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Rate processes and decay of metastable states inside an anharmonic well driven
by a random zero-point field
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A procedure previously developed by us for the evaluation of the diffusion coefficient and drift velocity of
a charged Newtonian particle in a zero-point field is applied here to a sextic potential-one-dimensional system,
for which an exact solution to the related Hamilton-Jacobi-Yasue-Riccati equation is available. This potential
energy function represents either a stiff single well or a triple well. For this model, the averaged diffusion
coefficient has been evaluated by assuming that the particle under study is confined for a long time inside one
anharmonic well, that is, in the limit of infinite relaxation time, and the results are compared with quantum-
mechanical predictions. A double-well model potential is subsequently examined.
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I. INTRODUCTION

A new method of solving the equations of motion for a
classical Newtonian particle (or even more general systems)
interacting with a random field has been developed recently
by us. This procedure provides a partitioning of the velocity
of the particle into a Eulerian component, depending on po-
sition only, and a Lagrangian component, depending on ini-
tial conditions and time [1,2] whose most remarkable prop-
erty is that the various components may assume, if properly
defined, a clear physical significance, representing the drift
component and diffusive component of velocity, respectively
(see [3] for a review). Therefore they allow, upon averaging
under suitable boundary conditions, to obtain a representa-
tion of the diffusion process of probability density in con-
figuration space' [4].

This point of view has proved to be of some degree of
usefulness in application to solve problems in stochastic
electrodynamics. Actually, not only the harmonic oscillator
problem has been solved exactly so as to obtain straightfor-
wardly the Schrodinger equation for the ground state and
fluctuations thereof but also the general problem has been
solved nonrelativistically in the frame of the frozen-
trajectory approximation (FTA).2 It has been proved that the
parameters of the diffusion equation, under general condi-
tions of averaging, remain bounded and meaningful if the
interaction time 7, of the particle and random field ap-
proaches zero, which means that the speed of all the relevant
variables is small toward the velocity of light. Therefore the
results obtained here are independent of any cutting-off fre-
quency.

According to a relativistic calculation made in Ref. [5],
the main contributions to the high velocities come from the
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'Each individual component of velocity may be complex valued,
although the total velocity could be made real, by solving with the
appropriate boundary conditions.

“This is the first term of an expansion of the diffusion coefficient,
where the response function is expanded in inverse powers of the
mass.
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higher frequencies, which yield a contribution to the mean
square velocity proportional to the frequency. These authors
inferred that these higher frequencies cannot produce any
relevant effect upon particle motion except for a pronounced
damping upon the run-away effect. A similar result has been
obtained by us by considering the singular solution proposed
by Battezzati [1,6] to a nonrelativistic equation of motion for
the electron introduced by Caldirola, which yields the non-
relativistic Lorentz-Dirac equation exempt from the run-
away solutions [2], because it is satisfied simultaneously
with a second-order equation, the Braffort-Marshall equation
(see Egs. (1.11a) and (1.11b) of [1]), which does not satisfy
causality in very short-time intervals but retains validity for
time scales larger than 7, [7].

II. APPROPRIATE SOLUTION TO EQUATIONS
OF MOTION TO DESCRIBE DIFFUSION

The basic formulas which are used below for specific cal-
culations over concrete model systems are presented here
following Ref. [8].

A classical three-dimensional Newtonian system sepa-
rable in each coordinate ¢ and conjugated canonical momen-
tum II, with mass m, is considered, whose Hamiltonian is

HZ
H(ILg.1) = 5+ Ulg) - gk(1). (1)

U(g) being the potential energy function and k() being the
random driving force, Gaussian with zero mean, whose au-
tocorrelation function is denoted by
400
E(t-s)=5.| explio(t—s)}E(w)do=(k(t)k(s)),

—00

2)

where the brackets denote as usual stochastic averages, while
t and s are time coordinates. It is considered here k(r) with
the following spectrum:

é(w) =mh,|o| (3)

