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We discuss experimental situations that consist of multiple preparation and measurement stages. This leads
us to an alternative approach to quantum mechanics. In particular, we introduce the idea of multitime quantum
states which are the appropriate tools for describing these experimental situations. We also describe multitime
measurements and discuss their relation to multitime states. A consequence of our formalism is to put states

and operators on an equal footing. Finally we discuss the implications of our approach to quantum mechanics

for the problem of the flow of time.
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I. INTRODUCTION

The main aim of this paper is to introduce a type of quan-
tum state, a “multiple-time state.” We will also discuss
multiple-time measurements and introduce the notion of
“multiple-time measurement states.”

The simplest situation, namely, two-time states (also
called pre- and postselected states) was first discussed by
Aharonov et al. [1] in 1964 and was extensively studied
during the last two decades, both theoretically [2] and ex-
perimentally [3]. The idea of multitime measurements and
the first steps toward multitime states were discussed by
Aharonov and Albert in [4]. The present paper is based on
ideas described in the (unpublished) Ph.D. theses of Vaidman
and Popescu [5,6]. Similar questions were treated via differ-
ent approaches by Griffiths [7], Gell-Mann and Hartle [8],
Cramer [9], and Schulman [10].

From a mathematical point of view, the “state” of a physi-
cal system is nothing other than a compact description of all
the relevant information we have about that system. The
usual quantum state is perfectly suited for the simple situa-
tions studied routinely in quantum mechanics, namely, ex-
periments that consist of a preparation stage followed by a
measurement stage. The state | W) (or the density matrix p, if
appropriate) contains all the information. Based on it, we can
predict the probabilities of any measurement. Of course, we
may know much more about the preparation stage than what
is encoded in the state, such as details about the measuring
devices that were used or about the past history of the sys-
tem, but as far as the measurement stage is concerned every-
thing is encapsulated in |¥) (or p). It is in fact remarkable
that for some systems only very few parameters are needed,
such as three real numbers for a spin 1/2 particle, while we
might know many more things about the preparation (such as
the magnetic field that may have acted on the spin during its
entire history).

In any case, while the usual quantum state is perfectly
suitable for describing the standard experiment as discussed
above, we can imagine more complex experiments that con-
sist of many stages of preparation interspread with many
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stages of measurement (Fig. 1). Multiple-time states refer to
these situations.

To avoid any confusion, we want to emphasize from the
outset that we do not want to modify quantum theory. Our
results are totally and completely part of ordinary quantum
mechanics. Furthermore, we want to make it clear that the
ordinary formalism of quantum mechanics is perfectly ca-
pable of describing every experiment that we consider here,
including experiments that consist of many preparation-
measurement stages. The issue, however, is to get a conve-
nient, compact and illuminating description; as we will show,
multiple-time states are ideally suited tools for this purpose.

We can, of course, consider such complex experiments in
classical physics as well. In that case however the experi-
ment can always be decomposed into many elementary ex-
periments, each involving a single preparation-measurement
stage and there is effectively nothing interesting to note.
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FIG. 1. An experiment consisting of three “preparation” stages
and two “measurement” stages.
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Quantum mechanically, however, the situation is far more
interesting.

In the discussion above we referred to quantum states as
being simply the mathematical tools for describing the sys-
tem. However, states also have an ontological dimension.
This is a highly debated issue, which even for the simple
case of a standard state | W) is very controversial. Does the
state have a “reality” of its own or is it just a mathematical
tool for making predictions? Does the state actually collapse
or is the collapse simply our updating the mathematical de-
scription following the acquisition of new data (the results of
new measurement). Is the state a physical entity (such as in
Bohm’s pilot wave model)? Discussing the ontological status
of multitime states is bound to be even more controversial. It
is not our intention to dwell too much on this issue here. Our
main focus is simply to find out what are the parameters that
describe the system fully; the structure that we uncovered is
independent from its interpretation. We will comment how-
ever in the conclusions on our world view in the light of the
present results.

Coming now to measurements, we have two aims. The
first is simply to discuss “multiple-time measurements.”
These are measurements consisting of multiple measurement
stages, but which cannot be decomposed into separate mea-
surements, one for each time. Considering such measure-
ments is natural in the context of multitime states. Such mea-
surements were introduced in [4]. The second aim is to
introduce the notion of “measurement state.” Traditionally,
the idea of “state” is never associated with measurements; it
makes however a lot of sense. Indeed, consider first the no-
tion of the state of the system. As discussed above, the state
is nothing other than a compact description of all the relevant
information about a system, the totality of the parameters
needed to deduce what will happen to the system in any
conceivable situation. One may know much more about the
system but this knowledge may be redundant. In a similar
way, we can ask what are all the relevant parameters that
describe a measurement; the totality of these parameters will
then form a measurement state. For example, consider the
usual von Neumann measurement. Suppose we measure an
observable A. All the relevant information is encoded in the
projectors P, corresponding to its eigensubspaces. We may
know, of course, much more about the measurement (de-
tailed information about the measuring device for example)
but this information is irrelevant. In fact, in theoretical dis-
cussions one very rarely discusses how such a measurement
could be performed—the explicit von Neumann measuring
formalism is mostly restricted to a few textbooks [11]. Then
we can view each of the projectors P, as a state describing
the measurement, corresponding to the outcome n. While, of
course, in this very simple example the notion of measure-
ment state is trivial, its full force will become apparent when
dealing with multitime measurements.

Again, one may ask what the ontological meaning of a
measurement state is. This is, of course, a perfectly legiti-
mate question. But whatever the ontological meaning is,
from a formal point of view the set of projectors P, are all
that is needed to describe the von Neumann measurement, so
they form a state. For the main part of this paper we will
focus on the mathematical formalism and discuss possible
interpretations later.
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FIG. 2. (a) At time ¢, the system is prepared in state |¥') and at
time 7, an operator B is measured. The outcome of B happens to be
b, the (nondegenerate) eigenvalue corresponding to the eigenstate
|®). (b) This situation we describe by the two-time state ,2(<D||‘I'>,]
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II. SIMPLE TWO-TIME STATES:
PRE- AND POSTSELECTION

We will start with some simple situations and set up the
general formalism afterward. The physical situation, illus-
trated in Fig. 2, is the following. There are two preparation
stages, one at t; and the other at 7,, and one measurement
stage that takes place between t; and f,. The system is pre-
pared at time ¢, in some quantum state |¥). At a later time, t,
the system is subjected to the measurement of an observable
B and the result B=b is obtained; suppose that b is a nonde-
generate eigenvalue of B corresponding to the eigenstate |®)
(i.e., B|®)=b|D)).

More precisely, there are in fact two interesting different
physical situations that we can consider. In the first case f,
and t, are both in the past, #; in the remote past, and #, in a
more recent past. In this case, the measurement of B has
already been performed and the result b is the actual result of
this measurement. The other case is when the second prepa-
ration did not yet take place. In this case we cannot guarantee
that the result » will actually be obtained—the measurement
might very well yield some other result 5’. Then, if we are
interested only in the case in which the second preparation
stage yields b, we have no other option but discard the sys-
tem and start all over again. This is called “postselection.”

In both the above cases, the entire information about the
two preparation stages relevant for the physics in the time
period [#,,1,] is contained in the two states |¥) and |®). We
now define a two-time state corresponding to this situation
by

,2<<I)||\I’>,l. (1)

Note that expression (1) is not a scalar product (i.e., it is not
the complex number (®|W¥)) but a mathematical object
which is comprised of a bra and a ket vector with an empty
slot in between. In this slot we eventually insert information
about the measurement period.

We use this state in the following way. Suppose that the
particle evolves from ¢, to ¢ according to the unitary operator
U(t,t;) and from t to t, according to U(t,,t). Furthermore,
suppose that at ¢ the particle is subjected to a von Neumann
measurement of an observable C. Let P, be the projector
associated to the eigenvalue c,,.

To obtain the probability p(C=c,) that the measurement
of the observable C yields C=c, given the two-time state (1)
we simply insert the “history” U(t,,t)P,U(t,t,;) in the avail-
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able slot, and make the contractions (i.e., we apply the op-
erator U(z,1;) to |‘I’),1, then act with the projector P, etc.) to
obtain the complex number

(@|U(2.0)P,U(1.1))| W) (2)
The probability p(C=c,) is then given by

1
p(C=c,) = K,|<‘1’|U(tzat)PnU(t,t1)|‘I’>|2- 3)

The normalization constant N is given by

N=2 (D|U(ty, 1) P U(t,1) W) (4)
k

and ensures that the probabilities for all possible outcomes
add up to 1. This formula is known as the Aharonov-
Bergman-Lebowitz (ABL) rule [1]. Note that the normaliza-
tion constant N could not have been included in the defini-
tion of the state itself because its value depends not only on
the state but also on the experiment to which the state is
subjected.

