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completely positive maps and correlation functions. In this formalism generalized quantum systems can be
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also quantum systems described by the SU�2� symmetry are studied.
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I. INTRODUCTION

The reduced description of many-particle systems in
terms of a relatively small number of parameters is a main
tool in statistical physics. There exist several schemes of
reductions leading to different mathematical structures and
involving reduced dynamics as well. The theory of quantum
open systems within the operator algebra formalism offers
perhaps the richest example of such a description.

Historically, the first general and abstract approach to re-
duced dynamics of quantum systems was introduced by Na-
kajima �1�, Zwanzig �2�, and Prigogine �3�. It is called the
projection technique and is based on a projector operator P,
i.e., an operator that satisfies P2=P. The states of the total
system are elements of a Banach space B and P projects onto
a subspace B0 that contains the states of the subsystem, i.e.,
the reduced system. The purpose of the projector is to elimi-
nate the irrelevant freedoms of the so-called environment,
reservoir, or heat bath. This leads for the reduced dynamics
either to an integrodifferential equation with a certain
memory kernel or, using the time-convolutionless approach
�4�, to differential equations for the states of the subsystem.

Another type of reduction can be traced back to the Bolt-
zmann derivation of linear and nonlinear kinetic equations
for a gas of particles. Here the complete description in terms
of N-particle probability distributions is replaced by a den-
sity of particles in the single-particle phase space. In the limit
of large N and low density one obtains a closed equation of
motion. A similar approach in quantum mechanics leads to
Hartree-type equations for Hamiltonian dynamics and their
extensions to linear and nonlinear quantum dynamical semi-
groups for many-body open systems �5�.

The aim of this paper is to present a unifying formalism
for reduced descriptions in terms of generalized subsystems
�GSs�. In contrast to the projection technique, where only the
linear structure of the underlying Banach spaces is retained,
we heavily use the algebraic structure of quantum theory.
The projection operator P is replaced by the dual of a com-
pletely positive map � from the algebra of observables of
the generalized subsystem, often finite dimensional, to that
of the total system.

The algebraic formalism allows for a rich structure of the
GSs including the notion of positivity and the possibility of
producing composed GSs with their generalized entangle-

ment. This should be compared with a very different ap-
proach introduced in �6�. The formalism of GSs not only
unifies several known instances of reduced descriptions but it
provides also new examples such as a Lie algebraic GS or a
quantumlike formalism for classical systems.

The paper is organized as follows. Generalized sub-
systems are introduced in Sec. II. In Sec. III we show how
the GS formalism unifies common reduced descriptions such
as quantum open systems, coarse-graining, quasi-free boson,
and fermion systems, and mean-field models. Section IV
deals with two less common examples: systems that come
with a SU�2� symmetry and a reduced description of the
Koopman formalism �7�. Finally, composition and entangle-
ment in space and time are briefly introduced in Sec. V.

II. GENERALIZED SUBSYSTEMS

We assume in general that the total, usually complex,
many-body system is described by a unital C�-algebra A, its
Hermitian elements corresponding to bounded observables.
A generalized subsystem is determined by a linearly inde-
pendent family

V = �v1,v2, . . . ,vd� �1�

of elements of A called a partition. Introducing the element

m ª �
i

d

vi
�vi �2�

we shall distinguish between partitions of unity where m=1
and general ones.

A partition V generates a completely positive map � from
the algebra of complex matrices of dimension d, denoted by
Md, to A,

��A� ª �
ij

Aijvi
�v j, A = �Aij� � Md. �3�

Note that � is unity preserving if and only if m=1. The set of
states, i.e., the linear, positive, and normalized functionals on
A, is denoted by S�A�. We consider the pull-back map ��

from S�A� to the set of positive functionals on Md,

����� = � � � . �4�

We can identify the functional ����� with a positive d�d
matrix D� through

PHYSICAL REVIEW A 79, 052111 �2009�

1050-2947/2009/79�5�/052111�8� ©2009 The American Physical Society052111-1

http://dx.doi.org/10.1103/PhysRevA.79.052111


������A� = Tr�D�A�, A � Md �5�

and therefore view �� as an affine map from S�A� to Md
+.