2
with A being the Planck constant and TC=W=§(W)3 in

a.u., e being the electron charge and ¢ being the velocity of
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light. It is convenient to introduce also the following spec-
trum with the corresponding stochastic force A(z):

ﬁTC|w3|

- m(1l + waz)'

The spectrum of the random driving force determines the
resistance experienced by the system, which leads to the
nonrelativistic Lorentz-Dirac equation [5,7,9], whose regular
solutions satisfy simultaneously the Braffort-Marshall equa-
tion which results in a second-order differential equation in
the position variable ¢(¢) with driving force A(z),

(4)

1
G+ Bg)g+ n—1U’(q)=>\(t) (5)

with the corresponding Hamilton-Jacobi-Yasue equation for
the action 2(g,1) [3,10].

>
21 I(q.1)* + U(q)—mcﬁ\(t)+fﬂ(q)H(q,t)dq= _=
m ot

(6)

As was stated in Sec. I, the two components of linear
momentum of the particle are added together so as to yield
the total momentum

I(g.1) = p(q) + p(t.q), (7)

where p(g) is any solution of the Hamilton-Jacobi-Yasue-
Riccati equation [8]. Here,

1
gp(q)2 +U(q) + Do[p'(q) + mB(q)] + f Bl@)p(q)dg=E,

(8)

where E is a constant, while p(z,g(z)) is solved in terms of
the generalized random force \(¢#) whose spectrum is given
by Eq. (4) through the response function G(z,s),

G(t,s)=eXp{—f B(q)dq—if p’(q(a))da}

= CXP{— Blt—s) - if p'(q(a))da}, 9)

where the primes denote derivatives over coordinate ¢ and

7U"(q)) (10)

5 |-

B:

is the average of the frictional coefficient which appears in
Egs. (5) and (8) [8]. Thus
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ﬁ(t,Q(t))=J dsG(t,5)[mN(s) + Dop"(q(s)) + mDof3' (q(s))]

+0(7). (11)

The above equations provide the splitting of the momen-
tum II(q,7) which is appropriate in case that the averaged
diffusion coefficient D, is known. They have been obtained
by retaining terms up to O(7.) only [8].

III. EVALUATION OF DIFFUSION COEFFICIENT

The diffusion coefficient in the FTA approximation [3,8]
of a classical charged particle in a zero-point field (ZPF) is
obtained from the following expression, in which diffusion is
described by an operator acting on the two-time transition
probability density of particles3:

D(1,10)7™(8(q(1) - 9))

- [ o oo| [t} [ st~

—0

Xf dsG(r,s) )E\(s—0). (12)

Integrating over dg and taking the mean over time of the
frictional coefficient yield the averaged diffusion coefficient
D resulting in the more simple expression,

D(1,1)™ = f ar exp{- Bt - )}

)

><<fT dO'G(T,O’)f dsG(T,s)>E)\(s—a').

(13)
This has been evaluated in [8] in terms of the double
Fourier transform ®(w, ) of the function

O(7-0,7—5) = exp{— B(7— (17— o) — B(T— s)h(7—5)}

X <exp{— L f p'(g(a))da
m g
L f p'(q(a))da}>, (14)
m S

where h(t) is Heaviside function of the variable ¢, defined as

h()=0 if r<0, h(r)=1 if +>0. (15)

In the limit 7—#,— + above relation (13) may be trans-
formed into

*Markovian evolution of transition probability density is assumed
in order to cancel the memory term [4].
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(f)(w,ﬁr)|ur3|

ihr, ([

pFta - — e f df d
O T i) )L T 4 2ot (wrw—ie)
(16)

with & infinitesimal >0. Expanding this expression in power

series of 8 and denoting by ®(w,w), the limiting value of

the function (f)(w,w) as B—0, the following expression of
the averaged diffusion coefficient in a stationary state results