The case of multiple measurements performed between f,
and 7, can also be dealt with easily [1]. Consider, for ex-
ample, two von Neumann measurements of the observables
C and D performed at 7 and t’, respectively, and let P, be the
projector corresponding to C=c, and Q; be the projector
associated to D=d;. Then

p((C=c,) & (D=d)))
1
=m@mmM0&Uwﬁaﬂmmmw2 (5)
with

N=2 (DU )QU DPU)IP.  (6)
jil

Finally, going beyond von Neumann measurements, gen-
eral measurements can be described in the positive-operator-
valued measure (POVM) formalism. Any measurement can
be viewed as an interaction between the measured system
and the measuring device, followed by “reading” the out-
come indicated by the measuring device, i.e., by performing
a von Neumann measurement on the measuring device itself.
We will first discuss POVMs in the usual context of a one-
time state.

Consider first a “detailed” POVM. In such a measurement
we leave no information unread. That is, we subject the mea-
suring device to a complete von Neumann measurement, i.e.,
a von Neumann measurement which is such that all the ei-
genvalues correspond to one-dimensional projectors. Follow-
ing such a measurement, the system ends up in a pure
state—it may first get entangled with the measuring device
but then the entanglement is destroyed by reading the mea-
suring device. (Note that as discussed below, following a
general POVM, the system may remain entangled with the
measuring device.)

A detailed POVM is described by the operators that de-
scribe the evolution of a quantum state due to the measure-
ment. As noted above, under a detailed POVM pure states
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evolve into pure states. Let A, be the operator that describes
the evolution given the measurement outcome k, i.e., the
initial state | ") evolves into the (unnormalized) state A;|W'),

|¥) — A P). (7)

The operators A, are called Krauss operators. They are linear
operators and they are arbitrary (not necessarily Hermitian),
up to the normalization condition

S AlA=1, (8)
k

where I is the identity. The probability of obtaining the result
k is given by the norm of the postmeasurement state, namely,

p(k) = (WIAJA|W), (9)

and the normalization condition ensures that the probabilities
add up to 1.

Note that von Neumann measurements are particular
cases of detailed POVMs in which the Krauss operators A
=P, are projection operators. Time evolutions can also be
easily included into the Krauss operators: A,
=U(t,,t)P,U(t,t,) describes a von Neumann measurement
preceded and followed by unitary time evolutions. Further-
more, a series of von Neumann measurements is also a par-
ticular  detailed @ POVM. Indeed the  operator
U(t,,t")QU(t" ,t)P,U(t,t,) considered in Eq. (5) above can
be viewed as a Krauss operator A,; corresponding to the
outcome given by the pair (k,n). For simplicity, from now
on, unless explicitly specified otherwise, we consider the
Krauss operators to cover the entire measurement period they
refer to.

Dealing with detailed POVMs in the context of pre- and
postselected states is identical to the way in which we dealt
with von Neumann measurements. We associate Krauss op-
erators A; with the entire experiment that takes place be-
tween ¢, and , (considering all unitary evolutions as part of
the measurement itself) and the probability of obtaining the
result k is given by

g (10)

P = [(@law)

where N is a normalization factor which ensures that
Swpk)=1.

A general POVM is different from a detailed POVM in
that we do not perform a complete reading of the measuring
device. To find the probabilities in this case, we can imagine
that after finishing the original POVM we proceed to read
the remaining information but this new information is simply
disregarded. (Since the measuring device no longer interacts
with the system, whether or not we make this supplementary
reading of the measuring device makes no difference to the
system.) In effect, what we now have is a detailed POVM
which is such that to each outcome k of the original POVM
correspond a number of different outcomes (k,w). All we
have to do, then, is simply add the probabilities for the dif-
ferent outcomes of the detailed POVM corresponding to the
same k. Formally, to each measurement outcome k of the
original POVM correspond, in general, more Krauss opera-
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tors Ay, where the index k refers to the measurement out-
come, and the index w describes different results that could
have been differentiated but are lumped together and associ-
ated to the overall outcome k. Again, the Krauss operators
are arbitrary linear operators subject to the condition
EkﬂAZ Aru=1. For this POVM, the probability of obtaining
the result k is given by

g (11)

1
p(k) = 1—@ [(DIAy, W)

where N is a normalization factor that ensures that 2,p(k)
=1.

We thus conclude that any measurements performed on a
pre- and postselected system can be described using the
mathematical object (®||¥). We therefore are entitled to
view (®||W) as the state of the system.

Up to this point, however, the situation is rather trivial and
can be handled quite simply with the standard formalism of
quantum mechanics (in the manner indicated below). It suf-
fices to consider the simplest case of a single von Neumann
measurement discussed above; all other cases can be dealt
with in a similar manner. For simplicity, we will write U,
=U(t,1,) and U,=U(t,,1). In the usual formalism we say that
the system starts in the state | ") and evolves into U;|W) just
prior to the measurement of C. The probability to obtain ¢, is

(W|UIP,U\|W) (12)
and the state after the measurement becomes
P,U ¥V
\'<\P|U1PnU1|‘P>

The probability to obtain b, the eigenvalue corresponding to
|®) when measuring B at t, is the absolute value square of
the scalar product between |®) and the state (13) after it
undergoes propagation by U,, i.e.,

(P|U,P,U,|W)

\'<\P| Ulan1|q,>

2
. (14)

The overall probability to obtain ¢, and then b is

®lUP.U, T |2
% (W|UIP,U,[W) = [(@|U,P,U, W)
v 14 n¥1

(15)

This, however, is the probability to obtain ¢, and then b. The
conditional probability to obtain ¢, given that the measure-
ment of B obtained b is given by the usual conditional prob-
ability formula, by dividing the above probability by the
overall probability to obtain b (given that we measured C at
1), ie.,

(P[U,P, U, [P
2 (@|U,P U W)

(16)

which yields our formula (3). The case of multiple measure-
ments can be handled in a similar way.

Note however that in this standard way of computing we
use the notion of “state” in an ontological way, not as a
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repository of all the relevant information about the system.
That is, we considered that the system actually is in a state
|W) at time 1,, that the state evolves into U;|W) just prior to
the measurement, that it then collapses into P,U,|¥) and so
on. Of course, this usage may seem very appealing from the
point of view of an intuition established in standard discus-
sions about quantum experiments. Nevertheless, conceptu-
ally this is a very different usage of the notion of state. In the
situation in which we are interested, when we have informa-
tion about the system at two different times, the two-time
state (1) is the only mathematical object that can be called a
state in the sense of containing all the relevant information.
The full power of this approach will become evident in Sec.
1.

III. TWO-TIME STATES

Let us now return to the two-time state (1). Although the
case of pre- and postselection described above can be dealt
with relatively simply by the ordinary formalism, our formal-
ism which uses the two-time state ,Z(CI)H\I’),] has advantages.
Not only is it more compact, but it also leads us to ask new
questions that could not be easily articulated in the old lan-
guage.

The two-time state is a mathematical object living in a
Hilbert space H=Hf2 ® M, . where H, is the Hilbert space of
the states at #; and H,T2 is the Hilbert space for t,. The dagger
indicates that H;’z is a space of bra vectors while H,I is a
space of ket vectors.

The remarkable thing about two-time states is that, similar
to ordinary quantum states, we can form superpositions
(which originally were named generalized states [12]). In
other words, any vector in ’H=H,T2 ® H,1 is a possible state of

the system.
Consider the state
ap (9|, + ay (Do), , (17)
where (@], (D,], |¥,), and |¥,) are arbitrary states. What

does this state represent and how can we prepare it? The
answer to this question is obtained by looking at the prob-
abilities for different measurements when the system is in
this state. Suppose that at time ¢, between ¢, and #, we mea-
sure an observable C and let the projection operator corre-
sponding to the eigenvalue c, be denoted by P,. Applying
the rule used for simple two-time states, the probability for
obtaining c, is given by

1
p(C=c,)= X,|“1<‘I)1|U2PnU1|‘I'1> + ay(D,|U,P, U W)

(18)

One way to prepare a two-time state that leads to this result
is the following. Consider our system and a supplementary
particle, an ancilla. Consider now an ordinary pre- and post-
selection as described before, but this time let both the pre-
selected state and the postselected state be entangled states
between the system and the ancilla. Specifically, let the state
at 7, be
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|\I’1>zsl|1>?l + |\I,2>fl|2>?l (19)
and the state at 7, be

aj g(l |}Z<(I)1| Tt ;“2<2|fz<q)2

; (20)

where the indices S and A denote the system and the ancilla.
The two-time state for the two particles is then

(ay ?2<1| i(q’ﬂ Tt ?\2<2| zsz<q>2|) (|‘I’1>,Sl|1>?l + |‘I’2>}g1|2>?1)-
(1)

Suppose now that we perform a measurement on the system
while the ancilla is left completely undisturbed—no mea-
surement is performed on it and its Hamiltonian is zero.
Since neither the projection operator P, associated with the
measurement that is performed on the system nor the unitary
evolutions U; and U, affect the ancilla, we obtain

p(C=c,)

= (1P| + a2l @) UP, U (1) + [ 2P

1
= ;/|a1((131|U2P,,U1|\If1)+ ay(D,|U,P, U P2 (22)

So as long as we are interested in the system alone and
trace over the ancilla the system is described by Eq. (17).
The state (17) is a pure, entangled two-time state. The en-
tanglement is between the states of the system at the two
different moments of time, more precisely between the “for-
ward in time” propagating states prepared at f; and the
“backward in time” propagating states prepared at t,.