The matrix D� is called a correlation matrix and its entries
are easily computed,

Dij
� = ��v j

�vi� . �6�

The image of �� is called a reduced state space and denoted
by S�A ,V�. A reduced state space is easily seen to be a
closed convex subset of Md

+. In particular, the extreme
points of S�A ,V� are images of pure states � on A but
generally the converse is not true. The detailed geometrical
structure of S�A ,V� is one of the problems which should be
solved for particular examples.

Two remarks are in order: in some cases the assumption
that A is a C� algebra can be lifted and partitions in un-
bounded elements can be considered. This leads to domain
problems, e.g., one must choose a suitable Hilbert space rep-
resentation of the global system and a subset of states � for
which D� exist. Similarly, with some mathematical care, one
can extend the definition of GS beyond finite partitions, al-
lowing for countably infinite or even continuous partitions.

The map �� is generally not one to one so that infinitely
many states on A are mapped on a same D, leading to a
proper reduction in the description. Still, the states in
S�A ,V� can sometimes encode to a high degree of approxi-
mation the state of the global system. This can be modeled
by an embedding map,

�:S�A,V� → S�A� , �7�

which is possibly nonlinear. Consistency is expressed by the
requirement

�� � � = id . �8�

A reasonable basis for the choice of an embedding is the
maximal entropy principle �see �8��: among all states � on A
that return a given D, i.e., such that �����=D, we choose
��D� as the state of maximal entropy. This presupposes both
the existence of an entropy S on the global algebra and the
uniqueness of the constrained maximum. Suppose, e.g., that

S��� = − Tr � log � , �9�

then

��D� = Z���−1 exp�− �
ij

�ijvi
�v j� , �10�

where

Z��� = Tr exp�− �
ij

�ijvi
�v j� �11�

and where � is chosen in such a way that

D = ���Z���−1 exp�− �
ij

�ijvi
�v j�	 . �12�

An embedding map � allows us to construct a reduced dy-
namics of the GS. For example, if �= 
�t � t�R� is the
Heisenberg evolution of the global system then we can
evolve a D�0��S�A ,V� as

D�t� = ����„D�0�… � �t� . �13�

There is no reason to expect a simple dynamical equation for
D�t�. Nevertheless, simple closed differential equations can
be obtained as limiting cases, scaling properly the environ-
ment, the map �, and the evolution �. Well-known ex-
amples are the Markovian semigroup evolution obtained
through the weak-coupling limit, Hartree-Fock equations,
nonlinear mean-field equations, etc.

III. COMMON GENERALIZED SUBSYSTEMS

In this section we briefly rephrase some well-known re-
duced descriptions of quantum systems in terms of GSs.

A. Open quantum systems

The Hilbert space of the total system is the tensor product
HS � HE of the Hilbert space HS of the small system of
interest and the Hilbert space of the environment HE. The
algebra A of global observables is that of all bounded opera-
tors of the total system, A=B�HS � HE�. To a given state �
of the total system a reduced density matrix D� of the sub-
system S is assigned through the partial trace

D� = TrE � . �14�

Here the state � is identified with its corresponding density
matrix which is still denoted by the same symbol �.

This reduced picture can easily be handled in terms of GS
by introducing a partition �v1 ,v2 , . . .� with

v j = ���j� � 1E. �15�

Here 
�j� is an orthonormal basis in HS and ��HS is an
arbitrary normalized vector. The corresponding map � is
given by

��A� = �
ij

Aijvi
�v j = A � 1E �16�

and �� is the partial trace with respect to the environment

������A� = ��A � 1E�, A � B�HS� . �17�

Obviously, for this example the reduced state space S�A ,V�
consists of all density matrices on HS. It is also clear that ��

is not injective as there are many ways to extend a state on
B�HS� to the total system.

In order to obtain a well-defined reduced dynamics one
starts by extending an arbitrary state D of the system to a
global state �=D � �E, i.e.,

�„D�0�… = D�0� � �E. �18�

Here �E is a suitably chosen reference state of the environ-
ment. Obviously �� ��= id. This embedding of states of the
system in global states yields a reduced dynamics for the
states of the system,

D�0� � D�t� = ���U�t��„D�0�…U�t��� �19�

=TrE
U�t��D�0� � �E�U��t�� , �20�

where 
U�t� : t�R� is the reversible evolution of the global
system. This reduced dynamics is generally very complicated
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and highly non-Markovian. However, in the regime of weak
interaction between system and environment it is governed
by a Markovian master equation of standard form �9�

d

dt
D = − i�H,D� +

1

2�
�

��L�,DL�
�� + �L�D,L�

��� . �21�

This scheme has many applications in various fields of phys-
ics including quantum information processing in the pres-
ence of noise.