[9]:
=%[ #(U”q»f d‘”f

1 - o
+ dwf do®(w, @) 7,0 ln|7'cw|i| .
27 ), o

D(()FTA) CID(a) m)om

w+w-—ie

(17)

Equation (17) has been obtained from Eq. (16) by expand-
ing &(w,w) and retaining only the singular terms which are
O(B1n 7.). The sign of the real part of the diffusion coeffi-

cient depends on the signs of (U”(q)) and ®(w,w),, which
are expected to assume prevalently positive values in station-
ary states, because of Eq. (10) and

f dwf dod (0, ) =47 (18)

IV. EVALUATION OF SINGLE-WELL
RESPONSE FUNCTION

Since main scope here is the evaluation of the averaged
diffusion coefficient, according to Egs. (12) and (13), for a
particle confined for an infinite time inside a single anhar-
monic well, the main task will be the calculation of response
function (14) under these assumptions. To this end averages
are computed by the method of cumulants, according to the
method proposed in Kubo’s [11] stochastic theory of line
shape: Eq. (14) is rewritten in the form

(0w, @) = f expliw(7—s)}d(7— s)explio(7- 0)}d(7- o)
X f“" expliw(7—s)}d(7-s)

X exp{— B(r—o)h(7—0) = B(T—s)h(T—s)

—iafw»@r—a—n}

X <exp{if7w1(a)da+ifrwl(a)da}> (

=@ -G @) ()

—

9)
with

iwy(a)
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There follows from the above equations that the main
difficulty of the present problem will be the computation of
the cumulant averages included in the exponential of the
function iw; (). In a first approximation, these averages may
be computed making use of the free oscillator correlation
functions of the coordinate, imbedded in a zero-point field,
which would suffice to yield the exact cumulant averages up
to second order in the perturbation. Higher-order perturbative
effects on the correlation functions could in principle be ac-
counted for, but they would not modify the averages in short
times because the small perturbations modify the correlation
functions only in the frequency range

0=lo| =] < (21)
or in the time domain

1
la—a'| > —. (22)
|

From these basic arguments there follows [11]

<exp{if7w1(a)da+ifrwl(a)da}>
=exp{—%A2{deade7¢(a— )
+ ZJTdadevcﬁ(a— Y)+ ffdaffdwﬁ(a— 7)]},

(23)

where

(w1(@) () = (w;(a){w(y)
A? BCZ)

dla-y) =
=(w7) — (w)*.

The correlation function of the coordinate (g(a)q(y)) of
the unperturbed harmonic oscillator in a ZPF can be com-
puted straightforwardly, making use of the definitions of ve-
locity components given in Sec. II with p(g) equal to the
single-well limit of Egs. (31) and (41) below, which means
b—0,a— 0. Assuming “natural boundary conditions” which
were defined, for instance, in Ref. [12] there results that for
o<ty<t[3,13],

« exp{iQ(t - o)} —exp{-iQ(r+ o - 21)}
2iQ)

(25)

with 1>0 being the unperturbed frequency of oscillation,
while for 1, <o <t,

*The coordinate is fixed at time t=ty, while the velocity is in
equilibrium with the random field. For a more detailed definition of
boundary conditions, see Ref. [12].
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o 1
#(;)) = eXp{— Eﬁ(t— cr)}

v exp{iQ(t - o)} — exp{- iQ(r - 0)}
2iQ) '

(26)

Then, the coordinate correlation function may be computed
by using Novikov’ theorem in its most simple form [14],

hr,

(g(a)g(y) = me
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(7, dala) sq(y) .
(g(a)q(v)) = Lods Loda NG) Sn(o) M

+({q(a))q(7)), (27)

therefore, by omitting transients and going to the limit
7.—0,

2 2
xp{— %[_3|a— '}/|}[(Q + %z,@) exp{iQa— |} - (Q - %l,é> exp{~iQ|a - 7’|}]

exp{rla-y}  exp{yla—y}

A 0 3
+ TC_ f dl/ U
2mimpBQI = 1= 7?