Note that there are many other—in fact infinitely many
other ways—in which the state (17) can be prepared. For
example we can preselect

DI PHA (23)
i=1,2

and postselect
> @] (24)
j=12

with y,8;=a;. This freedom in preparing the state (17) is
similar to the freedom in the way in which an ordinary den-
sity matrix for a system can be obtained by entanglement
with an ancilla—there are infinitely many pure entangled
states that lead to the same reduced density matrix for the
system.

The generalization of state (17) and of its method of
preparation [Egs. (23) and (24)] to a superposition with an
arbitrary number of terms is obvious.

Yet another way to prepare arbitrary superpositions of
two-time states is to put all information about the two-time
state in the initial state of the system and ancilla and to use a
standard postselection to transfer information from the an-
cilla onto the system (Fig. 3). The simplest way to describe
this method is to use a decomposition of the desired two-
time state using orthonormal basis vectors , (jl|i), in M

=HJ'Z®H,1. Consider an arbitrary two-time state
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FIG. 3. (a) The system S interacts with the ancilla A. The arrows
represent states propagating “forward” and “backward” in time, i.e.,
ket and bra vectors. The wiggled line connecting the forward in
time propagating states (i.e., ket vectors) describes (arbitrary) en-
tanglement. The continuous line connecting the backward in time
propagating states (i.e., bra vectors) illustrates maximal entangle-
ment. More precisely, since it refers to the bra vectors, it denotes
post-selecting the maximally entangled state for the system and the
ancilla. The dotted line illustrates how entanglement is transferred
from the ancilla onto the system. The diagram (b) illustrates the
same situation as (a) but from the point of view of the system alone.

2 a” t2<j||i>t1 . (25)
L]

To prepare this state we start with our quantum system and
an ancilla in the preselected state

> i (26)

i

which is a “map” of the desired state. We then postselect the
maximally entangled state

PN = 2 . (27)

This can be done, for example, by measuring the well known
Bell operator and selecting the appropriate result. By postse-
lecting the maximally entangled state |®*), we effectively
transfer the state of the ancilla into the backward-in-time
propagating state of the system. In other words, postselecting
on the maximally entangled state |®*) acts as a channel by
which a ket vector of the ancilla is transformed into a bra
vector of the system (see Fig. 3).

Indeed, the pre- and postselected state of system+ancilla
is

2 o @D (28)

i

When only measurements on the system are concerned, we
can contract the ancilla states obtaining
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2 a @MY = 2 a (nlnl°])*
ij ijn

=2 a;;*nlliy* Anljy*

ijn

= E aijs<n||i>55n] = 2 aij zz<j||i>t1’
ijn LJ

(29)

which is the desired state (25).

Until now, we discussed two-time states of a single quan-
tum system. Of course, any number of particles can be
grouped together into a single system, so the discussion was
completely general. We may, however, find it convenient to
describe different particles separately. Consider for example
a quantum system composed of two particles, A and B. A
general pure two-time state is

E az)kl 1y <l| <]| |k> |l> (30)

In general, such a state is entangled both between the two
particles, as well as between the two times. For example
there are states in which the postselected state of particle A is
entangled with the preselected state of particle B, etc.

Finally, we note that along with pure two-time states we
can have mixed two-time states. A mixture arises when we
prepare different pure two-time states with different prob-
abilities.

IV. MULTIPLE-TIME STATES

The two-time states discussed above are just the simplest
example of multiple-time states. They correspond to the situ-
ation in which there is one measurement stage sandwiched
between two preparation stages, as illustrated in Fig. 2. Our
formalism however applies equally well to situations consist-
ing of multiple preparation and measurement stages.

Consider an experiment as illustrated in Fig. 4. To each
time boundary between a preparation period followed by a
measurement period we associate a Hilbert space of ket vec-
tors and to each time boundary between a measurement pe-
riod followed by a preparation period we associate a Hilbert
space of bra vectors. The total Hilbert space is the tensor
product of the Hilbert spaces for all the time boundaries,
H=H'®..eH ©H, oH ©..&H . Not that the

bra and ket Hllbert spaces alternate due to the alternation of
preparation and measurement periods. Furthermore, note
also that we marked the first and last Hilbert spaces with the
index (-) to denote the presence or absence of . This is
because there are four different cases (Fig. 4) depending on
whether the first and last Hilbert spaces are bra or ket spaces,
i.e., whether the procedure starts (ends) with a preparation or
measurement period. Which of these four cases occurs de-
pends on whether the past and future are uncertain or well
defined. We will discuss the significance of the difference
between these four cases shortly.

We are now ready to state the basic result of our paper.
Let W denote a state in H.

Theorem. In the case of multiple periods of preparation

PHYSICAL REVIEW A 79, 052110 (2009)
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FIG. 4. Different multi-time situations. In (a) both the past and
the future are well defined, i.e., they are part of “preparation”
stages. In (b) the future is uncertain, in (c) the past is uncertain
while in (d) both the future and the past are uncertain.

and measurements, any physical state of a quantum system
can be described by a vector W in H or by mixtures of such
vectors. Furthermore, to any vector or any mixture of vectors
in H corresponds a physical state of the system.

In the above, the word “mixture” is taken to have the
same two different meanings as in standard quantum me-
chanics: (a) the preparer throws a die and prepares a different
multitime state for each outcome; when the preparer gives us
the state but does not inform us about the outcomes of the
die, from our point of view we have a mixture and (b) the
multitime state of the system is entangled with an ancilla.
For simplicity, in the present paper we restrict ourselves to
the case of “pure” multitime states. A density matrix formu-
lation for mixed multitime states will be developed else-
where.

It is important to note that, unlike in standard quantum
theory, we do not require the multitime states to be normal-
ized. This is because there is no advantage in normalizing the
multitime states. Indeed, normalization of multitime states
does not automatically imply normalization of the probabili-
ties of measurement outcomes. Normalization of probabili-
ties is an issue that can only be resolved when it is known
what measurements were actually performed. For any given
set of measurements the state W prescribes only the relative
probabilities of the different outcomes of the measurements

052110-6



MULTIPLE-TIME STATES AND MULTIPLE-TIME ...

and the normalization of the probabilities is then calculated
so that the total probability is 1. Ultimately this stems from
the fact that the overall probability to prepare such a state
depends on the probabilities of success of the different post-
selections involved, and these probabilities depend not only
on what happens during the preparation times but also on the
measurements to which the state is subjected. This is differ-
ent from the case of ordinary one-time states which are pre-
pared in advance; the probability of preparation is in this
case equal to 1 and it is independent of the measurement to
which the system is thereafter subjected.

Finally, note that when discussing the case of multiple
quantum systems, we may have a different number of prepa-
ration and measurement stages for each system. For example

|\If3)gf‘2<‘lf2||‘lf1)fl|d>)ﬁ (31
represents a state of two quantum systems, A and B in which
system A is subjected to two preparation stages, from 7=
— to t; and from ¢, to f; while system B is subjected to a
single preparation stage, from t=— to ¢;. This idea general-
izes easily for multiple particles and multiple times.

V. MEASUREMENT PROBABILITIES
FOR MULTITIME STATES

As in the case of two-time states, the meaning of the
multitime states is defined by the probabilities they yield
when the system is subjected to measurements. The prob-
abilities for the outcomes of different measurements are ob-
tained from multitime states in a very similar way to that in
which they are obtained from one- and two-time states. Con-
sider first the case of detailed POVMs. To obtain the prob-
ability of a given outcome we must:

(i) Step 1. Act on the multitime state with the correspond-
ing Krauss operators, i.e., insert the Krauss operators in the
appropriate slots and make all the scalar products with the
bra and ket vectors to which they apply. (Note that if in a
certain measurement period nothing is done, this corresponds
to a Krauss operator that is simply the identity)

(ii) Step 2. Compute the norm-squared of the resulting
vector. Note that the four cases discussed in the previous
section (i.e., uncertain or well-defined future and past) are
slightly different: indeed, after acting with the Krauss opera-
tors we end either with a ket, a bra, a superposition of tensor
products of a ket and a bra or just a complex number. Com-
puting the norm has to be done in the appropriate way.