B. Coarse-graining

Quite often one is only interested in the occupation prob-
abilities of certain energy levels or groups of almost degen-
erate energy levels. These are generated by a family of or-
thogonal projectors �P1 , P2 , . . .� with

Pj
� = Pj, PiPj = �ijPi, and �

j

Pj = 1 . �22�

The corresponding probabilities are

pj = Tr�DPj� , �23�

where D is the reduced density matrix of the system.
Those probabilities can also be described by a GS defined

by a partition �P1 � 1E , P2 � 1E , . . .�. The correlation matrices
are now always diagonal and given by

Dij
� = pi�ij with pj = ��Pj � 1E� . �24�

Again, under certain assumptions and using a Markovian ap-
proximation, one can derive the Pauli master equation for the
probabilities

d

dt
pj = �

k

�ajkpk − akjpj� . �25�

Here ajk�0 are transition probabilities per unit time typi-
cally computed in terms of time-dependent perturbation
theory, e.g., Fermi’s golden rule.

C. One particle description for fermions and bosons

Assume that the system S is not small but consists of
many particles, fermions, or bosons, described by annihila-
tion and creation operators associated to a single-particle or-
thonormal basis 
�k�. They satisfy canonical anticommuta-
tion or commutation relations

aka�
� 	 a�

�ak = �kl and aka� 	 a�ak = 0. �26�

Now the reduction to the single-particle description is pos-
sible if only additive observables of the form

b ª �
�,k

Bk�ak
�a�, B = �Bk�� Hermitian �27�

are relevant. Therefore, instead of the many-particle density
matrix 
 on fermionic or bosonic Fock space F	 the one-
particle density matrix Q= �Qk�� is used,

Qk� = Tr�
ak
�a�� or Tr�QB� = TrF	

�
b� . �28�

This one-particle density matrix Q is positive but normalized
to the average number of particles in the system and not to 1.

This reduction can again be phrased in terms of a corre-
lation matrix choosing the elements of the partition as

v j = aj . �29�

That is,

��B� = �
k�

Bk�ak
�a� and ����� = ���aj

�ai�� ¬ ��i,Q�j� .

�30�

The operator Q� is called a symbol; it is positive semidefi-
nite and satisfies additionally Q��1 for fermions. There is a
natural but nonlinear map � from the symbol space to the
state space of the full system,

��Q� = �Q, �31�

where �Q is either the fermionic or the bosonic quasi-free-
state with symbol Q,

�Q
	�ai1

�
¯ aik

� ajk
¯ aj1

� = det	���ja,Qib�� �32�

with det− equal to the permanent. It is again immediate that
�� ��= id. As in the general open quantum system setting,
the reduced dynamics is quite complicated.

Quite often, however, a system can be well modeled by
essentially noniteracting quasiparticles and the leading dissi-
pative effects are well approximated by processes of quasi-
particle decay and production. In these cases the Markovian
master equation �Eq. �21�� possesses a particularly simple
form �9�,

d

dt

 = − i�H,
� +

1

2�
k,�


�k���ak,
a�
�� + �ak
,a�

���

+ k���ak
�,
a�� + �ak

�
,a���� , �33�

where H=�k�kak
�ak with decay matrix �= ��k���0 and pro-

duction matrix = �k���0. The solution of the master equa-
tion �Eq. �33�� is a quasi-free dynamical semigroup �9�. This
description can, e.g., be used to deal with the following situ-
ations:

�a� decay and production of unstable elementary particles,
nuclei, quasiparticles, etc.,

�b� propagation of a quantum electromagnetic field in me-
dia in a linear regime, and

�c� transitions between localized electronic states and a
large number of low lying states accompanied by emission
and absorption of energy, etc.

