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We study the effect of decoherence on the sub-Planck scale structures of the vibrational wave packet of a
molecule. The time evolution of these wave packets is investigated under the influence of a photonic or
phononic environment. We determine the master equation describing the reduced dynamics of the wave packet
and analyze the sensitivity of the sub-Planck structures against decoherence in the case of a hydrogen iodide
�HI� molecule.
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I. INTRODUCTION

Recent progress of controlled femtosecond pulses has ad-
vanced greatly the technology during the last few years �1�.
A new field of molecular optics has emerged where lasers are
used to manipulate the internal and external degrees of free-
dom of molecules, to deflect beams of molecules, to control
molecular dynamics, and to align molecules �2,3�. Many in-
vestigations have focused on the vibrational motion of di-
atomic molecules. The single bond between the atoms acts as
a spring and supports harmonic oscillations for small ampli-
tudes, but the bond can break �dissociate� when stretched too
much. These phenomena usually occur at time scales be-
tween few picoseconds and few hundred femtoseconds. With
ultrashort pulses one can now prepare a molecular wave
packet and probe its evolution and observe molecular reac-
tions in this time domain. Successful experiments have been
performed on several molecules �4�. The most convenient
model for studying the vibrational motion of diatomic mol-
ecule is the Morse potential, which is an exactly solvable
system �5�. Coherent superposition of several vibrational lev-
els of the molecule creates the wave packet which, due to
quantum interference, shows revival and fractional revivals
�6–8� in their time evolution.

Fractional revivals are associated with superpositions
of separated wave packets �for example, the so-called
Schrödinger cat states�, which manifest clear quantum inter-
ference effects and nonclassical features, which can be well
visualized in the phase space of the vibrational motion. Al-
though the experimental observation of small quantum inter-
ference structures is very challenging, it has already been
visualized in Pico-meter scale �9�. A number of different
phase space distribution functions have been introduced �10�
and investigated over the years, and among these the Wigner
distribution �11� is particularly useful because its negativity
yields an indication of nonclassical behavior �12–14�. Zurek
�15� first showed that this negativity reveals the existence of
the smallest structures in phase space, i.e., the sub-Planck

scale structures. One may expect that Heisenberg’s uncer-
tainty principle implies that structures on scales smaller than
the Planck constant have no observable consequence, while
instead Zurek �15� showed that these highly nonclassical
structures are expected to be particularly sensitive to deco-
herence. Through a short walk in controversy, recently sub-
Planck scale structures draw considerable attention and have
been found by others in different situations �16–27�.

Decoherence due to the coupling to an external environ-
ment is the main responsible for the disappearance of non-
classical manifestations of quantum states and it is consid-
ered one of the mechanisms through which the classical
world at the macroscopic level emerges from the quantum
substrate �28–30�. Decoherence on the molecular vibrational
degree of freedom is due to the coupling between vibrational
and rotational modes �31� and also to the coupling with the
photonic and phononic degrees of freedom �32�. The latter
are associated with a super-Ohmic environment describable
in terms of a continuous set of bosonic modes and in this
paper we shall focus on the effect of this source of decoher-
ence. To be more specific, we will study the sub-Planck scale
structures in the Morse system and the effect of decoherence
on these structures in molecular wave packets. We shall de-
termine the master equation describing the reduced dynamics
of the wave packet and analyze the robustness of the sub-
Planck structures against decoherence.

The paper is organized as follows. In Sec. II we give a
brief overview of the Morse potential and its coherent states,
while in Sec. III we derive the master equation in the case of
the coupling with a bosonic environment at thermal equilib-
rium. In Sec. IV we study the effect of decoherence on the
Wigner function at the sub-Planck level and the sensitivity to
decoherence of these structures is analyzed. Finally, we con-
clude in Sec. V.

II. REVIEW OF THE MORSE MODEL
OF A VIBRATING MOLECULE

Vibrational dynamics of diatomic molecules are well de-
scribed by Morse potential �5,33–36�. It can be described as

V�x� = D�e−2�x − 2e−�x� , �1�

where x=r /r0−1 , r0 is the equilibrium value of the internu-
clear distance r and � is a range parameter. D is the disso-
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ciation energy, which has been extensively studied in a wider
context of this model �37,38�. Defining

� =�2�Dr0
2

�2�2 and s =�−
8�r0

2

�2�2 E , �2�

where � is the reduced mass of the vibrational motion, the
eigenfunctions of the Morse potential can be written as

�n
���� = Ne−�/2�s/2Ln

s��� , �3�

where �=2�e−�x, 0���	, and n=0,1 , . . . , ��−1 /2�, with
�
� denoting the integer part of 
, so that the total number of
bound states is ��−1 /2�. The parameters � and s satisfy the
constraint condition s+2n=2�−1.