(XA 1-
= = exp - 2Bl of feos{Ola- o)
2mpB
= exp) - 2 Bl [cos{Ola - ¥}
—2erxp —zﬂa—y cos \Q|a— y|}.

V. SYMMETRIC TRIPLE-WELL-MODEL POTENTIAL

It is considered the following example, in which the sextic
potential function W(g) is substituted for U(q) into Eq. (1),

1 1 1
Wi(q) = Emwng - gmbwcf + Emb2 o, (29)

where w, and b are real parameters. If the frequency w veri-
fies the following relation,

1_
W= \/ wh - 232 +47.bDyw + 2ibD, (30)

then Eq. (8) admits the following solution to O(7.bg?) in-
cluded (terms of higher order in the product of the three
variables are excluded):

p(q)=—m[iW+%B(q)}ﬁémbg? (31)

W(g) with b>0 represents a symmetric triple well with
minima at ¢=0, g= =* %, and maxima at g= =+ %,
whose values are approximately 0, 0, and %mwg/ b, respec-
tively. In the limit »—0 the depth and width of the wells
increase indefinitely; therefore it is assumed that the expres-
sions displayed in Sec. III for the evaluation of diffusion
coefficient are applicable, and the quadratic approximation
for the potential is a good first approximation. Since Eq. (12)
involves integrals over infinite time, even the small varying
part of the diffusion coefficient results to be sensibly a con-
stant over all the region accessible to the particle because the
final part of the trajectory would not contribute significantly

(T

(28)

to the mean values over time. Therefore it is obtained from
Egs. (20), (28), and (31) [14]

ioy(@) = - iblg(a)® - (g()?)], (32)

(1 (@) 0 (). =b*({g(a)*q(y)*) - (g()}q(¥)?)

=2b%g(a)q(y))*
252

=— o —
zmzw% ¢b( 7)

=Ajy(a—7), (33)

dp(a—y) = exp{~ Bla—ylcos*{w(a- 7} (34)

In order to obtain this correlation function the approxi-
mate linearity of the response [see Eq. (27)] has been used.
Thus, in the limiting case that is considered, w is real and

positive. Moreover, in the limit 83— 0,

f daf dydy(a—-y)

= %[7’2 —mo+s)+so]- #[cos 2w(T—0)

+ cos 2w(7—s) —cos 2w(o —s) — 1]. (35)

Using this integral and assuming the validity of Eq. (28)
in the limit of small oscillations and 27— (r—s<A;1, the re-
sponse function ®,(7— 0o, 7—s), is evaluated as
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1 1
q)b(T—O',T—S)OECXp{l(W—TEA[,>(2T—(T—S)—ZA%(QT—O'—S)Z}
\r
xexp] 2212 cos w27 - s)cos w(a— 5) - Leos w(o—s) - >
exp) 3| 2 cos w(27~ 0= s)cos w(o~s) ~ Zcos 2w(o = 5) ~
) 1 I, )
=expy i W_’_EA}] (27'—0'—s)—ZAb(27'—0'—s)
\’

A 1 3
X| 1+ —bz 2 cos w(27— o —s)cos w(o—s) — —cos 2w(o—s)— = | | + O(A‘b‘). (36)
4w 2 2
The large frequency behavior of this response function is evaluated from the very short-time expansion as

1 ' :
{;wm) + i@’(q»}

) w,®)y = 270w —w® —exp|— 37
b( )0 ( ) Ai p ZAi ( )
while the double Fourier transform of the expanded form of Eq. (36) is
(o)
w+w-——=A
&, (0,) 3A; - )NW 2
, =expy—-——, - e
p(w,@)y=exp a2 [2mole m|Ab| Xp AZ
1 2 2
m+3w——Ab) (’GI—W—_Ab)
+ M 270w — w+2w) [mrexp| - \E + 278w — w+ 2w)\ T exp|— \5
4w? T Ai ' ’ A’%
) -
w+w——=A w+w—-=A
— 27 — 2t
+ 278w — w—2w)\ 7T exp| — 5 + 278w — w+ 2w)\ 7 exp| - 5
A; 4A;
1\ 1\
(m+3W—_rAb> m—w——,—Ab>
- V2 = V2 '

- 78w — w+ 4w\ T exp| - A2 — 78w — w—4w)\Texp| - A2 (37")

b b

As a consequence of the expansion of the exponential function in Eq. (36), this distribution has narrower width (Ai/Z)” 2
instead of |A,| which appears in Eq. (37).

