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In one-dimensional quantum lattice models with open boundaries, we find and study localization at the
lattice edge. We show that edge-localized eigenstates can be found in both bosonic and fermionic systems,
specifically, in the Bose-Hubbard model with on-site interactions and in the spinless fermion model with
nearest-neighbor interactions. We characterize the localization through spectral studies via numerical diago-
nalization and perturbation theory through considerations of the eigenfunctions and through the study of
explicit time evolution. We concentrate on few-particle systems, showing how more complicated edge states
appear as the number of particles is increased.
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I. INTRODUCTION

Experimental techniques in the fields of mesoscopics and
ultracold atoms have advanced to the point where it is fea-
sible to explore the physics of few-boson and few-fermion
systems, in particular in lattice systems which have tradition-
ally been the basis for many-particle physics studies. The
study of a few quantum particles in lattice situations provides
surprises and unexpected phenomena quite distinct from is-
sues in bulk condensed-matter physics, whose focus is on
many-particle ground states, and from atomic or optical
physics, where lattice systems are not very common. For
example, a recent experiment has explored repulsive binding
of boson pairs in a one-dimensional optical lattice �1�. This is
therefore the appropriate time to investigate further intricate
and nonintuitive phenomena involving a few quantum par-
ticles in lattice systems. In this paper, we consider interacting
bosons or fermions in one-dimensional finite lattices and
present studies of localization at the lattice edge. We charac-
terize the edge-localized states and distinguish them from
bound nonlocalized states through analyses of the energy
spectrum and band structure, density profiles of eigenstates,
and dynamics.

For bosons, we use the well-known Bose-Hubbard model
�2�, which has attracted a great deal of attention in the last
decade due to its relevance to describing laser-cooled
bosonic atoms subjected to an optical-lattice potential �3,4�.
Localization in the Bose-Hubbard model is of particular in-
terest because its large-boson limit can for many purposes be
approximated by the discrete nonlinear Schrödinger �DNLS�
equation, which displays a host of localization phenomena.
Nonlinearity allows time-periodic and spatially localized so-
lutions of the DNLS �and other lattice nonlinear differential
equations� known as intrinsic localized modes or discrete
breathers �5–9�. More relevant to the present work, the
DNLS on finite lattices also possesses edge-localized modes,
sometimes called discrete surface solitons �10–12�. It is
therefore expected that the large-boson limit of the open-
boundary Bose-Hubbard model will possess eigenstates in
which the bosons are localized at the edge. In this paper, we
pose the edge-localization question in the extreme opposite
limit of a few quantum particles, where the mean-field

approximation �DNLS equation� cannot a priori be
expected to provide the correct intuition. The answer
turns out to be subtle—this phenomenon is not present for
the case of two particles but appears when the particle num-
ber is three or more, as follows from numerical studies in
Ref. �13�.

Remarkably, we find that the phenomenon is not restricted
to bosons but also happens in other quantum lattice models.
For example, the spinless fermion model with nearest-
neighbor interactions, sometimes known as the t-V model,
has similar behavior, i.e., it possesses no edge states with two
fermions, but does have such localized eigenstates with three
fermions. Since this model does not allow multiple occupan-
cies, localization in this case refers to a sequence of neigh-
boring sites being occupied rather than all the particles clus-
tered in one site as in the case of bosons. Although the
current work will focus on the two models mentioned above,
our finding indicates that edge localization may well be a
generic phenomenon in quantum finite lattice systems.

Localization in quantum models generally does not ap-
pear in simple Hamiltonians, but instead it requires disorder
�14� or impurities, breaking the translation invariance. �This
is in contrast to lattice differential equations, e.g., the DNLS
equation, where the interplay of nonlinearity and spatial dis-
creteness is sufficient to create localization.� It is therefore of
significant theoretical interest to explore the simple mecha-
nism for quantum localization that is studied here, requiring
only open-boundary conditions in an interacting lattice
Hamiltonian. We also note that localization due to impurities
or disorder is generally a single-particle effect, while the
mechanism we present is a collective phenomenon since it
requires at least three particles.