Inserting Eq. �33� into Eq. �28� one can easily derive a
closed evolution equation for the one-particle density matrix
Q,

d

dt
Q = − i�h,Q� −

1

2

�� 	 �,Q� +  , �34�

where hª�k�k�k�k�.
Note that for bosons the operators v j =aj are unbounded

and, moreover, in both the bosonic and fermionic cases the
set of indices 
j� may be infinite �see the remarks at the end
of Sec. II�.
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D. Mean-field models

The simplest setting is that of systems of N identical par-
ticles satisfying Boltzmann statistics. It means that the states
�density matrices� are invariant with respect to permutations
of particles but we do not impose any restrictions on the
N-particle Hilbert spaces like in the case of Bose or Fermi
statistics. The mean-field approximation relies on permuta-
tion symmetry instead of the usual translation symmetry. Be-
cause of this huge symmetry group the set of invariant states
becomes quite small. In the limit of large N the set of per-
mutation invariant states, called exchangeable states, reduces
to mixtures of permutation invariant product states. There-
fore an exchangeable state can be seen as a probability mea-
sure on the density matrices of a single particle. This is
called de Finetti’s theorem �10� in the classical case and
Størmer’s theorem �11,12� for quantum systems. The reduc-
tion map is defined by

��A� =
1

N
�A � 1 ¯ � 1 + ¯ + 1 � ¯ � 1 � A� ,

�35�

where A is a one-particle observable. It is easily seen that the
reduced state space is just the full set of single-particle states
and that the maximal entropy embedding is given by

��D� = D � D � ¯ � D . �36�

The dynamics generated by an N-particle Hamiltonian of
the form

HN = �
i=1

N

hi
�1� +

1

2N
�
i�j

hij
�2� �37�

will preserve the permutation symmetry of initial states. Here
h�1� and h�2� are Hermitian one and two particle interactions.
It then follows that the reduced dynamics is described by a
nonlinear evolution equation in the limit of large N,

d

dt
D = − i�h�1�,D� − i�Tr2�1 � Dh�2��,D� , �38�

where Tr2 denotes the partial trace over the second factor in
H � H, H being the one-particle space. General Markovian
dynamics can be handled in a similar way.

IV. MORE EXAMPLES OF GENERALIZED SUBSYSTEMS

We discuss now two classes of GSs which go beyond the
standard schemes of reduced description: Markovian open
quantum systems that come with a representation of a Lie
algebra and a quantumlike picture of classical systems.

A. Lie algebraic open systems

Consider a quantum open system containing a Lie algebra
AL of operators spanned by basis elements Xm=Xm

� satisfying
the commutation relations

�Xm,Xn� = �
k

cmnkXk. �39�

The operators Xj define a partition V= 
v j =Xj � 1E�.

Assume that the dynamics of the open system is governed
by a standard Markovian master equation �Eq. �21�� with
L�=L�

� . If both the Hamiltonian H and the operators L� be-
long to AL then the Heisenberg equation of motion for a
product XmXn reads

d

dt
�XmXn� = iXm�H,Xn� + i�Xm,H�Xn −

1

2�
�

�†L�,�L�,Xm�‡Xn

+ Xm†L�,�L�,Xn�‡ + 2�L�,Xm��L�,Xn�� �40�

=�
k�

a�mn;k��XkX�. �41�

This yields a closed evolution equation for the correlation
matrix,

d

dt
Dnm = �

k�

a�mn;k��D�k. �42�

B. Angular momentum spaces

Large spin models are used to describe, for example, mag-
netic systems, radiation modes, Bose-Einstein condensates in
a double well, Josephson junctions, or Rydberg atoms. Due
to the commutation relations �Eq. �43�� a simultaneous mea-
surement of the three normalized components of the angular
momentum is impossible. The situation, however, improves
with increasing total angular momentum. Nevertheless we
can encode the correlations between the different compo-
nents in a 3�3 density matrix using the operational partition
�44�. The possible density matrices obtained in this way de-
pend on the total angular momentum. It appears that in the
limiting case of infinite spin the maximal entropy embedding
leads to a mixture of coherent states which are in this situa-
tion states with three sharply defined components of angular
momentum. In the following we consider quantum systems
with irreducible representations of the su�2� Lie algebra
given by angular momentum operators. We shall denote by
J���= �J1

��� ,J2
��� ,J3

���� the irreducible spin � representation of
the three standard generators of the rotation group where �
takes values in 
0, 1

2 ,1 , . . .�. The Ji
��� are matrices of dimen-

sion 2�+1 which satisfy the relations

�J�
����� = J�

���, �J�
���,J�

���� = i���
� J�

���,

and J��� · J��� = ��� + 1�1 . �43�

Here, ���
� is the totally antisymmetric tensor with �12

3 =1. The
J�

��� are for a given � up to a unitary transformation uniquely
determined by the relations in Eq. �43� and we shall use the
standard convention that J3