(iii) Step 3. Normalize the probabilities. That is, do steps
1 and 2 for each particular outcome—this will determine the
relative probabilities of the outcomes. To obtain the absolute
probabilities divide all the relative probabilities by their sum.

We now consider two examples. First consider the four-
time state corresponding to the situation illustrated in Fig.
4(a) in which there is a well-defined past and future (deter-
mined by the initial preparation and final post-selection) and
two measurement periods (1, <r<t,) and (;<t<t,). The
multitime state W for this example is a vector in the Hilbert
space H=Hj4®H,3®Hf2®Hll and can be expanded in
terms of basis states as
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?kl Qjjgl z4<l||k>z3 f2<j||i>tl~ (32)

Let us denote the Krauss operators acting in the first and
second measurement periods by A, and B,, respectively,
where u and v denote the corresponding results.

Acting on state (32) with the Krauss operators according
to step 1 above, we obtain

E Qjjki t4<l|BV|k>t3 t2<j|A,u|i>tl (33)
ijki
which is a complex number. According to step 2, the relative
probability to obtain the results u and v is the norm-squared
of this complex number. Dividing these relative probabilities
by their sum (step 3) we obtain the absolute probabilities of
the results u and v,

1
Plur)= EH g SUBJKY, A, |7 (34)
where N is such that =, , p(u,v)=1.

A second example corresponds to the situation illustrated
in Fig. 4(d). In this example, both the future and the past are
uncertain, i.e., they belong to the experimentalist who per-
forms measurements not to the preparer. There are three
measurement periods (1<<t,), (£,<r<t;), and (¢,<r). The
four-time state corresponding to this situation is

2% gl Kl ey Gl (35)

ijkl
Let A,, B,, and C; denote the Krauss operators correspond-
ing to the measurements performed in the three measurement
periods and u, v, and ¢ denote the corresponding results.
Then the first step is to act on the state with the Krauss
operators. The result of acting with the Krauss operator and
making all the contractions (all the scalar products) is

% aiijC§|l>t4z3<k|Bv|j>zzzl<i|Aﬂ’ (36)
which is a tensor product between ket and bra vectors corre-
sponding to the initial and final time, respectively. Indeed,
note that in the above formula ,3<k|B,, )i, is just a complex
number while C §|l)t4 and ll<i|A , are uncontracted vectors.
According to step 2, the relative probability to obtain the
results u, v, and ¢ is the norm-squared of this vector. Divid-
ing these relative probabilities by their sum (step 3) we ob-
tain the absolute probabilities of the results

1 . . 2
p(p,v,8) = ]T, E aijle§|l>t4t3<k|Bv|J>t2tl<l|A;L
ijkl
1 * ’ -1 ’
= X] E aifjfkllfaijklt4<l |CEC§|l>t4t2<] |B:|k >t3
ijkli’j' k"1’
X (KIBy L)y, ClALALL (37)

where N is such that Eﬂyvygp(,u,, v,é)=1.

It is important to note that when dealing with multitime
states that describe a situation with multiple measurement
periods, in order to be able to predict the probabilities for the
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outcomes of a given measurement we need, in general, in-
formation about all the measurement periods, not only the
ones when the measurement takes place. Indeed, it is easy to
see that what happens in other periods may influence the
(relative) probabilities of the different outcomes. Consider
for example the four-time state Eit4(¢>||i),3lz<i [[W);, where the
states [i),, and ,2<i| form complete bases in their Hilbert
spaces. This state describes a situation with two measure-
ment stages, from ¢, to #, and from #; to #4. Suppose now that
a measurement takes place from 73 to #,, and suppose also
that during the period from ¢, to #, some action is performed
on the system, say a unitary evolution U. Then the probabili-
ties p(k) turn out to be

g (38)

1
p(k) = ]T,|<<1>|AkU|‘1’>

where A, are the corresponding Krauss operators. Clearly
these probabilities depend on U. Similarly, also in the case
when the measurement takes place first, (i.e., measurement
between #; and #, and unitary evolution between #; and ?,4, the
probabilities are also influenced by U. In this case

1
p(k) = (DA, (39)

Basically, what happens during one time period influences
what happens during another time period via the correlations
between the vectors associated with these periods. The only
case when we do not need to know information about all the
periods is when some periods effectively decouple from the
rest, i.e, when the vectors that refer to these measuring peri-
ods are not entangled with vectors from any other measure-
ment period (see Fig. 5). In this case we can reduce the
multitime state to an effective state covering only the con-
nected periods of interest.

Finally, the formalism can be made far more compact in
the following way. When there are multiple measurement
periods, each characterized by its Krauss operator, we can
define a global Krauss operator as the tensor product of the
individual operators corresponding to the different measure-
ment periods. For example, when there are two measurement
periods, such as in the first example above, one described by
A, and one by B, we can define the total Krauss operator
K\=A,®B, where the index N\ describes now the outcome
of the two measurements and is, in this case, nothing other
than the pair (u,v). Then the probability formula is

1
pON) = JlIK - (40)

with N such that Z,p(N\)=1. Here by the dot product K, -V,
we simply mean that every bra (ket) vector belonging to Ky
is contracted with the ket vector belonging to ¥ and corre-
sponding to the same time and the contraction is the scalar
product. This formula is the direct equivalent of the well-
known formula for determining the probability of a von Neu-
mann measurement in a standard one-time experiment,
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FIG. 5. (a) The second and the fourth “measurement” stages,
i.e., from 75 to #4 and from #; to tg are correlated with each other but
not with the other two “measurement” stages. If we are interested in
measurements that occurred during the first and the third stages, the
second and the fourth stages are irrelevant. (b) An effective state
describing the periods #; to t, and 75 to #4 can be obtained simply by
ignoring the other stages.

? (41)

P00 =)

where P, is the projector associated to the eigenvalue N\ of
the measured observable and where N=(W¥ | ¥).

VI. PREPARING MULTITIME STATES I

There are many (infinite) ways of preparing multitime
states. Here we will present one particular method, which is
a generalization of the last method of preparing two-time
states presented in Sec. III. Yet another way to prepare two-
time and multiple-time states is to perform multiple-time
measurements which will be analyzed in Sec. IX [13].

In this section we discuss multiple-time states in which
the first time corresponds to a ket vector, that is, in which the
whole experiment starts with a preparation period. The cases
that start with a measurement period are discussed in the
next section. We exemplify our method for an arbitrary four-
times state [Fig. 4(a)]; generalizations are obvious. The
preparation procedure is illustrated in Fig. 6.

Consider the four-time state

2 azjklz4<l||k>t3tz<j||i>tl- (42)

ijkl

We start by using three ancillas and preparing at #; the
state
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a) b)

FIG. 6. (a) The system S and the three ancillas, A;, A, and A3
start in an entangled state that gets transferred onto the system via
the interactions of the system and the ancillas and via appropriate
post-selections. The continuous line describes maximal entangle-
ment while the wiggled line describes arbitrary entanglement and
the arrows represent states propagating “forward” and “backward”
in time, i.e., ket and bra vectors. Note the SWAP interaction between
the system S and the ancilla A,; it is nothing other that maximal
entanglement between bra states of the system and ket states of the
ancilla and vice versa. The dotted line illustrates how entanglement
is transferred from the ancillas onto the system. The diagram (b)
illustrates the same situation as (a) but from the point of view of the
system alone.

2 ayllidslidarl)aolDas (43)
ijki
which is a map of the desired state (42). The ancillas are kept
undisturbed except when we use them to transfer their states
onto the system. The transfer is performed via postselection
of maximally entangled states and SWAP operations.

The role of maximally entangled states as channels for
transforming ket states of the ancilla into bra vectors of the
system was discussed in Sec. III and illustrated in Fig. 3. The
swap operation has a similar role. Indeed, the swap S, , is a
unitary operator that swaps the states of two quantum sys-
tems, S and A

Ssa= 2 s lida a0 il (44)
ij

Note that this operator can also be written as

Ssa= <; |i>AS<i|)(§ 7)s4$ ), (45)

which is a product of two mathematical objects, each of them
looking like a maximally entangled state, but one in which a
ket is entangled with a bra. The swap operator then repre-
sents two entangled channels, one in which the forward-in-
time propagating state of the system is entangled with the
backward-in-time propagating state of the ancilla and one in
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which the forward-in-time propagating state of the ancilla is
entangled with the backward-in-time propagating state of the
system. In particular the swap operator allows for the transfer
of ket vectors of ancilla into ket vectors of the system and of
bra vectors of the ancilla into bra vectors of the system.

