−2�N� − �Q�2���P2� + 1

2r−2�N�

− �P�2� = �Var��Q� + 1
2r−2�N��

��Var��P� + 1
2r−2�N�� �

1
4 ,

which allows one to test the statistics in this respect for any
�z�=r. The marginal statistics of the limiting eight-port ho-
modyne detection observables of Sec. IV C leads to a similar
inequality except with the lower bound 1. We wish to point
out that the test proposed in �20� is actually an experimental
check for the correctness of the quantum mechanical descrip-
tion of balanced homodyne detection since any violation of
the above inequality would suggest that the description is
incorrect.

IV. COMBINING POSITION AND MOMENTUM
MEASUREMENTS

We shall go on to combine the above measurement
schemes to produce sequential and joint measurements for
position and momentum. We consider first the sequential ap-
plication of a standard position measurement with any mo-
mentum measurement. Sections IV B and IV C deal with the
Arthurs-Kelly model and the eight-port homodyne detection
scheme.

A. Sequential combination

Consider an approximate position measurement, de-
scribed by the von Neumann model, followed by a sharp
momentum measurement. This defines a unique sequential
joint observable, a covariant phase space observable
G	,� :B�R2�→L�H�, with the marginals

G1
	,��X� = ��X � e��Q� ,

G2
	,��Y� = ��Y � f��P� .

Here we have the probability densities e�q�=	���−	q��2 and
f�p�= 1

	 ��̂�− p
	 ��2, where ��H, 	�	=1, is the initial probe

state and �̂ denotes the Fourier transform of �. If �
�C↓


�R�, we have ��D�Q0
k��D�P0

k� for each k�N, in
which case the moment operators of the marginal observ-
ables are

G1
	,��k� = �

i=0

k �k

i

	−i���Q0

i ��Qk−i, �7�

G2
	,��k� = �

i=0

k �k

i

	i���P0

i ��Pk−i. �8�

As shown before, we have

KIUKAS, LAHTI, AND SCHULTZ PHYSICAL REVIEW A 79, 052119 �2009�

052119-4



lim
	→


���G1
	,��k��� = ���Qk��

for all ��C↓

�R�. In the case of the second marginal we see

that for any ��C↓

�R� there are values of k�N for which

�� �G2
	,��k��� tends to infinity as 	 increases. For example,

the limit of the second moment is never finite since �� � P0
2��

is always nonzero. That is, the limits of the moments of the
probability measure X� �� �G2

	,��X���= �� �G	,��R�X���
are not moments of any determinate probability measure, and
hence they do not determine any observable.

Another way to look at the limits of the marginal observ-
ables is to choose a sequence of initial probe states
��n�n�N�L2�R� such that ��n�2 approaches the delta distri-
bution as n increases. For example, choose the Gaussian
states

�n�x� = � n

�

1/4

e−n�x2/2�,

in which case the explicit forms of the moment operators
G1

	,n�k� and G2
	,n�k� can easily be computed,

G1
	,n�k� = �

i=0,i even

k �k

i

 	−i

�ni�
�� i + 1

2

Qk−i, �9�

G2
	,n�k� = �

i=0,i even

k �k

i

	i�ni

�
�� i + 1

2

Pk−i, �10�

where � denotes the gamma function. Taking the limit
n→
 one gets a result similar to the one considered before
�	→
�.

As expected, the limit procedures cannot give both the Q
and P distributions, but as it is obvious from Eqs. �7�–�10�
the method of moments can again be used. We return to that
in Sec. V.

Again, the convolution structure allows one to easily
compute the distances between the marginals and the sharp
position and momentum observables. One finds that

d�G1
	,�,Q� =

1

	

 �x����x��2dx ,

d�G2
	,�,P� = 	
 �x���̂�x��2dx ,

showing that the product of the distances does not depend
on 	. Since the distances are Fourier related, their
product has a positive lower bound, that is,
inf��H1

d�G1
	,� ,Q� ·d�G2

	,� ,P�
0. For example, in the case
of the Gaussian initial states �n one has
d�G1

	,n ,Q� ·d�G2
	,n ,P�= 1

� for all n�N.