��� is diagonal in the standard basis
of C2�+1. To obtain operational partitions of unity we have to
renormalize the generators

j��� =
1

���� + 1�
J���. �44�

A reduced state description in terms of j��� can be practically
useful for ��1; however, the complete description of its
structure is here only illustrated for the simplest cases �
=1 /2,1 ,�.
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1. Spin 1/2

The normalized spin 1/2 generators have the form

j1 =
1
�3
�0 1

1 0
�, j2 =

1
�3
�0 − i

i 0
�,

and j3 =
1
�3
�1 0

0 − 1
� . �45�

The corresponding completely positive map � �see Eq. �3��
sends a matrix A of dimension 3 into a matrix of dimension
2,

��A� = �
��=1

3

A��j�j�. �46�

The following characterization of positive semidefinite ma-
trices will be useful. Let A be a square matrix of dimension d
and denote by ��1 ,�2 , . . . ,�d� its eigenvalue list repeated ac-
cording to algebraic multiplicities. The elementary symmet-
ric invariant of order k is given by

ek = �
��
1,2,. . .,d�

N���=k

�
j��

� j , �47�

where N��� is equal to the number of elements of �. Then A
is positive semidefinite if and only if A=A� and all ek�A�
�0 for k=1,2 , . . . ,d.

The reduced state space consists of all matrices D that
satisfy the following condition:

Tr D = 1 and Tr�DA� � 0 whenever ��A� � 0.

�48�

Note that a D which satisfies Eq. �48� is automatically a
density matrix, indeed ��A��0 whenever A�0 because �
is completely positive.

One can verify, using the characterization of positivity
given in Eq. �47�, that ��A��M2 is positive if and only if
A�M3 is of the form

A = � x1 a3 + i�12 a2 + i�13

a3 + i�21 x2 a1 + i�23

a2 + i�31 a1 + i�32 x3
� �49�

with

ai � R, xi � C and x1 + x2 + x3 � 0,

�ij � R and �x1 + x2 + x3�2 � ��12 − �21�2 + ��13 − �31�2

+ ��23 − �32�2.

Imposing that Tr�AD��0 for all such A implies that

D = �
1
3 i�3 − i�2

− i�3
1
3 i�1

i�2 − i�1
1
3

� , �50�

where �ª ��1 ,�2 ,�3��R3 satisfies ����
1
3 . So the reduced

state space in this example is a ball in R3 and hence affinely

isomorphic to the state space of a qubit �the Bloch ball�. The
extreme points are parametrized by ���=1 /3; the corre-
sponding density matrices have eigenvalues �2/3,1/3,0� and
are therefore not pure.

The explicit form of �� is

���
� =
1

3� 1 − ix3 ix1

ix3 1 − ix2

− ix1 ix2 1
� , �51�

where the qubit density matrix 
 is expanded in Bloch nota-
tion,


 = 1
2 �1 + x · ��, x = �x1,x2,x3� � R3 and �x� � 1,

�52�

As in this example the dimension of the reduced system is
actually larger than that of the original there cannot exist a
map � from the reduced system to the full system which is
a right inverse of ��.

2. Spin 1

The normalized generators of the spin 1 representation
define the operational partition of unity �j1 , j2 , j3� with

j1 =
1

2�0 1 0

1 0 1

0 1 0
�, j2 =

1

2�0 − i 0

i 0 − i

0 i 0
� , �53�

and

j3 =
1
�2�1 0 0

0 0 0

0 0 − 1
� .

The corresponding coarse-graining map is

��A� = �
k�

Ak�jkj�. �54�

From Eq. �47� it follows that ��A� is positive semidefinite if
and only if

A = A� and A � Tr�A� .

As any state assigns non-negative values to ��A� with A
�Tr�A� and as conversely any functional which takes the
value 1 on 1 and is non-negative on ��A� with A�Tr�A�
extends to a state, the reduced state space is also character-
ized by the condition

A = A� and A � Tr�A� implies Tr�DA� � 0.

It is easily seen that this condition is equivalent to

D density matrix and D �
1
2 .

To any density matrix D with D�
1
2 we may associate a

density matrix

D̃ = 1 − 2D . �55�

The map D� D̃ is affine and one to one from the reduced
state space to the full state space of M3. In particular, every
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extreme point of the reduced state space corresponds to a
pure state. So, every extreme element of the reduced state
space is of the form

1
2 �1 − P� , �56�

where P is a one-dimensional projector in M3.