Evaluating the averaged diffusion coefficient it is made use of Eq. (17). The double Fourier transform operation on ®,(7
—0,7—5), with respect to variable {=c—s whose argument is %(m—w) and variable 7=27—-0—s, which yields the argument
%(w+w) in ®(w,w), is written down explicitly. The integral over variable { is evaluated first, followed by integration over dw.
Then the remaining integration over dw is interchanged with that over d# because this allows us to take account easily, in the
limit of vanishing |A,/ |, of the pole contributions. There follows, by retaining only the dominant pole terms in the
integration in this limit,
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pEta) b,
0 2m 8w (W'(q))w

1
expyilwm-w-—=A
p{( \2 ”)n} ifi

+0o0
- + f dw 7, In|7.w|——exp| -
—00

4(w-2w) —ie ™m
i ihA?
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1
oo o . exp{i(m—w— TEA,]> 17}
2f dnJ;) dww’ exp) — ZAIZ,WZ !

2(w —w) —ie

1 2
(m+w— —FA,,>

A}

/_
N

1A

A e 1 1
=—_—>b | gyl 4 AP+l w- ——A)
2m 877<W'<q>>w2f_w ”f_m mxp{ 1 “72“(“’ TR ’7}

1, 1, w’ 2w
X — —
20w-w—ig) w-2w-—is

it A, mh|A, ik A7
=—|1-025X —|+\/—c— —-—T10)InT.0)+ 0| — |
2m w e 8mw, M wp

Notice that only the pole w=wcontributes significantly to the
real part of diffusion coefficient. The result has been evalu-
ated approximately, but it shows clearly that in the stage of a
single occupied well the process has no time-reversal sym-
metry.

This equation is also applicable if »<<0, in which case
potential W(gq) is a stiff single-well potential. It has been
shown that, besides a small change in the dominant imagi-
nary diffusion coefficient, the main effect of nonlinearity of
the potential is the appearance of a positive real part of Dy,
which is O(A,|Dy|/ ). Accordingly the oscillation frequen-
cies of fluctuations over the ground state are shifted, in first
order, to

E,-E,

D
= =—niwy+n(n+ l)b—o. (39)

2mDO W

Consequently, with b<<0 density fluctuations over the
stable equilibrium state are moderately damped, while in the
opposite case (triple well), they are unstable and growing up
in amplitude. They cannot grow indefinitely because of flow
across the saddle point. It is pointed out that although the
system might appear to absorb energy from the surroundings,
this is only true at the primitive stage in which the system
evolves near the bottom of the potential well since the small
real part of Dy is likely to be strongly modified as soon as the
particle approaches or overflows the saddle point, thus ap-
proaching equilibrium in the adjacent well. Actually, at com-
plete equilibrium time inversion symmetry should be re-
stored.

VI. DOUBLE-WELL MODEL POTENTIAL

Similar calculations were carried out for a soluble model
of a (quasi)symmetric double-well potential, without detect-
ing, to the present order of approximation, any deviation
from the quantum-mechanical value of diffusion coefficient.

