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We show that an appropriate choice of the potential parameters in one-dimensional quantum systems allows
for unity transmission of the tunneling particle at all incident tunneling energies, except at controllable ex-
ceedingly small incident energies. The corresponding dwell time and the transmission amplitude are indistin-
guishable from those of a free particle in the unity-transmission regime. This implies the possibility of design-
ing quantum systems that are invisible to tunneling by a passing wave packet.
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I. INTRODUCTION

The design and construction of one-dimensional artificial
quantum structures at nanometric scales has opened a new
realm of possibilities on the investigation of fundamental
properties of quantum mechanics �1�. One of these properties
is tunneling, which represents one of the paradigms of quan-
tum mechanics. As discussed in quantum mechanics text-
books, tunneling of a particle of a given energy through a
potential barrier yields in general partial transmission. Full
transmission is exhibited in resonant tunneling systems,
which at least are formed by two barriers with a well in
between. There, unity transmission may be achieved at some
specific energies, the so-called resonance energies �2�. This
yields, however, a time delay with respect to free propaga-
tion that is proportional to the inverse of the resonance en-
ergy width �3,4�, and hence it allows one to distinguish the
tunneling particle from one evolving freely. The issue of total
transparency of a tunneling particle by a potential along the
full energy range has attracted attention over the years. It has
been addressed within different frameworks: inverse scatter-
ing theory �5�, supersymmetric quantum mechanics �6�, Dar-
box transformation approach �7�, and group-theoretical ap-
proaches �8�. These works refer to a number of exactly
solvable potentials, usually named reflectionless or transpar-
ent potentials, for which the reflection amplitude vanishes
identically, while the transmission amplitude has modulus 1
for all incident energies E including the threshold energy
value E=0. A well-known example is the Pöschl-Teller �P-T�
potential well, which for very specific values of the potential
parameters attains unity transmission at all energies �9�.
However, transparent potentials have escaped, to the best of
our knowledge, experimental verification and are mainly of
interest in mathematically oriented studies. A possible reason
is that transparency in these potentials is tightly bound to the
functional dependence of the potential.

Here we investigate to what extent one may design poten-
tial profiles in one dimension �1D� that, in addition to being
totally transparent to a tunneling particle, cannot be detected
by interference experiments. Our motivation is purely theo-
retical and would lead to the possibility of designing invis-
ible quantum systems. Our approach rests on analytical prop-

erties of the outgoing Green’s function of the system in the
complex momentum plane that hold provided the potential
vanish beyond a distance and the transmission is a coherent,
elastic process. These analytical properties consist of having
a bound or an antibound pole very close to the energy thresh-
old and all other poles far away and overlapping among
themselves.

We find that one may design potential profiles in 1D that
possess two regimes for transmission of incident monochro-
matic energy particles. In one regime, occurring at very
small controllable energies close to the energy threshold, i.e.,
a very small fraction of the potential barrier height, the trans-
mission coefficient rises sharply from zero to unity, and in
the other regime, which involves the rest of tunneling ener-
gies and energies extending up to several times the potential
barrier height, the particle attains essentially unity transmis-
sion. We show that in the unity-transmission regime the
transmission phase has a vanishing value, which implies in-
deed that interference experiments cannot detect the scatter-
ing potential and, in addition, that the dwell time, which pro-
vides the relevant time scale for the tunneling process, is
indistinguishable from that of a free particle. As a conse-
quence of the above considerations we find that in the unity-
transmission regime these systems are indeed invisible to a
tunneling particle. Moreover, since in time domain, ex-
tremely small energies correspond to very long times, we
obtain that these systems are essentially invisible to tunnel-
ing by an incident pulse or wave packet. We shall refer to
these systems as invisible systems.

It is worth noticing that here invisibility refers to a differ-
ent process from studies that involve the design of a cloak
surrounding a system that then becomes invisible to light
�10� or with approaches in the quantum domain, refer to as
quantum cloaking, where a system is surrounded by a cloak
to become invisible to matter waves at certain incident ener-
gies in two dimensions �2D� and three dimensions �3D�
�11,12�. These approaches are based on ideas from transfor-
mation optics and refer only to a time-independent descrip-
tion. We do not surround a system with a cloak but rather we
design systems that become invisible to matter waves and
consider both the energy and time domains.