B. Arthurs-Kelly model

The Arthurs-Kelly model �9� as developed further by
Busch �10� �see also �21,22�� is based on the von Neumann
model of an approximate measurement. It consists of stan-
dard position and momentum measurements performed si-

multaneously on the object system. Consider a measuring
apparatus consisting of two probe systems, with associated
Hilbert spaces H1 and H2. Let �1 � �2�H1 � H2 be the
initial state of the apparatus. The apparatus is coupled to the
object system, originally in the state ��H, by means of the
coupling

U = e−i	Q�P1�I2ei�P�I1�Q2, �11�

which changes the initial state of the object-apparatus system
�0=� � �1 � �2 into �=U�0. The final state � has the
position representation

��x,y,z� = ��x + �z��1�y − 	x��2�z� .

Notice that coupling �11� is a slightly simplified version of
the one used by Arthurs and Kelly. However, it does not
change any of our conclusions.

The measured covariant phase space observable G is de-
termined from the condition

���G�X � Y��� = ���I � Q�	X� � P��Y���

for all X ,Y �B�R� and the marginal observables G1 and G2
turn out to be

G1�X� = ��X � �e0 � ��2
����2���Q� , �12�

G2�Y� = ��Y � f0��P� , �13�

where e0 and f0 are the probability distributions related to the
original single measurements, i.e., e0�q�=	��1�−	q��2 and
f0�p�=���̂2�−�p��2, and we have used the scaled function
�2

����p�= 1
��

�2� p
� �. If we choose the initial state of the appa-

ratus to be such that �1 ,�2�C↓

�R�, the moment operators

can be computed,

G1�k� = �
n=0

k

�
i=0

n �k

n

�n

i

	−�n−i��− ��i��1�Q1

n−i�1�

���2�Q2
i �2�Qk−n, �14�

G2�k� = �
n=0

k �k

n

�−n��2�P2

n�2�Pk−n. �15�

It is clear from Eqs. �12� and �13� that the Q and P dis-
tributions cannot be simultaneously obtained as limits of the
marginals since the distributions e0� ��2

����2 and f0 cannot
both be arbitrarily sharply concentrated. However, Eqs. �14�
and �15� show that the method of moments can be used.

C. Eight-port homodyne detector

The eight-port homodyne detector �3,4� consists of the
setup shown in Fig. 1. The detector involves four modes and
the associated Hilbert spaces will be denoted by H1, H2, H3,
and H4. Mode 1 corresponds to the signal field, the input
state for mode 2 serves as a parameter which determines the
observable to be measured, and mode 4 is the reference beam
in a coherent state. The input for mode 3 is left empty, cor-
responding to the vacuum state. We fix a photon number
basis ��n� �n�N� for each H j, so that the annihilation opera-
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tors aj, as well as the quadratures Qj =
1
�2

�aj
�+aj�, Pj =

i
�2

�aj
�

−aj�, and the photon number operators Nj =aj
�aj are defined

for each mode j=1,2 ,3 ,4.
The photon detectors Dj are considered to be ideal, so that

each detector measures the sharp photon number Nj. The
phase shifter is represented by the unitary operator ei�N4,
where � is the shift. There are four 50-50 beam splitters B12,
B43, U13, and U24, each of which is defined by its acting in
the coordinate representation,

L2�R2� � � � ��xi,xj� � �� 1
�2

�xi + xj�,
1
�2

�− xi + xj�


� L2�R2� . �16�

In the picture, the dashed line in each beam splitter indicates
the input port of the “primary mode,” i.e., the mode associ-
ated with the first component of the tensor product L2�R�
� L2�R��L2�R2� in the description of Eq. �16�. The beam
splitters are indexed so that the first index indicates the pri-
mary mode.