The following potential energy function is introduced,
with real parameters w, and a

7 1
+— do .o |76 w+w— '_EAb
— Y

mwm

(38)
|
. 15, 1 s, L5y
V(g) = —imaDyq + U Emauq‘ + gma q*, (40)
then Eq. (8) is satisfied to O(7.aq?) included by
1 o i
—plg)=—|iu+-pB(q) |q+ aq (41)
m 2 2
with
1-, 3
u= \/wS_ZIBZ_ETcazDO- (42)

Potential V(g) is a (quasi)symmetric double well, which in

the limit #—0, B— 0 has maxima and minima in the points
W 2w . . .
q=0, g=-, q=—_, being thoroughly symmetric. Since

the main scope here is the evaluation of the function
&, (7—0,7—s) for short-time intervals, which yields the Fou-

rier transform <I3a(w,m) for large values of the argument, by
using Kubo’s stochastic theory of line shape [11] through
Egs. (19), (20), and (41) it is obtained

iw (@) =—ia[g(a) - (q(a))]. (43)
In the single-well harmonic approximation for the response
function leading to Eq. (28), the variable g(«) is a Gaussian
random variable, consequently, the cumulant expansion of
In ®,(7—0,7—s) can be stopped after the second cumulant
average, yielding, in the range of values

B(r=s)|,|Bla-s)| <1 (44)

|B(1-a)], ,

the following result:
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ffdafrdycﬁa(a— y) = 1L{h(7'— (1= s)[|7= alh(o—s) + |7=s|h(s - 0)]
[od N ZBZ"'MZ

+h(o = Dh(s = D[|7= alh(s — o) + |7=s|h(oc - )]}
exp{— (%B+ iu)|7'— o|} +exp{— (%B+ iu>|7'—s|} —exp{— (%B+ iu>|0'—s|} -1
+

-\
<5,3+m>

o—s|<1 is a Gaussian:

+cC.C.

(45)

TS

There results that the very short-time behavior for u|7—a|,u

<exp{— ~ J P gle)da— - J p'(q(a))da}> - exp{— (@) 7= -5) - A7 0~ s>2}, (46)

U

where
A2 hrua’ _ ha* 47)
“ 2mpB - 2may
Fourier transforming function (46) it is obtained
1 i
- 5(w+m)+;(17 (@)
b (0, ®) =278 0w —-®w)\/ A_i exp| - 4A3 ) (48)

Therefore the effect of finite nonzero a (which means the effect of a side well which would disappear as a—0) is a
Gaussian broadening of the spectrum around the main frequency of harmonic oscillations. For longer time intervals, which

however satisfy inequality (44), going to the limit 83— 0 it is obtained from Eq. (45)
2

O (r—0,7—5)y= exp{— i(p’(q))(ZT— o- s)}exp{— A—;{é +2 cos wy(o—s)—8 cos%wo(a— S)COS%&)O(ZT— o- s)} }
)
2

1
= exp{— ;(p'(q))(ZT— o- s)}exp{— —H3 + cos wy(7— 0)cos wy(T—s5) + sin wy(7— o)sin wy(T—s)
@

—2 cos wy(T—0) =2 cos wy(T—15)] (. (49)

In the limit @ — 0 the above expression can be expanded
2

1 2A
D (r—0,7-5))= exp{— —p'(g)H2T— 0o~ s)}{ 1- w_za[3 +cos wy(T— a)cos wy(T—s)
m 0

A4
+ sin wy(7— o)sin wy(7—15) =2 cos wy(7— ) =2 cos wy(7—1s5)]+ 0(—3)}, (50)
W

so that the Fourier transform is easily obtained to the same order of approximation,

. AZ . . AZ . .
B, (0, @) = 4#{1 —6—;}5(w+ i<p'<q>>)a(m+ i<p'<q>>) —4#—;[a(w+ w0y + i<p'(q)>)5(m— w0y + i<p'<q>>)
wo m m wo m m
+ 5(w— o+ i<p'<q>>)6(w+ w0+ i<p'(q)>) —2a(w+ o+ i<p'<q>>)6(m+ i'<p'<q>>)
m m m m
—2a(w— o+ i'<p'(q>>)a(m+ i@'(q») —25(w+ i<p’(q)>)5(ﬁI+ wo+ i<,,,(q)>)
m m m m
~20{ws L))o -+ i@'(g»)}. 51
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Then from Eq. (17) the single-well average diffusion coefficient in the frozen-trajectory approximation follows