While we focus on small numbers of bosons or fermions,
the basic message is that edge states exist for any number of
particles larger than two. We give an explanation based on
perturbation theory. We also provide some hints toward the
many-particle situation by showing that the four-boson case
has an additional type of edge-localized eigenstate in addi-
tion to the obvious generalization.

Model Hamiltonians. We consider one-dimensional lat-
tices with L sites subject to open-boundary conditions. The
Bose-Hubbard model Hamiltonian is
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ĤBH = −
�

2 �
j=1

L

âj
†âj

†âjâj − t�
j=1

L−1

�âj
†âj+1 + âj+1

† âj� . �1�

Here â and â† are the second-quantized bosonic operators.
The first and second terms describe, respectively, on-site at-
tractive ���0� interactions and nearest-neighbor hopping.
The edge-localization physics is almost unchanged in the
case of repulsive interactions.

The model for spinless fermions is described by

Ĥsf = V�
j=1

L−1

ĉj
†ĉj+1

† ĉj+1ĉj − t�
j=1

L−1

�ĉj
†ĉj+1 + ĉj+1

† ĉ� , �2�

where V is the �repulsive� nearest-neighbor interaction
strength and ĉj and ĉj

† are the fermionic creation and annihi-
lation operators.

Units. We will use the same arbitrary units of energy to
express values of t, �, V, and energy eigenvalues.

II. BOSE-HUBBARD CHAIN WITH TWO
AND THREE BOSONS

We will first describe the cases of two bosons and of three
bosons in the Bose-Hubbard chain and show how the two
situations differ by virtue of the latter having edge states.
Some of the physics described in this section appears in Ref.
�13�.

A. Strong interactions

We first focus on large values of �, which is the most
relevant parameter regime for localization physics. The Hil-
bert space size �number of basis states� for n bosons in L
�n sites is dn= � L+n−1

n �; in particular d2=L�L+1� /2 and d3
=L�L+1��L+2� /6. Figure 1 displays spectral properties and
band structure, i.e., the distribution of the dn eigenenergies.
We label the eigenstates from low to high energies with the
label � running from 1 to dn.

The most prominent feature of the large-� spectrum is the
band structure. For the n-boson system there are p�n� bands,
where p�n� is the number of integer partitions of n. In the
two-boson case �Figs. 1�a� and 1�c��, there are two bands. In
the upper band around zero energy, the dominant contribu-
tions come from configurations where the bosons do not
share the same site. The lower band contains the L two-
boson bound states, dominated by linear combinations of
configurations where the bosons sit on the same site. These
are the quantum analogs of classical discrete breather solu-
tions. This band is thus called the quantum breather band or
the soliton band �15�. In these states, the separation probabil-
ity of the bosons decays exponentially with distance �16–18�.

In the three-boson case �Figs. 1�b� and 1�d��, the spectrum
contains three energy bands. The lowest-energy band is
formed by the L three-boson bound states �three-boson
breather band�, where there is a high probability of finding
the three bosons at the same lattice site. The second band
from below is formed by L�L−1� “2+1-boson states,” where
there is a high probability of finding two bosons at the same
lattice site with the third boson elsewhere. Finally, the third

band is the three-boson continuum, whose L�L−1��L−2� /6
eigenstates are characterized by having the three bosons in
different sites.

The edge states can be identified by zooming onto the
three-boson bound state band �insets of Figs. 1�b� and 1�d��.
We note that two states stand out from the rest of the band,
with larger splitting. These are the edge states, as we dem-
onstrate further below. Because of reflection symmetry, the
dominant contributors to the two eigenstates are not the left-
edge and right-edge states ��El�= �3000. . .� and �Er�
= �. . .0003�� directly. Instead, the eigenstates are dominated
by the linear combinations 1

�2
��El�� �Er��. The remaining �L

−2� eigenstates of the breather band are dominated by linear
combinations of the remaining �L−2� three-boson bound
state configurations, �03000. . .�, �00300. . .�, …, �. . .0030�.
These �L−2� states do not mix with the two edge states
because of the energy splitting. Note that the energy-
separated edge-localized states are not present in the two-
boson case �insets of Figs. 1�a� and 1�c��.