Let ��2z� be the coherent input state for mode 4. We de-
tect the scaled number differences 1

�z�N13
− and 1

�z�N24
− , where

Nij
− = Ii � Nj −Ni � Ij, so that the joint detection statistics are

described by the unique spectral measure extending the set
function

�X,Y� � P�z�−1N13
−

�X� � P�z�−1N24
−

�Y� = D1�X� � D2�Y� ,

where the operator acts on the entire four-mode field.
Let �= ������ and � be the input states for modes 1 and 2,

respectively. Then the state of the four-mode field after the
combination of the beam splitters and the phase shifter is

W�,�,z,� = U13 � U24�B12�� � ��B12
�

� �z��z� � �zei���zei���U13
�

� U24
� .

We regard �, ��2z�, and � as fixed parameters, while � is the
initial state of the object system, i.e., the signal field. The
detection statistics then define an observable Gz,�,� :B�R2�
→L�H1� on the signal field via

Tr��Gz,�,��X � Y�� = Tr�W�,�,z,�D1�X� � D2�Y�� .

This is the signal observable measured by the detector.
Let GT denote the covariant phase space observable gen-

erated by a positive trace one operator T, that is �17,18�,

GT�Z� =
1

2�



Z

WqpTWqp
� dqdp �17�

for all Z�B�R2�, where Wqp, �q , p��R2, are the Weyl op-
erators associated with the position and momentum operators
Q and P. Let C :H2→H1 denote the conjugation map, i.e.,
�C���x�=��x� in the coordinate representation, and let �rn�
be any sequence of positive numbers tending to infinity. It
was shown in �5� that the measured observable Grn,�,�/2 ap-
proaches with increasing n the phase space observable gen-
erated by C�C−1, that is,

lim
n→


Grn,�,�/2�Z� = GC�C−1
�Z�

in the weak operator topology for any Z�B�R2� such that

the boundary Z̄�Z�̄ has zero Lebesque measure.
In general, it is difficult to determine the domains of the

moment operators of the covariant phase space observable
GC�C−1

. However, if the generating operator C�C−1 is such
that Qk�C�C−1 and Pk�C�C−1 are Hilbert-Schmidt operators
for all k�N, then according to theorem 4 in �14� we have

G1
C�C−1

�k� = �
n=0

k �k

n

�− 1�n Tr��Q2

n�Q1
k−n, �18�

G2
C�C−1

�k� = �
n=0

k �k

n

�− 1�n Tr��P2

n�P1
k−n. �19�

V. SIMULTANEOUS MEASUREMENTS OF Q AND P

In the three different measurement models considered
above, the actually measured observable is a covariant phase
space observable GT for an appropriate generating operator
T. Hence, the marginal observables G1

T and G2
T are convolu-

tions of the sharp position and momentum observables with
the Fourier-related probability densities f and g defined by T,
respectively. Indeed, if T=�iti��i���i� is the spectral
decomposition of T, then f�q�=�iti��i�−q��2 and g�p�
=�iti��̂i�−p��2. Due to this structure, the moment operators
of the marginal observables G1

T and G2
T can be written in

simple forms as polynomials of either Q or P. That is, for
any ��H,

���G1
T�k��� = �

i=0

k

ski
Q���Qk−i�� ,

���G2
T�k��� = �

i=0

k

ski
P���Pk−i�� ,

where the coefficients ski
Q and ski

P depend on the model in
question and sk0

Q =sk0
P =1 in each case. From these, the recur-

FIG. 1. The eight-port homodyne detector.
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sion formulas for the moments of the position and momen-
tum distributions �Q and �P, with �= ������, of the object to
be measured can be computed,

���Qk�� = ���G1
T�k��� − �

i=1

k

ski
Q���Qk−i�� , �20�

���Pk�� = ���G2
T�k��� − �

i=1

k

ski
P���Pk−i�� . �21�

If � is chosen to be, for example, a linear combination of
Hermite functions, the distributions �Q and �P are exponen-
tially bounded and as such are uniquely determined by
their respective moment sequences ��� �Qk���k�N and
��� � Pk���k�N. In this sense one is able to measure simulta-
neously the position and momentum observables Q and P in
such a vector state in any of the three single measurement
schemes collecting the relevant marginal information. Fur-
thermore, since the linear combinations of Hermite functions
are dense in L2�R�, their associated distributions �Q and �P

suffice to determine the whole position and momentum ob-
servables Q and P as spectral measures.