The overall procedure for preparing state (42) is the fol-
lowing:

(i) At ¢, prepare the entangled state (43) of the system and
of the ancillas.

(i) At time 7, 1, <t' <t; perform the swap operation S 4,
between the system and ancilla A2. The system is kept un-
disturbed at all other times between f, and £3.

(iii) At time ", ' <¢"<t, perform a Bell operator mea-
surement on ancillas A1 and A2 and postselect the maximally
entangled state |D*) 4 4,.

(iv) At 1, perform a Bell operator measurement on the
system § and ancilla A3 and postselect the maximally en-
tangled state |D*)g 43.

The resulting state of the system and ancillas is
SN D i)y 0 1. (46)

t t” t/
4
ijkl

By contracting the states of the ancillas (i.e., by making the
appropriate scalar products) and by propagating in time
(without any change, since the system is undisturbed during
these times) the state of the system, the bra from ¢’ to #, and
the ket from ¢ to 7; we obtain the desired state (42). The
procedure is illustrated in Fig. 6. There the transfer of the
ancilla states onto the system can be seen clearly.

Preparing a state for the case when the first period is a
preparation and the last period is a measurement period, i.e.,
a state in which both the first and the last vectors are kets is
done by a simple modification of the procedure described
above. Consider for example the three-time state

2 aijk|k>t3t2</.||i>t|- (47)
ijk ‘
We prepare it in the same way as the four-time state above,
only that the last ancilla, and therefore all the actions involv-
ing it, are missing. That is we start from the state

> @l atlk)az (48)
ijk
and we perform the exact procedure described above, except
the final measurement at #,.

VII. PAST AND FUTURE BOUNDARY CONDITIONS

In the previous section we discussed experiments which
start with a preparation stage. Correspondingly, the multitime
states that describe them start with a ket vector. However, we
mentioned in our general theorem that we can also consider
experiments that start with a measurement stage, and thus the
corresponding multitime states start with a bra vector. At first
sight this seems puzzling. Indeed, there is always some state
prepared in the remote past, either explicitly prepared by the
experimentalist or naturally occurring. So it seems that we
should always start with a ket vector. The key however is to
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t;

v ¥

FIG. 7. A simple one-time state with uncertain past.

realize that this problem can be avoided if we make the past
“neutral,” i.e., if we arrange a situation such that all states
coming from the remote past toward our experiment are
equally probable [14]. In other words, a neutral past is one in
which the initial state of the system is not any pure state but
an equal mixture of all possible states, i.e., (up to normaliza-
tion) the identity density matrix. This can be done for ex-
ample by actually starting the experiment with a preparation
stage in the remote past, in which we maximally entangle the
system with an ancilla.

An example suffices - all multitime states starting with a
bra vector can be constructed in a similar way. Consider the
one-time state f1<q,| which is supposed to describe the situa-
tion illustrated in Fig. 7 where the experiment consists of a
measurement period followed by a preparation.

According to our definitions, the meaning of this state is
that if during the measurement period we perform a detailed
POVM described by the Krauss operators A,, the probability
to obtain the outcome k is given, up to normalization, by the
norm [15] of the vector ,1<\If|Ak, ie.,

PO =P AAT ). (49)

A procedure for obtaining ,1(\If| is to prepare the pre- and
postselected state of the system and ancilla

(P, (50)

where #,<t, and where |®*)*4 is the maximally entangled
state (27). Note that the ancilla A is then left unmeasured.
One can explicitly see that this state is equivalent to ,1(‘I’|.

Indeed,

1 .
pk) = L @A), (Pl @

1 .
= 2 AL WA Yy

1

nm ZO Z‘l

1
= 2 O (AL WA )
foly

1
= 2 (Pl nlag ),

1
= ]T]S<\P|AkAZ|\I’)5. (51)

Incidentally, this means that we can view the state tl(‘I’|
both as a one-time pure state and as a two-time mixture, (in
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which the kets at #, come with equal probability).

It is worth at this point looking in more detail at the “fu-
ture boundary condition” as well. By analogy with the past
boundary condition, we conclude that the future is akin to the
postselection of the identity density matrix. In other words,
we can view the standard one-time state |\I’),1 either as a pure
one-time state or as a two-time mixture (in which the bra
vectors at 7,>, come with equal probability).

Finally, similar arguments show that we can prepare states
in which a given time boundary does not have a correspond-
ing bra or ket vector, just by making this boundary com-
pletely uncertain. For example, in the situation described in
Fig. 4(b), to which we would generally associate a three-time
state Eiikai/k|k>,3t2(j||i)rl we can also prepare an effective
two-time state of the form

> Bulky, i), (52)
ik

by making the “future” boundary condition at #, completely
uncertain.

To conclude the last two sections, we showed that any
multitime state can be prepared. There are many ways to
prepare them, and the general method presented here may
not be the most efficient, that is, the probability for the suc-
cess of all the required post-selections may not be optimal,
Indeed, we did not make an optimality study here. However,
the main point, namely that all these states are possible, has
been made.

VIII. PARTICULAR EXAMPLES OF MULTITIME STATES

An interesting case is the two-time state

n
El [i)eye i
=

; (53)

where the vectors |i),2 and ’1<i , respectively, form complete
orthonormal bases in H, and HJ{, respectively. Here the vec-
tors propagating backward in time at ¢, are completely cor-
related with those propagating forward in time at #,, (i.e., the
bra vectors at #; and the kets at 7,) are “maximally” en-
tangled. In effect they form an identity operator. (Note that
this is very similar to the ordinary entanglement of two par-
ticles in a singlet type state, but here it is entanglement be-
tween bra and ket vectors and represents total correlations in
all possible bases while total correlations are impossible in
the case of entanglement between two sets of ket states—the
singlet state represents total anticorrelation not total correla-
tion.) Most importantly, this state can be prepared by simply
leaving the system unperturbed between #; and #,. In this
case any information reaching ¢, is then propagated to #,. For
example the state

2 [y Gl (54)
i=1

is (up to normalization) nothing other than the standard state
|‘I’),0 as one can see by verifying that all the probabilities for
all the possible measurements are the same for Eq. (54) and
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for |\If>t0. This example contains a most important message: a

time interval when nothing happens, such as between #; and

1, here, is equivalent to a preparation in which the backward-

in-time and the forward-in-time propagating vectors emanat-

ing from this time interval are “maximally” entangled.
Another interesting state is

2 lliy, - (55)

Here the vectors propagating forward in time at #; are com-
pletely correlated (i.e., maximally entangled) with those
propagating backward in time at #,. This state represents a
“closed time loop”—any information that reaches time 7, is
“propagated” back to time z;.

IX. MULTIPLE-TIME MEASUREMENTS

Up to this point when we discussed measurements we
considered the usual quantum mechanical measurements,
such as measuring the observable C at time . But such mea-
surements are very simple in the sense that they are “one-
time” measurements. One can consider far more complex
measurements, namely multitime measurements [4]; it is
very natural to consider such measurements here, when dis-
cussing multitime states.

A simple example of a two-time observable is
o(t;)—o.(t,), the difference between the x component of the
spin of a spin 1/2 particle at two different times [here the
notation o,(¢;) means the Heisenberg representation of the
operator o, at time f;]. We would like to emphasize that
o (t))—o(t,) is a “two-time observable” in the sense that it
refers to two different times, not in the sense that it is, or it
has to be, described in a multitime formalism; nevertheless,
as we show below, a multiple-state-like description is the
most appropriate. The important thing to note is that this is
an observable that gives the value zero in the case when the
x component of the spin is the same at the two times, but
does not offer any information about the actual value of the x
component. Measuring this operator is therefore not equiva-
lent to measuring the x component of the spin at #;, followed
by another measurement at f,, and finally subtracting the
values of the results. Indeed, such a measurement would
yield too much information: it would tell the actual value of
the spin at the both times, not only the difference. How to
measure such an observable has been described in [4] and we
describe it here for completeness.

Two ways to accomplish the above task are the following.
In the first method we use a single measuring device that we
couple to the spin twice, once at #; and once at t,. Following
the von Neumann measuring procedure [11] we consider a
measuring device consisting of a pointer whose position is
denoted ¢ and its conjugate momentum p. The initial state
of the measuring device is the pointer indicating zero, i.e.,
|g=0). The measuring device interacts with the spin via the
interaction Hamiltonian

Hiy = 8t —t))po,— 8t - t;)po,. (56)

The first time the coupling is such as to shift the pointer’s
position g by an amount proportional to o, and the second
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time to shift it proportional to —o,. Indeed, the time evolu-
tion corresponding to the first interaction is U(t;)=e P
which is a shift operator shifting g by the value o, while the
evolution corresponding to the second interaction is a shift
operator U(t,)=eP%x representing a shift of ¢ by —o,.. Assum-
ing that during the time interval between the two measure-
ments the pointer is preserved in an undisturbed quantum
state (i.e., the effective Hamiltonian of the measuring device
is zero between the two interactions with the spin) the
Heisenberg equations of motion show that [16]

Gfinal = Yinitial T O-x(tl) - O-x(t2) . (57)

As the initial position of the pointer is known, g;,;;,=0, the
final value of ¢ indicates o(t;)—0(t,). Furthermore, note
that since we did not read the position of the pointer after the
first interaction, when the whole measurement is finished we
no longer have the possibility of finding out what o, (z;) was.
Also we cannot find out what o,(r,) was because we do not
know the position of the pointer before the second interac-
tion.