To see the localized nature of the edge states, in Fig. 2 we
plot density profiles �site occupancies�, i.e., expectation val-
ues of boson number at each lattice site, 	nj��= 	���âj

†âj����,
���� being an eigenstate. Figure 2 shows 	nj� against j for the
edge states, and also for two other eigenstates �nonedge
breather states� for comparison. We see that the edge states
are exponentially localized at the edges of the lattice, as seen
through the linear behavior of ln	nj� in the inset.

The localization is further demonstrated through the scal-
ing of the largest site occupancies, max	nj�, with system size
L �Fig. 3�. For eigenstates that are localized, this quantity
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FIG. 1. �Color online� Energy spectrum of ten-site Bose-
Hubbard chain with �=10. Left panels �a� and �c� show the case of
two bosons �n=2�, right panels �b� and �d� show n=3. Top panels
�a� and �b� plot-ordered energies against eigenvalue index �, for
fixed hopping parameter t=1. Lower panels �c� and �d� plot ener-
gies against hopping strength t. Insets focus on the lowest �breather�
band, showing that two edge-localized states separate out ��b� and
�d�� for three bosons but not ��a� and �c�� for two bosons. Here t, �,
and E� are expressed in the same arbitrary energy units.
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will be independent of the system size, whereas for extended
states it should be a linear function of 1 /L because the
bosons are spread across L sites in extended states. In the
two-bosons case �Fig. 3�a�� all eigenstates are extended, thus
max	nj� depends linearly on 1 /L for all of them. In Fig. 3�b�
for three bosons, most states also have max	nj� varying as

L−1, except for two states for which max	nj� are indepen-
dent of L. This flat set of points in Fig. 3�b� clearly illustrates
the localization phenomenon.

We have described the spectrum for the attractive Bose-
Hubbard model. The spectrum for the repulsive case
���0� is obtained simply by inverting the energies �E�→
−E��. The eigenfunction characteristics described in Figs. 2
and 3 are identical in the repulsive case.

B. Weak interactions

It is natural to ask whether the edge-localization survives
for weaker interactions. In particular, for three bosons and

��2, the breather band merges with the 2+1 band �Fig.
4�a��. One might speculate that there might be a sharply de-
fined value of � below which there is no localization at the
edges.

We address this question by following the two edge states
adiabatically to lower values of �, for three bosons in 10
sites, as shown in Fig. 4�b�. Note that, after the breather band
has merged, the �=L−1 and �=L states are no longer the
edge states. In Fig. 4�c� we plot the spatial density profiles of
the two edge states, as well as the nonlocalized �=L−1 and
�=L states. Figure 4�d� shows the size dependence of
max	nj�. The localization is weaker than in the large-� situ-
ation �max	nj� is less than 1.5 and the exponential decay is
imperfect�, but it is still present. Thus the localization phe-
nomenon does not completely disappear at some sharp value
of �, at least for small �L
10� lattice sizes.

III. PERTURBATION THEORY

The basic explanation for the edge-localization phenom-
enon is that the edge states split off from the rest of the
breather band for three or more particles. We will now ex-
plain this energy splitting through perturbative calculations
in the hopping parameter. It is helpful to introduce an effec-
tive single-particle model, which contains only the parts of
the Hilbert space relevant for this analysis.