D(FTA)

2

PV DR
2m 2772mw0 e © m(1+72m2)(w+m)

\ . | . .
><4w2j[6(w+ o + i<p'<q)>)5(m— o + i<p'<q>>) —25(w+ i<1"(‘1)>)5(‘”‘ wp+ i@’(q»)}

0

e a0 dwﬁ<w+ Lgn o me L <p<>>)‘““;";"+h.o.t.

i)
_ih 2 (ﬁ)z(‘”"?p (q»> ) 4iﬁ<

w 20 mw:
0 =(p'(9)) 0
m

2m mw(z)

+o(ad),

ih kT, [
=t S @) | (' (@)
m mm m

since i(p’(q))z wy+o(a).

VII. CONCLUSIONS

The diffusion coefficient for two particular anharmonic
oscillators in a ZPF, whose static potential functions are
given by Egs. (29) and (40), has been evaluated up to second

order in the anharmonicity parameter in the limit 32— 0. Po-
tential (40) is a slightly asymmetric one by a term which is
first order in the anharmonicity parameter times 7, but is well
behaved at infinity since it diverges as a’q*. Potential (29) is
symmetric and diverges at infinity as b%q°. However, it be-
haves differently at intermediate values of coordinate, ac-
cording to the sign of b. Consequently, the postulated station-
ary distribution is found to be stable or unstable with respect
to spontaneous fluctuations for b<<0 or b>0, respectively.
By writing explicitly the real and imaginary parts of the dif-
fusion coefficient, the quasistationary transient probability
distributions inside the main well are obtainable in the form
of Egs. (A1) and (A2). Among these solutions, which are

exact for B—0, only that one in Eq. (A2) with b<<0 is
acceptable over the whole real axis of the coordinate ¢. In
fact P,(q) is not bounded on one side, depending on the sign
of a, while Pj(g) with b>0 is unbounded on each side. This
behavior is understandable since the diffusion coefficient
which has been calculated here is actually an average value
over the whole distribution of probability density in the well
which is centered on the origin of coordinates, thus Egs.
(A1) and (A2) cannot represent correctly the distribution in
full detail with regard to position far from the origin. The
main term of the diffusion coefficient in the FTA approxima-
tion for the response is however a purely imaginary constant
independent of the potential, as it results from Eq. (17), the
small deviations from this constant value being the object of
study in this work.

Notice that the assumed dependence of the potential en-
ergy on D, is not essential in the subsequent calculations
leading to Eq. (38) to the required level of accuracy. Similar
developments could be made by substituting w, for w in both

)2(‘!’0"%@'(61))) .
2a + e

(' (n 7. | —(p'(@))
m m

wo— (o' (@))
m

(52)

Egs. (29) and (31), which would correspond to solving Eq.
(8) by the Brillouin-Kramers-Wentzel method. Then, it
would be possible to investigate on the effects of higher-
order terms of the expansion of the action in powers of D,,.

The present calculations have the advantage of providing
a highly accurate solution in the potential W(g), the resulting
potential energy function being real up to O(b?) included.

In case of potential V(g) (double well) the variability of
diffusion coefficient has been found to be irrelevant up to
second order in the parameter of anharmonicity, while for
potential W(g) a small real part already appears in first order.
Accordingly, the potential well results to be more stiff than
quadratic for b <0, while two deep side wells appear for b
>0, however small the perturbation parameter is. In the first
circumstance fluctuations in the equilibrium state inside the
central well are damped, while in the second instance they
are unstable and growing up in amplitude, which clearly cor-
responds to jumping of the particle into the side wells. This
effect is seemingly distinct from the following others which
act in the same direction:

(i) Eq. (5) with Eq. (10) shows that damping is increased
with curvature of the potential, while it becomes negative
near the saddle point, where the potential is convex, thus
favoring overflow [15]. However here it has been assumed a

constant damping coefficient 8 and moreover it was taken

the limit B—> 0; therefore this effect is neglected.