The second way to perform such a measurement relies on
the method of nonlocal measurements [17]. It involves two
independent measuring devices one interacting with the spin
at 1, and the other interacting at #,. Let the two pointers be
described by ¢;,p; and ¢,,p,, respectively, and let the inter-
action Hamiltonian be

Hip = 8t —t))p 10, — &t = 1)) p,0,. (58)

To ensure that we do not get any information about the spin
at ¢, and t, but only about the difference we prepare the
pointers in the entangled state |¢;—¢,=0, p;+p,=0). In this
state the initial position of each pointer is completely uncer-
tain so by reading their indications after the measurement we
cannot infer o(;) and o.(t,) separately, only their differ-
ence.

While the observable o(t;)—0,(z,) clearly represents the
difference in the x component of the spin at times ¢, and 7,,
its actual significance in the context of the usual quantum
setting is subtle and somewhat obscure; its significance be-
comes natural however in the context of multitime prepara-
tions.

In the usual setting one starts by preparing a state, say
|W(t,)) at t, and then subjects the system to a measurement
which, in our case, takes place at ¢; and t,. In this situation it
is natural to want to relate the measured observable to the
properties of the preparation that took place at #,. What hap-
pens however is that in general o(t,) is different from what it
would have been had the interaction with the measuring de-
vice at #; not occurred. Consequently the measured observ-
able o(t;)—0,(1,) is also different from what it would have
been, had we not performed the measurement but simply
calculate it on the initial state. Indeed, let the spin evolve
under the Hamiltonian H. If no other interactions take place
then the observables o,(z;) and o,(t,) are given in terms of
the Schrodinger operators by

Ux(tl) — eiHo/ﬁ(fl"O)O-Xe‘iHo/ﬁ(fl—fo),
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o_x(t2) — giHo/ﬁ(fz—lo)O-xe—iHo/h(fz"o). (59)

On the other hand, if we do perform the measurement then
o(t,) is still the same as before but o,(z,), just before the
second interaction, is now given by

olt,) = oiHo/hia=1) ioplh yiH/B(1=1))

X o-xe—iHo/ﬁ(fz—fl)e—iU)J’/ﬁe—iHo/ﬁ(fl"o) (60)

When ¢~ #H0"(2=11) does not commute with e~"%* then o (t,)
is different from what it had been, had the interaction with
the measuring device at #; not occurred. For example, let
Hy=Bo, which produces a precession of the spin around the
z axis. Let #,—1; be such that during this time o, rotates
into . In this case the observable o,(t,) is the same as
o,(t;+€) Now, if no measurement takes place at f; then
0'3,(1‘1+6)=0'y([]—6) but if we do perform the measurement
then they are no longer equal.

In the context of multitime preparations however, the ob-
servable o(t;)—o,(t,) becomes very natural, because in this
case we can directly prepare any state of the spin at times f,
and #,. and the observable refers to these values. For example
in the state |lx>,2_5| T -e the value of a,(t))—0(t;) =2 while
in the entangled state |1, d|T.r, e+ /1) e L), ¢ we have
o, (1)) = 0,(t,)=0.

Now, although in the discussion above we described in
detail how to measure o,(t;)—0,(1,) it is important to note
that in order to predict the probabilities for the different out-
comes we do not need to know the specific way in which the
measurement is implemented; just knowing the state and the

PHYSICAL REVIEW A 79, 052110 (2009)

observable itself is enough. This is similar to the case of
ordinary one-time variables usually studied in quantum me-
chanics. For example when considering a von Neumann
measurement of an observable C we do not need to describe
the entire measuring procedure. We just use the state which
is measured and the projectors on the different eigenvalues
of C. To do this for a two-time observable such as
o (t;)—o,(t;) we will now use a multi-time-state formalism.

The observable o,(t,)—o,(f,) could yield three possible
values: +2, 0, and —2. To each of these values we associate a
multitime projector. The value +2 is obtained when o, is
“up” at t; and “down” at #,. The corresponding multistate
projector is

P2 = |lx>t$|Tx>t*l't5<lx|,T<Tx ’ (61)
where we denoted ¢;=1,—¢, {{=t,+¢€ and so on. The projec-
tor corresponding to —2 is

P—Z = |Tx>t;|lx>tT[£<Tx|t]—<lx| (62)
Finally, the projector corresponding to O is
PO = |Tx>t;|Tx>rT[£<Tx|tT<Tx| + |lx>t;|lx>f{g<lx|q<lx| . (63)

The way to use these projectors is identical to the way
the projectors for one-time measurements are used: we insert
them into the state, in the corresponding slots and make
the scalar products. Then the probability to obtain, say
o(t;)—o(ts)=0 when the spin is, say, in the four-time state
,6<\If||<b>t4t3(5||®>,l with t; <t, <t;<t,<t5<tq is

] e
ploy(ty) —o,(ts) =0) = ]T]|16<\P|U6,5+|Tx>t;t;<Tx|U5‘,4|q)>t4 t3<':'|U3,2+|Tx>t;t£<Tx|U2‘,l|®>tl

+ t6<\P| U6,5+| Lx>t;‘l;<lx| US_,4|(I)>t4 Z3<E | U3,2+| lx>t§t£< lx| U2_, 1 | ®>tl

where U,-; denotes the unitary operator describing the evo-
lution of the spin between the times #; and £, and so on.

X. PREPARING MULTITIME STATES II

In Sec. VI we presented a particular method (based on
SWAPs and postselection of maximally entangled states) that
allows the preparation of any arbitrary multitime state. It is
important to note however that any measurement can be used
to prepare multitime states. This is similar to the situation in
the standard discussions of quantum measurements, but the
multitime approach introduces a very important twist.

The usual case is the following. Suppose that the state of
a system at time ¢, is |¥) and then a measurement is per-
formed between #; and #,. When the measurement is a de-
tailed POVM and the outcome k is observed, the state of the
system at t, becomes (up to normalization) |[®)=A|¥),

% (64)

where A, is the corresponding Krauss operator.

In the usual way of looking at preparations as described
above, the role of the operator A, is to transform the initial
state into the final state. However, as we will now show, this
way of looking at the problem obscures the true role of A;.
The operator is not there in order to evolve the state, but it is
part of the state itself. A few examples will make this situa-
tion clear.

Suppose a quantum system was prepared at time #; in the
state |\I'),O. Furthermore, suppose that between times ¢, and ¢,
a measurement was performed and the outcome k (corre-
sponding to A;) was obtained. The result is the three-time
state

AR, (65)

where we added upper indexes to the Krauss operator to
denote the times between which it acts. To better understand
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the meaning of the above state, note that any Krauss operator
acting between t; and ¢, can be written as

AR = 2 |y il (66)
i.J
Indeed, any linear operator acting on ket vectors at 7; and
transforming them into ket vectors at ¢, can be written in this
form. Hence, explicitly written, state (65) is

2 a; iy, 1), (67)
L]

In the above we considered the POVM performed on a
quantum system that was prepared at #; in state |\If),0. The
effect of adding information from the POVM was to expand
the state from a one-time state to a three-time state by simply
adding the Krauss operator into the state. This procedure is
however far more general: Whatever a multitime state is, if
we are further told that a POVM was performed between ¢
and ¢’, we simply add the corresponding Kraus operator into
the description of the state (and therefore expand an n-time
state into an (n+2)-time state).

The true force of the formalism however only becomes
clear when we consider multitime measurements such as
those described in Sec. IX. A multitime measurement has no
simple description in the standard quantum formalism. There
is no ordinary Krauss operator that simply propagates an
initial state into a final state, since there is no well defined
“final” state. Indeed, the measurement takes place at many
times, and there can be any other interactions in between. In
the multi-time formalism however any multitime measure-
ment can be described by Krauss operators—they are how-
ever multitime operators. An example is the spin measure-
ment described in Sec. IX. The Kraus operators
corresponding to this measurement are the multitime projec-
tors (61)—(63). To obtain the state of the system given the
outcome k of the POVM all we do is, again, just to insert the
multitime Krauss operator into the original multitime state.
Figure 8 illustrates the procedure.