For the two-boson case, we keep the L breather-band
states, each corresponding to both bosons in the same site.
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FIG. 2. �Color online� Spatial profile of site occupancies for
several eigenstates of the three-boson Bose-Hubbard chain. Inset
shows the same plot in semilogarithmic scale, the linear behavior
indicating exponential localization in the edge states. Here L=10
and �=10t.
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FIG. 3. �Color online� Size-dependence of max	nj� for �a� all
eigenstates of the two-boson Bose-Hubbard chain and �b� several
eigenstates of the three-boson Bose-Hubbard chain labeled by �.
Here �=10t, and L goes from L=5 to L=17.
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FIG. 4. �Color online� Spectrum and density profiles at smaller
interactions for three-boson system in ten sites �t=1�. Here t, �, and
E� are expressed in the same arbitrary units. �a� The bands merge at
small enough �. �b� For this system the breather band loses its
identity around �
1.8. We follow the edge-localized states at
smaller �; shown surrounded by a thick-lined dashed polygon. At
smaller �, the �= �L−1� and �=L states are no longer the edge
states. �c� Site occupancies at �=1.4. The almost exponentially lo-
calized curves are for the edge states, and the two nonlocalized
curves are the �= �L−1� and �=L states, which are no longer the
edge-localized states. �d� Size-dependence of max	nj�.
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We keep only those states of the continuum that are neces-
sary as intermediate configurations to go from one breather
state to another, i.e., states where the two bosons are in
neighboring sites. In Fig. 5�a�, the two-boson states are
shown with filled circles and the intermediate 1+1-boson
states as open circles; together, they form the single-particle
effective tight-binding chain. This effective chain has two
different on-site energies 	1=−� and 	2=0 alternating along
the chain �Fig. 5�a��. The effective hopping strength is �2t
since the hopping is always from or to a doubly occupied site
in the original model. For a fixed size L of the Bose-Hubbard
chain, the size of the effective single-particle chain, i.e., the
number of states retained from the original Hilbert space, is
L+ �L−1�= �2L−1�.

Similarly, for the three-boson case we retain the L
breather-band states, and only those states of the �2+1� band
that are necessary as intermediate configurations to go from
one breather state to another, i.e., states where the two
bosons and the lone boson are in neighboring sites. The
single-particle chain now has two on-site energies 	1=−3�
and 	2=−�, and two hoppings t1=�3t and t2=2t. They form
a chain of basis three per unit cell �Fig. 5�b��.

Degeneracy splitting. At zero hopping �t=0� or infinite
interaction, all bands, including the breather band which we
are particularly interested in, are perfectly degenerate. We
analyze the splitting of the breather-band spectrum perturba-

tively in the hopping parameter t. The Hamiltonian is Ĥ

= Ĥ0+ tĤ1, where Ĥ0 is the interaction term. Since the rel-
evant states of the Hilbert space are arranged along a single
chain in the single-particle effective picture, we can use the
position on the effective chain as a label for the relevant
states. For example, for the two-boson system,

Ĥ0 = �
m=1

L

	1�2m − 1�	2m − 1� + �
m=1

L−1

	2�2m�	2m� , �3�

while the perturbation Ĥ1 contains hopping terms such as
�2m�	2m+1�.

For two bosons, the lowest order at which the perturbation
has nontrivial effects is O�t2�. The hopping perturbation at
this order already connects the states of the ground-state
manifold to each other, leading to a complete lifting of the
degeneracy, so that the nondegenerate breather band
emerges. The split energies are approximately E2m−1�−�
−4t2�1+cos km� /�.

For the three-boson case, one can carry out a similar
analysis. The crucial difference is that, at second order in t,
the lowest-manifold states are each connected to themselves
and thus receive an energy shift but are not connected to
other states within the manifold, and therefore the degen-
eracy is not lifted. The energy shifts are different for the edge
and nonedge states because there is a single path for an edge
state to couple to itself via two hopping events, while each
nonedge state has two such paths. This is visually obvious
through hopping events in real space in our effective single-
particle chain �Fig. 5�. The shifts at second order are

Eedge = − 3� −
3

2�
t2,

Enonedge = − 3� −
3

�
t2. �4�

At the next order �t3� the degeneracy of the nonedge states is
lifted since three hopping events are required to connect two
distinct members of the breather manifold. The degeneracy
of the two edge states is only broken at much higher order.