Note that � is potential dependent and s is related to en-
ergy E, and, by definition, ��0, s�0. In Eq. �3�, Ln

s�y� is
the associated Laguerre polynomial and N is the normaliza-
tion constant,

N = ���2� − 2n − 1���n + 1�
��2� − n�r0

�1/2

. �4�

Revival and fractional revivals appear during the time evo-
lution of a suitably prepared wave packet and are well stud-
ied in the literature �6–8�. Here we study the effect of deco-
herence on the motion of a molecular wave packet through
its sub-Planck scale structures. There structures are found at
one eighth of the fractional revival time in the Wigner phase
space distribution �23�. The initial wave packet is taken here
as SU�1,1� coherent state �CS� of this potential �39�, which is
obtained upon applying the displacement operator on the
ground state. The CS is given by

�
,s	 = e�K+−��K−�0,s	

= �1 − �
�2��1+s�/2

k=0

	 ���k + s + 1�
k ! ��1 + s� �1/2


k�k,s	 , �5�

where 0�k� ��−1 /2� correspond to the bound states of the
Morse potential and k� ��−1 /2� are the appropriate scatter-
ing states. The parameter 
 is associated with the “ampli-
tude” of the CS and possesses the same phase of the dis-
placement amplitude �, while its modulus is given by the
relation �
�=tanh��� �39�. In our numerical analysis, we will
always consider low energy coherent states well below the
dissociation limit so that only the bound states of the Morse
potential can be used as basis set.

III. MASTER EQUATION FOR THE MORSE OSCILLATOR

As described in Sec. I, we now investigate the effect of
the decoherence of an external phononic or photonic envi-
ronment on the sub-Planck scale structure. Therefore, the
total model Hamiltonian is �29�

H = Hsys + HE + HI, �6�

where Hsys is the Morse Hamiltonian of the vibrational
mode, HE is the environment Hamiltonian described by a set
of independent bosonic modes,

HE = 

k

��k�ak
†ak + 1/2� , �7�

and HI is the interaction between the Morse particle and the
environment, which we choose of the following form �see
also �32,40��:

HI = �Ô†

k

�kak + H.c., �8�

where �k are coupling constants. This choice corresponds to
assume the rotating wave approximation �RWA� in the inter-
action with the environment so that we neglect counter-

rotating terms, while the operator Ô is a generic operator of
the vibrational mode, whose specific form depends on the
considered environment. Using standard techniques �29�, one
gets in the usual Born-Markovian approximation, the follow-
ing master equation for the reduced density operator of the
Morse oscillator 
,

d

dt

 = −

i

�
�Hsys,
� + �Ô2
Ô† + Ô
Ô2

† − Ô†Ô2
 − 
Ô2
†Ô�

+ �Ô1
†
Ô + Ô†
Ô1 − ÔÔ1

†
 − 
Ô1Ô†� , �9�

where the operators Ôj�j=1,2� are new operators of the vi-
brational mode corresponding to “modifications” of the op-
erator associated to the absorption from the environment

�Ô1� or emission into the environment �Ô2� of vibrational
quanta. This fact is easily understood if we look at their
expression in the energy eigenbasis �n ,s	 used in Eq. �5�. In
fact, one has

Ôj = 

m,n

Oj
m,n�m,s	�n,s� , �10�

where

O1
m,n = Om,n�g��mn�����mn��2n̄��mn� , �11�

O2
m,n = Om,n�g��mn�����mn��2�n̄��mn� + 1� . �12�

The quantities Om,n are the matrix elements of Ô, g��mn� is
the density of states at the transition frequency between two
energy levels, �mn= �Em−En� /�, and n̄��mn�
= �exp���mn /kBT
−1�−1 is the mean thermal number of en-
vironmental excitations, being the latter at equilibrium at
temperature T. The appearance of these two operators is a
direct consequence of the nonlinearity of the molecular vi-
brational motion. In fact, in the linear case the transition

frequencies �mn do not depend on n and m and therefore Ô1

and Ô2 become proportional to Ô. As a consequence, master
equation �9� becomes identical to the master equation of a
harmonic oscillator in a thermal environment in the RWA
�29�.
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IV. SUB-PLANCK SCALE STRUCTURE AND ITS
SENSITIVITY THROUGH DECOHERENCE

We now solve the master equation �9� for the specific case
of the HI molecule and we adopt the Wigner function picture
in order to look at the effects of decoherence on sub-Planck
scale structures in phase space. The Wigner distribution is
defined ��=1� by

W�x,p,t� =
r0

2�
�

−	

	 �x −
x�

2
�
�t��x +

x�

2
�eix�pdx� �13�

and well describes the nonclassical interference effects asso-
ciated with the time evolution of a wave packet in the non-
linear potential of the Morse oscillator.