XI. OPERATORS VERSUS STATES

One of the main advantages of the multitime formalism
presented in this paper is to put states and operators on an
equal footing. Indeed, to start with, operators and multitime
states look formally identical—they are both just superposi-
tion of tensor products of bra and ket vectors at different
times. But this similarity is by no means only superficial or
coincidental. In the standard quantum mechanical formalism
states are meant to describe how the system was prepared
while operators are meant to describe measurements per-
formed on the system. But physically preparations and mea-
surements both involve exactly the same processes—
interactions of the system of interest with other quantum
systems and/or with measuring devices. The multistate for-
malism succeeds in making this explicit.

As we argued in Sec. I, the projector operators describing
a von Neumann measurement (or indeed, more generally, the
Krauss operators) can be viewed as “measurement states,” in
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FIG. 8. Using measurements for preparation. To the original
state W we add the information that the result of a POVM per-
formed between 75 to t¢ and t; to g yielded the outcome k corre-
sponding to the Krauss operator A;, The operator A; can also be
viewed as a multi-time state ®;. The new state that takes into ac-
count all the information is ¥ ® @, which is simply the composition
of ¥ and ®, as illustrated in (b).

the sense that they encode all the relevant information about
the measurement. But we find it now very useful to think of
both the ordinary multitime states (that describe the way in
which the system was prepared) and the measurement states
(that describe the measurements) on equal footing. This view
allows a lot of flexibility.

Let the state of the system be W and let us denote the
Krauss operators A, that describe a given POVM by @, to
emphasize that each of them can be interpreted as a state.
Now, if we use the measurement as part of the preparation,
i.e., if in addition to the information that the system was
prepared in the state W we also are informed that we ob-
tained the result k, then the new state of the system is simply
the tensor product

Ve &, (68)

where by the tensor product we mean combining the two
states, as described in the previous section. What this for-
mula tells us is that the total history is simply the combina-
tion of the two histories.

On the other hand, suppose that we want to use a POVM
not to prepare a state but to test it. That is, suppose we ask,
given the state W what are the probabilities to obtain differ-
ent outcomes k? In general, of course, there is no definite
answer—the answer may depend on other things that
may occur to the system meanwhile. For example, suppose
we are given the two-time state tz(CI>||\If),I and the POVM

takes place between two intermediate times, ¢’ and ¢’,
1, <t' <t"<t,. Then, the probabilities of the outcomes of the
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POVM depend also on what happens between #; and ¢’ and
between ¢’ and £, and therefore we cannot determine them
unless we are given this supplementary information. But if
we are given the whole information, that is, if in effect the
POVM covers the whole measurement period from ¢, to £,
than we can predict its results. In the operator language, as
described in Eq. (40) we have to apply the different Krauss
operators to the state and compute the norms of the resulting
vectors. On the other hand, we can interpret the same for-
mula as telling that the probability is given, (up to overall
normalization), by the norm square of the scalar product be-
tween the two histories, the state of the system and the mea-
surement state,

1
p(k) = ﬁ|‘1’k"1’|2- (69)

This formula generalizes for arbitrary multi-time states
and measurements. Of course, in order for the probabilities
to be well defined, the POVM must entirely cover all the
measurement periods (or only some of the measurement pe-
riods, in the case they are disconnected from the rest—see
the discussion at the end of Sec. V). In case when the POVM
covers all the measurement periods, then we use in the prob-
ability formula (69) the full state W'; otherwise we use the
reduced state.

Finally note that depending on the past and future bound-
ary conditions, the “scalar product” of the two histories is not
always just a complex number but may also be a bra vector,
a ket, or a superposition of bra and ket pairs (see the discus-
sion in Sec. VII). In those cases the “norm square” of the
scalar product is to be taken as the norm of the resulting
vectors.

In any case, conceptually, what formula (69) does is to
generalize the usual notion that when a system is in a state
| W), the probability of finding it in the state |®) is the norm
square of the scalar product between |¥) and the measured
state |®), i.e., (P V)%

XII. MEASUREMENTS—OPEN QUESTIONS

As far as the states of the system are concerned, the situ-
ation is completely solved: any superposition of products of
bra and ket vectors is a legitimate state of the system. Com-
ing now to measurements, there are open questions.

As discussed in previous sections, a measurement can be
described in two different ways. One way is to say exactly
how the measurement is performed. Of course, every mea-
surement for which we are given the explicit recipe of how
to implement can, in principle, be performed. The second
way of describing measurements is via its Krauss operators.
It is in connection with this latter way of describing measure-
ments that there are very interesting open problems.

In the case of ordinary one-time measurements, any set of
Krauss operators (provided they fulfill the normalization
condition (8) represents a possible measurement. This is not
the case for multitime measurements. In fact there are two
questions here.

First, is it the case that any superposition of products of
bra and ket vectors as discussed above represents a possible
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Krauss operator? In other words, given a Krauss operator,
can we always find some multitime measurement such that
this operator describes a particular outcome of the measure-
ment? Or, to put it in a yet other way, can every arbitrarily
given measurement state be implemented by a measurement?

Second, a measurement is described not by a single
Krauss operator but by a whole set of them. For example, a
von Neumann measurement is characterized by a complete
basis of orthogonal projectors. Then what are the conditions
that a set of operators must satisfy in order to describe a
measurement? That is, even if each Krauss operator in a set
is legitimate, i.e., if each Krauss operator separately de-
scribes an outcome of a possible measurement, does the set
of them describe a possible measurement?

One major issue here is that measurements must obey
causality. That is, by acting on the system in the future we
should not be able to change the probabilities of outcomes of
measurements in the past. While this condition is obeyed
automatically for measurements that are sequences of one-
time measurements, it is not the case that any arbitrary set of
legitimate histories obeys this constraint. A somewhat similar
situation is encountered when dealing with instantaneous
nonlocal measurements. Indeed, there are sets of legitimate
Krauss operators that are not measurable because they would
lead to superluminal signaling [18]. That is, each operator
separately is legitimate in the sense that it describes an out-
come of a possible measurement, but together they cannot be
measured.

Furthermore, it is also conceivable that there are cases of
sets of Krauss operators that do not lead to causality viola-
tions but still there is no actual way to implement them in
quantum mechanics.

Again, a similar situation is encountered in the case of
nonlocal measurements: there are known cases [19] when a
set of Krauss operators is unmeasurable although such a
measurement would not lead to superluminal communica-
tion; the reason they are unmeasurable is that this would
allow for establishing of nonlocal correlations stronger than
allowed by quantum mechanics (Popescu-Rohrlich-type cor-
relations [20]). Finally there may be other cases of nonmea-
surable sets of Krauss operators in which the reason for un-
measurability is different from the above. Coming back to
multitime measurements, we expect to find similar behavior.
Partial answers to the above questions and other related
problems are discussed in [21].

XIII. DISCUSSION: THE FLOW OF TIME

So far in this paper we approached the idea of multiple-
time states from a rather formal point of view and avoided
questions of interpretation. That is, we considered physical
situations in which a quantum system is subjected to multiple
stages of preparation and measurement. We then asked,
given the preparation, what is the set of parameters that are
relevant for inferring as well as possible the results of the
measurements. What we found is that these parameters can
be expressed as vectors in a “multitime” Hilbert space
(which is the tensor product of Hilbert spaces associated with
each time boundary between preparation and measurement
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stages). Each vector, or mixture of vectors, describes a pos-
sible physical situation, and each possible physical situation
can be described in this way. Clearly this is a basic fact about
the structure of quantum mechanics and it is here to stay, no
matter what philosophical interpretation we may associate
with these states. It is very tempting, however, to go further
and ask what does this all mean.

As we mentioned in the introduction, trying to give a
philosophical interpretation for multitime states is certainly
not easy. Indeed, even the interpretation of the ordinary (one-
time) quantum state is highly controversial. We ourselves do
not have one preferred interpretation of multitime states—in
fact we have two of them, and we find both these points of
view useful. We will describe here one of these points of
view while the other one, the “block-time universe,” is pre-
sented in a forthcoming paper [22].

It is quite usual when thinking about the ordinary quan-
tum state, to regard it not just as a static collection of param-
eters associated to some preparation stage, but to think that at
each moment in time the system is described by a “state,”
i.e., by a ket vector, and that this state evolves in time, being
affected by all the interactions the system has. On one hand,
one can view this “evolution” as a simple mathematical pro-
cedure by which we transform the parameters given at the
preparation time #; into a more convenient form for comput-
ing what happens at the moment of interest ¢. In effect, we
simply interpret part of the measurement stage, namely the
period from ¢, to ¢ as being part of the preparation stage. On
the other hand, one may view the state as a physical object
that evolves in time, undergoes collapses, etc. Obviously,
although the probabilities we compute using these two dif-
ferent notions of state are the same, there is a great concep-
tual difference here—the state being a simple mathematical
recipe for computing probabilities versus the state having an
objective physical existence.