VI. CONCLUDING REMARKS

We have shown with three different measurement models
that the statistical method of moments allows one to deter-
mine with a single measurement scheme both the position
and momentum distributions �Q and �P from the actually
measured statistics for a large class of initial states �. In each
case the actually measured observable is a covariant phase
space observable GT whose generating operator T depends
on the used measurement scheme. Such an observable is
known to be informationally complete if the operator T sat-
isfies the condition Tr�WqpT��0 for almost all �q , p��R2

�23�. Recently it has been shown that this condition is also
necessary for the informational completeness of GT �24�.
Neither the used models nor the method of moments depend
on this assumption. Indeed, if, for instance, T= ������, with a
compactly supported �, so that GT is informationally incom-
plete, Eqs. �20� and �21� can still be used to determine �Q

and �P provided that these distributions are exponentially
bounded, for instance, if �= ������, with � in the linear hull
of the Hermite functions. If, however, the phase space ob-
servable GT is informationally complete and if one is able to
reconstruct the state � from this informationally complete
statistics Tr��GT�Z�� ,Z�B�R2�, then, of course, one knows
the distribution of any observable, in particular, the position
and momentum distributions �Q and �P. However, the recon-
struction of the state from such a statistics is typically a
highly difficult task �see, e.g., �25��. In the special case of the
generating operator T being the Gaussian �vacuum� state T
= �0��0�, the distribution Z�Tr��G�0��Z�� is the Husimi dis-
tribution of the state �. For that, a reconstruction formula is
well known and simple �6�. Indeed, writing z= 1

�2
�q+ ip�, one

has Wqp�0�= �z� and Tr��G�0��Z��=�ZQ��z�d2z, with Q��z�
= 1

� �z���z� being the Husimi Q function of the state �. Using
the polar coordinates, the matrix elements of � with respect
to the number basis are

�n,n+k =
��n + k� ! n!

�2n + k�!
d2n+kf�0�

dr2n+k ,

where

f�r� =
1

2
er2


0

2�

e−ik�Q��rei��d� .

It is to be emphasized that the reconstruction of the state
requires, however, full statistics of the observable G�0�. The
marginal information, which is used in the method of mo-
ments, is clearly not enough to reconstruct the state even in
the case where the position and momentum distributions are
exponentially bounded. To illustrate this fact, let us consider
the functions �a,b�q�= � 2a

� �1/4e−�a+ib�q2
, with a ,b�R, a
0.

The Fourier transform of �a,b is

�̂a,b�p� = � a

2��a2 + b2�

1/4

�exp�−
ap2

4�a2 + b2�
exp� ibp2

4�a2 + b2�
−

i

2
arctan

b

a

 ,

and the position and momentum distributions are

��a,b�q��2 = �2a

�

1/2

e−2aq2
,

��̂a,b�p��2 = � a

2��a2 + b2�

1/2

e−ap2/2�a2+b2�,

which are clearly exponentially bounded. For b�0, we see
that �1= ��a,b���a,b� and �2= ��a,−b���a,−b� are different states,
but �1

Q=�2
Q and �1

P=�2
P. The marginal probabilities are

p�1

G1
�0�

�X� = 

X

�g � �1
Q��x�dx = 


X

�g � �2
Q��x�dx = p�2

G1
�0�

�X� ,

p�1

G2
�0�

�Y� = 

Y

�g � �1
P��y�dy = 


Y

�g � �2
P��y�dy = p�2

G2
�0�

�Y�

for all X ,Y �B�R�, with g�x�= 1
��

e−x2
, so the marginal distri-

butions are equal. It follows that the state cannot be uniquely
determined from the marginal information only.