This fact is visible, for example, in Fig. 1, which shows
the time evolution of an initial CS wave packet in phase
space at two different fractional revival times in the absence
of decoherence. We have considered a HI molecule, which

has 30 bound states, with �=2.0793, reduced mass �
=1819.99 a.u., r0=3.0416 a.u., and D=0.1125 a.u. �23�.
We have assumed here �and also in the following� that the
initial wave packet is well below the dissociation limit, so
that it involves only the lower levels of HI molecule �the
energy distribution is peaked around the n̄=4 vibrational
level�. Figure 1�a� shows the vibrational cat state after one
fourth of the fractional revival time. Here, the revival time is
Trev=4.89�104 a.u. Due to the anharmonicity of the sys-
tem, one can notice the different squeezing effects in the two
separated CSs forming the cat state. The number of ripples in
the interference region increases for increasing mean energy
of the initial CS. The sub-Planck scale structures appear in
the interference region at one eighth of the fractional revival
time �Fig. 1�b��, where one has a coherent superposition of
four well distinct states, forming a so-called compass state
�15�. For this reason we shall focus our attention on the
effect of decoherence at this fractional revival time.

In the case of a molecular vibration, a bosonic environ-
ment well describes either the coupling via the dipole inter-
action with the outside electromagnetic field or, in the case of
a molecule immersed in a liquid or gas, the coupling with the

acoustic modes of the solvent. In both cases the operator Ô is
connected with the position operator of our Morse oscillator.

In fact, Ô describes the upper triangular part �in the energy
basis representation� of the dipole moment operator of the
molecule in the electromagnetic case and of the vibrational
coordinate x in the acoustic phonon bath case. However the
two situations are analogous because the dipole moment op-
erator is proportional to x. Both environments are super-
Ohmic, that is, we have

2��2���g��� = ��3, �14�

with � characterizing the strength of the system-environment
coupling. The physical meaning of the parameter � can be
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FIG. 1. �Color online� Time evolution of Morse wave packet in
phase space Wigner distribution: �a� cat state at time t= 1

4Trev and
�b� sub-Planck scale structures, appeared at the middle at time t
= 1

8Trev, where �=0.3, �=2.07932, r0=3.041 59 a.u., and n̄=4.
Here, x and p are the dimensionless position and momentum vari-
ables, where x=r /r0−1 and p is the corresponding scaled variable.

FIG. 2. �Color online� Wigner function of the
coherent state at one eighth of revival time, ap-
proximately equal to a compass state, for three
different values of the decoherence parameter �:
�a� �=0; �b� �=0.54�103 a.u.; and �c� �=2.2
�103 a.u. Here, x and p are the dimensionless
position and momentum variables, where x
=r /r0−1 and p is the corresponding scaled vari-
able. The environment temperature is fixed at T
=10��01 /kB.
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seen from the fact that the master equation �9� implies that
the relaxation rate from level i to level j, �ij at zero tempera-
ture is given by

�ij = �rij
2 �ij

3 , �15�

where rij is the corresponding matrix element of the position
operator between the two vibrational levels. Here we have
chosen the coupling constant � such that the ratio �01 /�01
ranges from 0.5�10−5 to 12.5�10−5. These values corre-
spond to reasonable values of the coupling constant �; in
fact, considering a typical electric dipole moment of a di-
atomic molecule one gets ��10−12 m−2 s2=4.78 a.u. for
the case of an electromagnetic environment. Instead, consid-
ering a dilute solvent one gets ��2�10−11 m−2 s2

=95.66 a.u. for the case of a phononic environment. One
should note that position variable in our study is a dimen-
sionless quantity �scaled by r0�. Hence, in the case of an
electromagnetic environment, the order of � in our case
would be �=4.37�103 a.u., which is consistent with our
study �see Fig. 3�. Moreover, the temperature of the environ-
ment is kept fixed at T=10��01 /kB. Figure 2 shows the
Wigner distribution at one eighth of the fractional revival
time for different values of the coupling with the bosonic
environment. Figure 2�a� refers to no decoherence ��=0� and
therefore corresponds to Fig. 1�b�. Figure 2�b� instead corre-
sponds to �=0.54�103 a.u. and Fig. 2�c� corresponds to a
stronger decoherence, �=2.2�103 a.u. One can clearly see
that by increasing the coupling with the bosonic environ-
ment, the interference region is more and more affected.