This analysis reveals the reason for the separating out of
the edge states from the rest of the breather band. The energy
shift of the edge states happens at lower order in the hopping
than the order at which the degeneracy of the breather band
is lifted. Therefore the edge states are robustly separated out
for large interactions.

Figure 6 plots the second-order perturbative results for the
breather-band energies, comparing with the exact energies
computed numerically. The splitting of the edge-localized
states from the rest of the band, which is the essential issue
here, is well described by perturbation theory. The degen-
eracy lifting of the nonedge breather states is not captured in
the second-order expressions.
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FIG. 5. �Color online� Construction of the effective single-
particle chain for the Bose-Hubbard model with �a� two bosons and
�b� three bosons. The sequence of hops of the two bosons �gray
circles�, initially at the same lattice site, are shown with the corre-
sponding values of the matrix element of the Bose-Hubbard Hamil-
tonian. The energies 	1 and 	2 of the states after each hop are also
shown. The resulting effective single-particle chain is shown in the
lower part of the figures.
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IV. FOUR OR MORE BOSONS

Edge-localized eigenstates also exist in Bose-Hubbard
chains with n
3 bosons; the perturbative argument we pro-
vided for three bosons can readily be extended to the general
case. At strong interactions, the lowest band is the breather
band with n-boson bound states. At t=0, this band is col-
lapsed as the L-fold degenerate ground state. For t�0 the
degeneracy is lifted at order O�tn�, but the edge states already
have a distinct energy shift at O�t2�, leading to edge local-
ization. As in the n=3 case, one can also visualize the per-
turbative calculation with an effective single-particle model
retaining only the relevant basis states. This will now have
n-site unit cells, i.e., sites representing breather states sepa-
rated by n−1 sites representing states from other bands.

In addition to the edge-localized states with all n bosons
situated at the edge, for n�3 the open Bose-Hubbard chain
also has edge states with more complicated structure. We
demonstrate this for n=4 in Fig. 7. Other than the two edge
modes on top of the breather band, we see features in the
2+2 band. As in the translation-symmetric case �19�, this
band has a subband separating out �middle inset in Fig. 7�c��.
This subband of L−1 states is characterized by two doubly-
occupied sites neighboring each other �2+2 bound states�,
while the rest of the 2+2 band is dominated by two occupied
sites at larger distances from each other. Unlike the
translation-symmetric case, however, if one zooms in further
onto this subband, two edge-localized states separate out
�rightmost inset in Fig. 7�c��. These edge states have the
structure of two bosons at the edge, and the other two at the
next-to-edge site. Figures 8�a� and 8�b� show the density
profiles of these two types of edge states in the n=4 case.

The above results demonstrate the existence of more and
more complicated additional edge states as the number of
particles is increased.

V. SPINLESS FERMIONS

We now turn to the spinless fermion model described by
Hamiltonian �2�. Figure 9 displays through numerically cal-
culated spectral properties that in this model, edge states do
not exist for the two-fermion case but appear when there are
three or more fermions. The situation is thus similar to the
Bose-Hubbard model.

We first note that the spectrum of this model contains a
breather band as in the Bose-Hubbard model �15�. The Fermi

statistics forbids multiple occupancy of the sites; so the
breather modes correspond to all the fermions clustered in a
connected segment of the lattice. Since we are using repul-
sive interactions �V�0�, the breather band now appears at
the top of the spectrum.

The spectral splitting of edge states is analogous to what
we have described in the Bose-Hubbard case. For the two-
fermion case, the breather band is completely split because
the separation for edge and nonedge states all occurs at the
same �second� order in t /V. For three or more fermions,
however, the two edge states split off from the main band at
lower order than the degeneracy-lifting of the rest of the
band. As a result, there are now two edge-localized states
separated at the bottom of the breather band.