3. Infinite spin

The limiting operational partition when the total angular
momentum tends to infinity is given by the relations

ji
� = ji, �j1, j2� = 0 and cyclic permutations,

and j1
2 + j2

2 + j3
2 = 1. �57�

The Abelian C� algebra generated by the ji is just the algebra
of continuous complex-valued functions on the unit sphere in
R3. An explicit isomorphism is given by

j1��� = sin � cos �, j2��� = sin � sin �,

and j3��� = cos � . �58�

Here, �= �� ,�� is the usual parametrization of a point on the
unit sphere in R3 by �co�latitude and longitude: 0���� and
0���2�. Again we introduce the unity preserving map

��A� ª �
k�

Ak�jkj�, �59�

where A is a complex 3�3 matrix. Because of the commu-
tation relations, � is no longer injective. ��A� is positive if
and only if

� � �
k�

Ak�jk���j����

is a positive function. This is equivalent to impose that

�x,Ax � 0 for all x � R3 �60�

or equivalently that A+AT�0. Writing

A = 1
2 �A + AT� + 1

2 �A − AT� ,

we see that

Tr DA = 1
2Tr D�A + AT� + 1

2Tr D�A − AT� .

As this expression must be non-negative whenever A+AT

�0 we must have that D=DT. Hence the reduced state space
now consists of all three-dimensional density matrices with
real entries. The extreme points are the pure states on M3
generated by normalized vectors with real entries.

We can for this example describe the maximal entropy
embedding �. Let us denote by �= �� ,�� the usual spherical
coordinates on the unit sphere S2 in R3 and by d� the nor-
malized invariant surface measure 1

4�d� sin �d�. According
to general principles, the maximal entropy embedding � is
given by

��D� = �
S2

d�e�j,�j�j�j� , �61�

where j= �j1 , j2 , j3� and where � is a real symmetric matrix
of dimension 3. An explicit formula for � in terms of D is

not available but the problem can be simplified. Let R be an
orthogonal transformation of R3, then j�Rj can be realized
by a change in variables ���� that preserves the uniform
measure. This change in integration variables can therefore
be used to diagonalize �. A simple inspection shows that in
this case the matrix in the right-hand side of Eq. �61� is also
diagonal. Therefore, up to an orthogonal transformation, we
must only solve Eq. �61� for diagonal D and �.

C. Quantum description of a classical system

The general construction can be repeated for the case
when A is a commutative algebra and therefore isomorphic
to the algebra of continuous complex functions on a phase
space �. The state space S��� of the system is now the
space of probability measures on �. Hence we have a one-
to-one correspondence between a positive normalized func-
tional � and a probability measure ��dx�,

��f� = �
�

��dx�f�x�, f � C��� . �62�

The partition V consists of complex linearly independent
functions on �,

V = �v1,v2, . . . ,vd�, v j � C��� . �63�

For a probability measure � on � with associated functional
� we obtain the correlation matrix with the elements

Dij = ��v j
�vi� = �

�

��dx�v j�x�vi�x� .

Introducing the standard basis 
ej� in Cd we can write

v�x� ª �
j=1

d

v j�x�ej, x � �

and conclude that

D� = �
�

��dx��v�x��v�x�� . �64�

Therefore the extreme boundary of the reduced state space
consists of a closed subset of the rank one positive matrices
in Md pure states in the case of a partition of unity. More-
over, any closed convex subset with such a boundary can be
realized by suitable limits of choices of partitions as in Eq.
�63�.

V. COMPOSED GENERALIZED SUBSYSTEMS

The formalism for generalized subsystems that was pre-
sented here extends naturally to composite systems; they are
described by higher rank correlation matrices. This has al-
ready been used in the context of quantum dynamical en-
tropy and quantum symbolic dynamics �13�. If two systems
are described by the partitions 
v���=1

n and 
wk�k=1
m , then the

composed system is described by the partition 
v�wk��,k
mn . The

elements of a correlation matrix of the composed system are
given by
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D�k;�� = ��wk
�v�

�v�w�� . �65�

A. Generalized entanglement

When talking about composed systems questions about
entanglement naturally arise. Both the notions of “general-
ized entanglement” and “generalized subsystems” have re-
cently emerged in the literature �6,14,15�. The proposed
schemes also deal with projections of states of a large system
on a low dimensional spaces but the mathematical structures
that have been considered are not so rich as these presented
here. For example, neither the order structure nor the idea of
composition is natural in those schemes.