Since the marginal observables G1
T and G2

T are of the con-
volution form with densities, the position and momentum
distributions can also be obtained if one is able to invert the
convolution. Indeed, for any initial state �= ������ the mar-

ginal distributions p�
G1

T

and p�
G2

T

have the densities f ��Q and
g��P, where f�q�=�iti��i�−q��2, g�p�=�iti��̂i�−p��2, with T

=�iti��i���i�, and �Q= ���2, �P= ��̂�2. The unknown distribu-
tions �Q and �P can be solved from the measured distribu-
tions f ��Q and g��P by using either the Fourier inversion or
the differential inversion method. Like the method of mo-
ments, these methods have their own specific restrictions. In

fact, by the Fourier theory, one has, for instance, f ��Q̂

=�2� f̂ ·�Q̂, so that �Q̂= �2��−1/2f ��Q̂ / f̂ , provided that f̂ is

pointwise nonzero. If f ��Q̂ / f̂ is an L1 function, then the
function
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1

2�



−





eixtf � �Q̂�t�/ f̂�t�dt

coincides with the distribution �Q �almost everywhere�. Ob-
viously, this puts strong restrictions on the actually measured
distribution f ��Q as well as on the “detector” density f
= f�T�. The method of differential inversion is known to be
applicable whenever the detector densities f and g have finite
moments �26�. In the special case of T= �0��0�, so that f and
g are the Gaussian 1

��
e−x2

, one has

�Q�x� = �
k=0



�− 1/4�k

k!

d2k

dx2k �f � �Q��x� ,

�P�y� = �
k=0



�− 1/4�k

k!

d2k

dy2k �g � �P��y� ,

provided that the right-hand sides exist �26�, which is a fur-
ther condition on the initial state �.

To conclude, the statistical method of moments provides
an operationally feasible method to measure with a single
measurement scheme both the position and momentum dis-
tributions �Q and �P for a large class of initial states �, the
relevant condition being the exponential boundedness of the
involved distributions. This method requires neither the state
reconstruction nor inverting convolutions.

Proof of lemma 1. If P is a projection in the range of M,
then P commutes with any effect M�Z�, Z�B�R2� �see, for
instance, theorem 1.3.1, p. 91, in �27��. Therefore, the mar-
ginals M1 and M2 are mutually commutative, i.e.,
M1�X�M2�Y�=M2�Y�M1�X� for all X ,Y �B�R�, and the map
�X ,Y��M1�X�M2�Y� is a positive operator bimeasure and
extends uniquely to a semispectral measure G :B�R2�

→L�H�, with G�X�Y�=M1�X�M2�Y� for all X ,Y �B�R�
�see, e.g., theorem 1.10, p. 24, in �28��. Let X ,Y �B�R�.
Since M1�X� and M2�Y� commute and one of them is a pro-
jection, we have G�X�Y�=M1�X�M2�Y�=M1�X�∧M2�Y�,
the greatest lower bound of M1�X� and M2�Y� �Corollary 2.3
in �29��. Since also M�X�Y� is a lower bound for M1�X� and
M2�Y�, we obtain M�X�Y��G�X�Y�. It follows that
M�Z��G�Z� for any Z�F, where F is the algebra of all
finite unions of mutually disjoint sets of the form X�Y,
X ,Y �B�R�. Denote M= �Z�B�R2� �M�Z��G�Z��. Now
M is a monotone class. �If �Bn� is an increasing sequence of
sets of M, then for any ��H, we have

���M��nBn��� − ���G��nBn���

= lim
n

����M�Bn��� − ���G�Bn���� � 0

because, e.g., Z� �� �M�Z��� is a positive measure. This
shows that �nBn�M. Similarly, we verify the correspond-
ing statement involving decreasing sequences and thereby
conclude that M is a monotone class.� Since F�M and F
is an algebra which generates the � algebra B�R2�, it follows
from the monotone class theorem that M�Z��G�Z� for all
Z�B�R2�. Let Z�B�R2� and let ��H be any unit vector.
Since M�,� and G�,� are probability measures, we get

1 − M�,��Z� = M�,��R2 \ Z� � G�,��R2 \ Z� = 1 − G�,��Z� ,

implying that �� �G�Z���� �� �M�Z���. Since � was arbi-
trary, this implies G�Z��M�Z�. The proof is complete.
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