(ii) The tunneling effect and symmetrization of the wave
function is a quantum-mechanical effect which is also active
here, being due to the imaginary dominant part of the diffu-
sion coefficient. The quantum-mechanical approach to this
problem [16-18] has been sketched in the Appendix for
comparison.

The conclusions that follow are that, though the calcula-
tions reported here cannot display in full detail the spatial
and temporal dependence of the diffusion parameters, how-
ever they show evidence without ambiguity that the main
effect of the random ZPF acting on the system is an enhance-
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ment of the rates of decay and relaxation processes and con-
sequently cannot be in conflict with thermodynamical equi-
librium.

Similar conclusion about the action of a zero-point field
affecting the behavior of a quantum system were reported in
Ref. [9], though their approach was different apparently of
the kind of point (i) of this discussion.
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APPENDIX: EXPANSION OF EXACT SOLUTIONS
INTO POLARIZATION ORDERS

Since the potential function V(g) is very close to a sym-
metric double well, with midpoint g=u/a, the present prob-
lem is suitable for a quantum-mechanical solution in terms of
symmetry-adapted perturbation theory [19]. This is the one-
dimensional analog of the expanded interaction between two
attractive centers such as atoms or molecules in the limit of
large internuclear separation, the small parameter playing the
role of the inverse interatomic distance 1/R. This aspect of
the problem is also shared with the potential W(g) with
b>0, although in this case the perturbative center for the
interaction is twofold.

The analytical solutions to the Schrodinger equation
which are here computed exactly as 7.— 0 are given by the
square roots of P,(g) and P,(g), which are

Im(D0)+iRe(D0)( 1, 1 3>}
—2 — _uq +_Clq
Dy

P,(q) = eXP{ > p

(A1)

Im(D0)+iRe(DO)( 1 1 )
2 12

P(g) = eXp{ Do wq® + —-bq

(A2)

By expanding these solutions in power series of the small
parameter a or b and substituting into the Schrodinger equa-
tion, it is possible to isolate an infinite series of recurrent
equations for the coefficients of the expansion, which are
functions of the coordinate ¢ verifying the required boundary
conditions. Actually these functions are obtainable from the
coefficients of a Rayleigh-Schrodinger perturbative power
series in the expansion parameter. In quantum mechanics the
leading terms of each of these series are, for potential V(g),
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2
Yolq) = exp{— m‘;’;‘l }

(A3)
t(q) = dfo(q) (A4)
satisfying the first-order equation
[
Zm& ot 2’"“’0‘1 _ﬁwo (q)
1
= E(mawocf — ahq)(q) (AS)
and for potential W(q)
2
mawoyq
- , A6
1{ b
(q) = 2—q + —61 to(q), (A7)
[
( 2m I + 2’”“’0‘1 - —hw()) (q)
1 bh*
= <§mbwoq4 - 4—> %(q), (A8)
maw
where the first correction to the energy is
1 bh*
Ej=--mboyq*)=- : (A9)
3 4mawy

The functions ¢,(q), i=1,2,...
lation:

, verify the following re-

(@) = o(q) + X ilq). (A10)
i=1

where #,(¢) is the polarization function. The functions #;(q)
are the terms of a polarization expansion of the solution,
satisfying the required boundary conditions for g= %0, and
they can be used to evaluate long-range polarization and
even exchange effects. The interesting fact here is the proof
of the unusual feature that the sums of the series diverge at
infinity [except for potential W(g) with b <<0], although each
individual term converges to zero in that limit. The polariza-
tion function is in this example situated outside of the Hilbert
space of normalizable functions. However, in a bound region
of space near the origin, the exact solutions can be used to
represent the distortion of the wave function due to the long-
range perturbation.
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