As for the harmonic oscillator case �15,20�, decoherence
affects the structure as a whole; also here for the Morse
oscillator, the sub-Planck structures due to quantum interfer-
ence are more affected than the individual isolated coherent
state components. In fact, a distinct difference can be ob-
served in the decay rate of the amplitude of the sub-Planck
scale structures and of the individual CSs. This is quantita-
tively shown in Fig. 3, where these decay rates are plotted
versus the decoherence strength �. We consider the left and
right peaks of the CSs at p=0 and a negative peak at x
=0.077 and p=−6.064, appearing in the sub-Planck interfer-
ence region. The plot shows that the sub-Planck scale struc-
ture, i.e., the central interference patterns �dashed line in Fig.
3�, disappears earlier compared to the individual CSs, as it

happens in the harmonic case. It is possible to see that the
decay of the amplitude of the sub-Planck structure follows
very well an exponential law as a function of the decoher-
ence strength �, as expected in usual bosonic environments
�28�. We find that a linear exponential function Ae−c� well
fits with our results, with A=0.5847 and c=0.3585. Figure 4
shows how the rate of amplitude damping of the chosen
negative interference region �i.e., sub-Planck region�
matches with the exponential form.

It is now worth seeing the effect of environment tempera-
ture on decoherence for a fixed value of the coupling con-
stant �. Owing to Eqs. �11� and �12�, one expects a Bose-
Einstein dependence on temperature of the decay of the
interference structures associated with sub-Planck structures,
a exp�−b / �eTc/T−1�
, where Tc corresponds to an effective
transition temperature below which the discrete structure of
the energy levels of the Morse oscillator starts to manifest
itself. This is confirmed by Fig. 5, where the numerical re-
sults for the value of the negative peak are plotted versus
temperature. The data, corresponding to �=0.54�103 a.u.,
are well fitted by the above curve and the optimal fitting
parameters are a=0.5799, b=0.0127, and Tc=0.6688. The
data follow an exponential decay for T /Tc�1, while the de-
viation from the exponential law �associated with the Bose-
Einstein distribution dependence� is clearly visible only at
very low temperatures, T�Tc, in the magnified view in the
inset of Fig. 5.
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FIG. 3. Comparative variations between the left �dotted line�
and right �solid line� peaks and the central negative sub-Planck
region �dashed line� at 1

8Trev with the coupling parameter � �in unit
of 103 a.u.�. The environment temperature is T=10��01 /kB.
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FIG. 4. �Color online� Variation in the central negative sub-
Planck region at 1

8Trev with the coupling parameter � �in unit of
103 a.u.�. Dots are the numerical data from our analysis. It satisfies
an exponential law �solid line� Ae−c�, with A=0.5847 and c
=0.3585. The environment temperature is T=10��01 /kB.
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FIG. 5. �Color online� Variation in the central negative sub-
Planck region at time 1

8Trev with the environment temperature T in
the case �=0.54�103 a.u. It follows a Bose-distribution law,
a exp�−b / �eTc/T−1�
, for a=0.5799 and b=0.0127. Inset of the fig-
ure shows the variation near the critical temperature �Tc=0.6688�.
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So far we have been studying the decoherence effect on
the sub-Planck scale structures at 1/8 fractional revival time.
Hence, it is a natural question to ask what happens at larger
times when one can also obtain sub-Planck scale structures
in the interference region of four-way breakup of a coherent
state. Thus, we extend our study to the four-way breakup or
the decoherence through sub-Planck scale regions at 3/8 and
5/8 fractional revival times. One expects a larger influence of
decoherence on the sub-Planck structures for increasing
times and this is confirmed by Fig. 6. Interference fringes in
phase space are still visible at 3/8 fractional revival time,
while in Fig. 6�b�, corresponding to 5/8 fractional revival
time, one can see that the sub-Planck structures completely
disappear due to the larger decoherence effect, whereas the
individual coherent states remain almost intact. The environ-
ment temperature is kept constant at T=10��01 /kB, the cou-
pling constant being �=0.72�103 a.u.

V. CONCLUSIONS

We have investigated the time evolution of a coherent
state wave packet in the Morse potential under the influence
of a bosonic environment describing either photonic or
phononic excitations. We have studied the effect of decoher-
ence on the sub-Planck structures in phase space by looking
at the evolution of the Wigner distribution. As it happens for
the harmonic case, sub-Planck scale structures come out as
the most sensitive to decoherence. A quantitative analysis
provides an exponential decay of the amplitude of the quan-
tum interference structures as a function of the coupling with
the environment, in agreement with usual predictions �28�.
Influence of the environment temperature on the decoherence
is also shown quantitatively. This is according to the Bose-
distribution law. Longer time effect on the decoherence is
shown for providing another way to see the sensitiveness of
sub-Planck scale structures compare to their original coun-
terparts.
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