Figure 10 shows density profiles for the edge-localized
states as well as some nonlocalized states from the breather
band. Each edge state now has a “width” of three sites be-
cause of fermionic statistics forbidding double occupancies.
Since the two eigenstates are predominantly linear combina-
tions of left-edge �1110000. . .� and right-edge �. . .0000111�
states, they have occupancies of nj �1 /2 at the last three
sites of each edge. As in the Bose-Hubbard case, the loga-
rithmic plot makes clear the exponential nature of the local-
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ization. In this case the exponential decay starts after the
third site.

In Fig. 11, we display the robustness of the three-fermion
edge states by plotting the size dependence of the maximum
site occupancy for a fixed interaction potential. Analogous to
the Bose-Hubbard model �Fig. 3�, the two-fermion case has

max�	nj��
 values all varying as 
L−1, for all states. In the
three-fermion case, all eigenstates except two also have lin-
ear 1 /L-dependence, while the two exceptions are the edge
states for which max�	nj��
 has the constant value of 1/2.
This demonstrates, once again, that all states in the two-
fermion case are extended in space, while the three-fermion
system possesses two localized states.

VI. DYNAMICS (TIME DEPENDENCE)

It is instructive to study the localization phenomenon
through explicit time evolution calculations. For the Bose-
Hubbard model, some dynamical results have appeared in
Ref. �13�. In Fig. 12, we present temporal dynamics results
for the spinless-fermion model.

For a three-fermion system in L=10 sites, we present the
evolution of the occupancies of individual sites, nj�t�, after
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the system is started with the three fermions in consecutive
sites. The left panels display the behavior when the fermions
in the initial state are concentrated at one edge �the first three
sites�. There is no appreciable dynamics at the time scales
shown, in marked contrast to the cases where the fermions
start off at three other consecutive sites �middle panels and
right panels�. This difference is a dynamical demonstration
of the edge-localization phenomenon.

Additional physics can be gleaned from the temporal dy-
namics shown in Fig. 12. In the cases where we start from
three nonedge consecutive sites �center and right panels�, the
first and last sites are never excited �nj=1 and nj=10 remain
practically zero�. This reflects the spectral separation of the
edge states, �e�����1110000. . .�� �. . .0000111�� /�2, from
the rest of the breather band. Since the initial configuration is
within the breather band, the dynamics is dominated by this
band. Since the edge-localized subspace spanned by the basis
��1110000. . .� , �. . .0000111�
 is separated from the rest of the
breather band, the last and first sites are not excited.

Time scales. Figure 12 highlights dynamics at the scale of
hundreds to thousands of t−1 units. The reason is that the
dominant dynamics for our chosen initial conditions is that
within the breather band; hence we are interested in coherent
hopping of the three fermions. Such a cooperative hop event
of three fermions, from one soliton �neighboring� configura-
tion to the next, involves two intermediate states that are
energetically 
V away, in the �2+1� band. Thus the energy
involved is of order t3 /V2 so that the time scales are 
V2 / t3.
For V=20, this leads to the above-mentioned time scales.
Performing simulations at other values of V, we have seen
that the relevant time scale indeed varies as 
V2.

There is, of course, additional dynamics at other time
scales. Tiny high-frequency wiggles can be seen in our data
at scales of 
t−1, representing high-energy interband pro-
cesses. Also, considering the left panel of Fig. 12, we note
that the state �1110000. . .� is not itself an eigenstate; the true
eigenstates are �e��. Thus, there will be oscillations involv-
ing these two edge states, which is not visible here because
the relevant time scales are much higher, and grow exponen-
tially with the chain length.

VII. CONCLUSIONS

In this paper, we have presented a straightforward and
natural mechanism for localization in quantum lattice sys-
tems, namely, the existence of open boundaries. Our edge
localization is a cooperative, as opposed to single-particle
phenomenon. We have provided perturbative arguments to
explain the energy spectrum structure that lies at the heart of
this localization phenomenon thereby also explaining why at
least three particles are required for the localization. In addi-
tion, we have showed the appearance of richer edge configu-
rations that appear for larger numbers of particles and char-
acterized the energy spectrum and localization through a
study of explicit temporal dynamics.