But consider now the simple example illustrated in Fig.
2(b). As far as the preparation is concerned, the system is
described by the two-time state r2<q)||‘l’>t,- Suppose further

that the moment of interest is some time ¢, t; <t<t,. We can
then mathematically “evolve” the vectors |W¥) forward and
(®| backward until they reach that moment, . The (ket) vec-
tor |W) originates at 1, it is determined by the time boundary
condition in the past, and “evolves” toward the future. The
(bra) vector (®| originates at t,, it is determined by the time
boundary condition in the future and “evolves” toward the
past. Again, in effect all we do is to include the period from
t; to t and the period from ¢ to 7, into the preparation stage
instead of in the global measurement stage. On the other
hand, we could think of the vectors [¥) and (®| as having
objective physical meaning. This view however implies a
dramatic conceptual change, far greater than that related to
the interpretation of the standard quantum state. Indeed, the
issue now is no longer only whether or not the quantum state
has objective meaning or is just a mathematical tool for com-
puting probabilities. The issue is now that of the flow of time.

To start with, it is a quite trivial fact that if we acquire
new information we can affect the probabilities of events that
happened in the past. This happens not only in quantum me-
chanics but in ordinary classical probabilities as well. For
example suppose we have a bag with an equal number of
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white and black balls and extract one ball at random and put
it, without looking, into a bag containing only black balls.
The probability that the ball is white is 1/2. But suppose we
then extract a ball from the second bag and see that the ball
is white. In the light of this new information we can now
infer that in this situation the probability that a white ball
was extracted from the first bag is actually 1 and not 1/2. The
future information affects our knowledge about the past, but
there is nothing surprising about this. Similarly, there is noth-
ing surprising about the fact that post-selection at ¢, affects
the probabilities for events that happened at the earlier time z.
So, as long as we view the vector (®| just as a mathematical
tool for calculating probabilities, it is nothing surprising that
it “evolves” backward in time. But if (®| has objective
meaning, then we have to admit that it really propagates
backward in time.

At first sight it appears that the idea of a state propagating
backward in time is ridiculous and should be immediately
abandoned. The example of the classical postselection de-
scribed above seems to show that an attempt to interpret the
change in the statistics of results of experiments due to post-
selection as a true backward-in-time influence is trivially
wrong. However, we do feel that the situation is far more
interesting in quantum mechanics. Indeed, there is a funda-
mental difference between post-selection in the classical and
quantum cases. In the classical case, probabilities are only
due to our subjective lack of knowledge. In principle, we
could have had complete information about the system from
the initial moment, and then there is no issue of probabilities
and a future measurement does not really provide new infor-
mation. On the other hand, it is one of the most important
aspects of quantum mechanics—perhaps the most important
aspect—that even when we have whole information about
the past (say, we know the state | W) at ), in general we still
cannot predict with certainty the result of a later measure-
ment. The later measurement does therefore yield truly new
information about the system. In other words, the future is
not completely determined by the past. Hence the whole no-
tion of past and future in quantum mechanics is fundamen-
tally different than in classical mechanics, and the whole idea
of time flow may need to be reconsidered.

Of course, as we emphasized from the very beginning of
this paper, all our results are fully consistent with ordinary
quantum mechanics. In particular they could all be obtained
using the traditional view of a single quantum state evolving
in time. But we personally found it very useful to think of
states propagating forward and backward in time. In particu-
lar, during each measurement period we think of two vectors,
a ket propagating from the past time-boundary condition to-
ward the future and a bra propagating from the future time-
boundary condition toward the past. Each moment of time is
therefore described by these two vectors [23]. Of course,
more generally each time moment can be described by en-
tangled bra and ket vectors or mixtures of them.

Thinking of vectors propagating forward and backward in
time opens many new possibilities that we found very in-
triguing. In particular, one can ask about the possibility of
having such time flow consistent with freewill. As we show
elsewhere, that is consistent [24]. It is also possible to take
forward and backward in time propagation as a starting point
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for possible modifications of quantum mechanics. Finally, it
is tempting to try and apply the idea of multi-time states in
cosmological context, in particular to speculate about the
possibility that the universe has both an initial and a final
state which are given independently of each other.

ACKNOWLEDGMENTS

Y.A. and L.V. acknowledge support from Grant No.
990/06 of the Israel Science Foundation. L.V. acknowledges

PHYSICAL REVIEW A 79, 052110 (2009)

support in part by the European Commission under the Inte-
grated Project Qubit Applications (QAP) funded by the IST
directorate as Contract No. 015848 and S.P. acknowledges
support from the U.K. EPSRC Grant No. GR/527405/01 and
the U.K. EPSRC QIP IRC project. J.T. acknowledges support
from Grant No. N0O0173-07-1-GO0O8 of the Naval Research
Laboratory; J.T. and Y.A. acknowledge support from Grant

No. 70NANB7H6138 of the National Institutes of Standards
and Technology.

[1] Y. Aharonov, P. G. Bergmann, and J. Lebowitz, Phys. Rev.
134, B1410 (1964).

[2] For a comprehensive list see Y. Aharonov and L. Vaidman,
Lect. Notes Phys. 734, 399 (2008).

[3] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett.
66, 1107 (1991); K. J. Resch, J. S. Lundeen, and A. M. Stein-
berg, Phys. Lett. A 324, 125 (2004); G. J. Pryde, J. L. OBrien,
A. G. White, T. C. Ralph, and H. M. Wiseman, Phys. Rev. Lett.
94, 220405 (2005); D. R. Solli, C. F. McCormick, R. Y. Chiao,
S. Popescu, and J. M. Hickmann, ibid. 92, 043601 (2004); Q.
Wang, F. W. Sun, Y. S. Zhang, J.-Li, Y. F. Huang, and G. C.
Guo, Phys. Rev A 73, 023814 (2006); O. Hosten and P. Kwiat,
Science 319, 787 (2008); K. Yokota et al., New J. Phys. 11,
033011 (2009); J. S. Lundeen and A. M. Steinberg, Phys. Rev.
Lett. 102, 020404 (2009).

[4] Y. Aharonov and D. Z. Albert, Phys. Rev. D 29, 223 (1984); Y.
Aharonov, D. Z. Albert, and S. S. D’Amato, ibid. 32, 1975
(1985).

[5] L. Vaidman, Ph.D. thesis, Tel Aviv University, 1987.

[6] S. Popescu, Ph.D. thesis, Tel Aviv University, 1991.

[7] R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).

[8] M. Gell-Mann and J. B. Hartle, in Physical Origins of Time
Asymmetry, edited by J. Halliwell et al. (Cambridge University
Press, Cambridge, 1994).

[9]J. G. Cramer, Rev. Mod. Phys. 58, 647 (1986).

[10] L. S. Schulman, Time’s Arrows and Quantum Measurement
(Cambridge University Press, New York, 1997).

[11]J. von Neumann, Mathematical Foundations of Quantum Me-
chanics (Princeton University Press, Princeton, NJ, 1955).

[12] Y. Aharonov and L. Vaidman, J. Phys. A 24, 2315 (1991).
[13] L. Vaidman and I. Nevo, Int. J. Mod. Phys. B 20, 1528 (2006).
[14] L. Vaidman, J. Phys. A 40, 3275 (2007).

[15] Incidentally, note that the normalization factor in this case is
not equal to 1. Indeed, N=S(W|A,A][W)=(P|,A,A]|P) but
in general EkAkAZ # 1—it is only the expression EkA,fAk which
is equal to 1 due to the normalization of POVMs, not the
expression EkAkA;:.

[16] Note that since o, commutes with the measurement Hamil-
tonian, we have o(t;—€)=0,(t;+€) and similarly o.(t,—¢€)
=0,(t,+€); this allows us to denote them simply by o,(z;) and
UX(IZ)'

[17] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. D 34,
1805 (1986).

[18] S. Popescu and L. Vaidman, Phys. Rev. A 49, 4331 (1994).

[19] M. Piani, M. Horodecki, P. Horodecki, and R. Horodecki,
Phys. Rev. A 74, 012305 (2006).

[20] S. Popescu and D. Rohrlich, Found. Phys. 24, 379 (1994).

[21] S. Popescu and A. Short (unpublished).

[22] Y. Aharonov, S. Popescu, and J. Tollaksen (unpublished).

[23] In fact, this two-vector description of a quantum system at a
particular time is the basic concept of most of the previous
work on pre- and postselection; see Ref. [2] above. Note that
the term used in these works to denote the two vectors associ-
ated to the same moment of time is a two-state vector and a
superposition of two-state vectors is named a generalized two-
state vector.

[24] Y. Aharonov and S. Popescu (unpublished).

052110-16