The basic notion in the conventional approach to en-
tanglement is that of separability. We say that the n-party
correlation matrix D is separable if it can be represented as a
classical correlation matrix of the form

D�1,. . .,�n,�1,. . .,�n
= �

�

��dx�f�1
�x�f�1

�x� ¯ f�n
�x�f�n

�x� ,

�66�

where � is a probability measure on � and f� are measurable
functions. Using the representation �64� it is not difficult to
show that the above definition is, up to normalization,
equivalent to the standard one,

D = �
k1,k2,. . .,kn

��k1,k2, . . . ,kn�Pk1
� Pk2

� ¯ � Pkn
,

�67�

where ��k1 ,k2 , . . . ,kn��0 and where the Pk’s are one-
dimensional projectors.

One should notice that for a single system, i.e., for D��

there always exists classical representation �66�. Indeed as �
one can take the manifold of all normalized vectors � in the
Hilbert Cd and put f����= �e� ,� where 
e�� is a basis in Cd.

B. An example of an entangled bipartite
correlation matrix

Consider a bosonic system composed of two parts with
corresponding sets of annihilation and creation operators
�ak ,ak

†� and �b� ,b�
†�, k ,�=1,2. The correlation matrix has

the form

Dk�,�� = Tr��b�
†a�

†a�bk� . �68�

Consider a two-boson state,

�� = �
k�

�k�bk
†a�

†�0 � �0 ,

with the normalization condition

��,� = �
k�

��k��2 = Tr GG† = 1,

where G denotes the 2�2 matrix ��k��. For such a state
correlation matrix �68� has the form

� = �
��11�2 �11�12 �11�21 �11�22

�12�11 ��12�2 �12�21 �12�22

�21�11 �21�12 ��21�2 �21�22

�22�11 �22�12 �22�21 ��22�2
� �69�

and partial transposition of Eq. �69� yields

�1�T = �
��11�2 �12�11 �11�21 �12�21

�11�12 ��12�2 �11�22 �12�22

�21�11 �22�11 ��21�2 �22�21

�21�12 �22�12 �21�22 ��22�2
� . �70�

The eigenvalues of �1�T are given by

	det��G��, 1
2 
1 	 �1 − 4�det��G���2� ,

where �G�=�GG†. So, for det�G��0, one eigenvalue of
�1�T is negative and, according to the criterion of partial
transposition �16,17�, this means that the correlation matrix
� is entangled.

C. Entanglement in time

This idea appeared for the first time in the paper by Leg-
gett and Garg �18� who proposed to check Bell’s inequality
for correlations corresponding to projective measurements at
different times. The problem of a “quantumness” test for
temporal correlations can be easily formulated in our lan-
guage of correlation matrices. If the evolution of the system
from time 0 to t is described in Heisenberg picture by the
completely positive unity preserving map �t, then we can
define a time-dependent correlation function, normalized for
partitions of unity, by

Dk�,k����t� = Tr��vk
��t�v�

�v���vk�� . �71�

One can now apply well-known criteria of separability or
measures of entanglement to describe the evolution of quan-
tumness encoded in the correlation matrices of the single
system. Examples will be discussed in a future publication.
One should notice that this approach is related to the formal-
ism of thermal Green’s functions in statistical mechanics or
quantum field theory �19�. In those cases the reference state
� is either thermal or the vacuum.

VI. CONCLUSIONS

In this paper we introduced and examined generalized
subsystems �GSs� as a unifying formalism for the reduced
description of complex and open quantum systems. It covers
a number of known examples, such as the standard approach
to open systems with tensor product structure, single-particle
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descriptions of many-body systems, and Green’s function
methods. The new examples of GSs are quantum systems
with symmetries described by Lie algebras. Our approach fits
well with a large class of approximate evolution equations
and with the state estimation based on the maximal entropy
principle. The mathematical formalism involves completely
positive maps and correlation functions; it has a rich math-
ematical structure including order relations and composi-
tions. This yields a natural notion of generalized entangle-

ment in space and time; this issue has only slightly been
touched and will be investigated in the future.
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