A. Energy scales

At strong interactions, the bands are the most pronounced
feature of the energy spectrum. The band energies are set by
the interaction strength �U or V�. One can then think of finer
features of these bands, in various orders of the hopping t.
There is always an energy shift at second order in t since a
basis state can be connected to itself through two hops.
Whenever the degeneracy lifting requires higher than second
order in t, we can have subband structures due to differing
energy shifts at second order. In the two-boson or two-
fermion case, this possibility does not exist. In the three-
boson or three-fermion case, only the breather band splits at
higher than second order, while the other two bands have
degeneracy lifting at linear order. �The linear splitting is
manifested in the shapes of the nonbreather bands in Figs.
1�d� and 9�d�.� Therefore in the three-particle systems only
the breather band can have a subband; this subband turns out
to have two members which are edge states.

To rephrase, edge localization from the breather band can
be seen as a result of the competition between �a� the distinct
energy shifts 
t2 /U received by the edge states and �b� the
degeneracy splitting for which the energy scale is 
tn /Un−1,
for an n-boson system. For n�3, analogous energy scale
competitions can also play a role in other �multibreather�
bands where splitting occurs at larger order, leading to sub-
bands and more complicated edge states. We have illustrated
this for n=4 in Sec. IV.

Finally, we note that the two edge states separating out
from the breather band are themselves very nearly degener-
ate at strong interactions. This degeneracy gets broken only
at much higher order; the relevant energy scale is U�t /U��,
with �
L for a chain with L sites.

Interestingly, some of these energy scale issues are mani-
fested dynamically in the study of temporal evolution, as
discussed in Sec. VI.

B. Possible applications

The edge localization has real-space effects on the dy-
namics, as revealed by our time evolution calculations �Sec.
VI and Fig. 12�. This raises the possibility of exploiting these
effects for experimental quantum control of bosons or fermi-
ons in one-dimensional lattices. If one starts at a breather-
band configuration that is not an edge state, the edge modes
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will not be excited, and conversely, fermions or bosons
populated in an edge configuration remain stable in that con-
figuration for a long time �Fig. 12�. One can conceivably use
this effect, arising from fine structures in the energy spec-
trum, to manipulate and select sites for a few-particle lattice
system in cold-atom or quantum wire experiments.

C. Open issues

Our work opens up a host of open questions and issues, of
which we mention a few. First, our calculations shown in
Fig. 4 indicate that for moderate-sized lattices, edge localiza-
tion persists in some form at weak interactions. The fate of
this weak-interaction localization for large lattice sizes re-
mains an unresolved question.

Our work with two separate Hamiltonians results suggest
that edge localization is a generic phenomenon for quantum
lattice models. Analogous phenomena can possibly be found
in other one-dimensional itinerant fermionic and bosonic
models. It is obviously of interest to investigate this phenom-
enon in various other quantum chain models, such as the
one-dimensional fermionic Hubbard and extended Hubbard
models.

In the discrete nonlinear Schrödinger �DNLS� equation,
one can find localized states at all lattice sites, both bulk and
edge �11�. In contrast, for three or four bosons we have only

found localization of all particles at the edge, even though
some of our localized states have a finite width of more than
one site. Can the Bose-Hubbard model support solitons some
distance away from the edge, perhaps at larger boson num-
bers?

Since our edge-localized states are quantum analogs of
DNLS edge breathers, it is interesting to note that other
quantum analogs of DNLS localization have been discussed
in the literature �20–23�, involving lattice phonons instead of
particles with quadratic dispersion as in our case. A thorough
comparison with analogous phenomena �or absence thereof�
in phonon systems remains an open issue.

It may be interesting to characterize the exponential decay
of edge-localized states away from the edges �Figs. 2 and
10�, as a function of interaction, particle size, etc. Some re-
sults have appeared in Ref. �13�.

Finally, since edge-localized classical breathers are known
for two-dimensional lattices �24�, there is the intriguing pos-
sibility of edge states in two-dimensional quantum lattices,
which remains unexplored at present.
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