Contrary to transparent potentials where full transmission
is tightly bound to the functional dependence of these poten-
tials, the potentials considered here are robust against some
variation in the functional dependence of the potential pro-
file. One may consider rectangular or continuous shapes*Corresponding author. gaston@fisica.unam.mx
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formed by distinct combinations of barriers and wells.
This work is organized as follows. In Sec. II we consider

the resonance formalism and the relationship between the
transmission amplitude and the distribution of its complex
poles. Section III deals with invisible systems through a
number of subsections that discuss, respectively, the rectan-
gular barrier and the Pöschl-Teller potential, multibarrier sys-
tems, the dwell time, and wave-packet scattering. Finally,
Sec. IV gives the concluding remarks.

II. TRANSMISSION AMPLITUDE AND COMPLEX POLES

Let us consider a particle of mass m and energy E imping-
ing, from x�0, on a quantum structure characterized by a
potential profile V�x� of length L, i.e., V�x�=0 outside the
region 0�x�L. As is well known, the solution to the
Schrödinger equation of the problem may be written for x
�0 as ���x , t�=exp�ikx�+r�k�exp�−ikx�, and for x�L as
���x , t�= t�k�exp�ikx�, where r�k� and t�k� stand, respec-
tively, for the reflection and transmission amplitudes. It is
convenient to write the transmission amplitude t�k� in terms
of the outgoing Green’s function of the problem, G+�x ,x� ;k�
�13�, namely,

t�k� = 2ikG+�0,L;k�e−ikL, �1�

where k= �2mE�1/2 /�. The reason is that this allows one to
obtain a representation for the transmission amplitude as an
expansion involving the poles and residues of the outgoing
Green’s function to the problem. This procedure is in fact
numerically equivalent to standard numerical calculations
such as the transfer-matrix method �1�. However, it yields a
deeper physical insight by establishing a link between the
analytical properties of the outgoing Green’s function on the
complex k plane and the behavior with energy of the trans-
mission phase and the transmission coefficient.

It is well known that the function G+�x ,x� ;k�, and hence
the transmission amplitude t�k�, possesses an infinite number
of complex poles kn, in general simple, distributed on the

complex k plane in a well-known manner �3,4�. Purely posi-
tive and negative imaginary poles kn� i�n correspond, re-
spectively, to bound and antibound �virtual� states, whereas
complex poles are distributed along the lower half of the k
plane. They may be calculated by using iterative techniques
as the Newton-Raphson method �14�. The outgoing Green’s
function G+�0,L ;k� may be expanded as an infinite sum in
terms of its poles �13,15�. We have found recently that the
expansion of G+�0,L ;k�exp�−ikL� has better convergence
properties. It yields the expansion for the transmission am-
plitude

t�k� = 2ik �
n=−�

�
rn

k − kn
e−iknL, �2�

where rn follows from the residue of G+�x ,x� ;k� at the pole
kn �2,13�. The position of the poles kn on the complex k plane
is a function of both the parameters of the potential and the
mass of the particle. Consequently, by varying these param-
eters the poles follow trajectories along the k plane.

For a given combination of rectangular barriers and wells,
we denote, respectively, the barrier heights and depths by V0
and −U0, measured in eV, and the rectangular barrier and
well widths by b and w, measured in nm. This is sufficient to
characterize a variety of possible combinations of rectangu-
lar barriers and wells, as the barrier-well �BW�, the barrier-
well-barrier �BWB�, the well-barrier-well �WBW� systems,
and so on. In order to exemplify the above considerations
and the relationship of pole distributions with the behavior of
the transmission coefficient as a function of energy, which
follows from Eq. �2�, we consider two double-barrier tunnel-
ing systems �BWB� with parameters typical of semiconduc-
tor tunneling structures �1�, as indicated in Fig. 1. In all
calculations the effective electron mass is taken as that of
GaAs, i.e., m=0.067me, with me as the free-electron mass.
Figure 1�a� provides a plot of the transmission coefficient as
a function of energy in units of the potential height, which is
the same for both systems. In both systems the well depths

β

β

FIG. 1. �Color online� �a� Transmission coefficient as a function of the energy in units of the potential height V0 for two double-barrier
systems. The exact numerical calculation �solid line� is reproduced exactly by Eq. �2� using N=500 poles. Both systems have the same
barrier height, V0=0.2 eV, and no well depth, U0=0; their well widths are twice the barrier widths, i.e., w=2b. One of them �dotted line�
has b=4.0 nm and exhibits two well-defined resonances along the tunneling region, whereas the other �dashed line�, b=0.4 nm, shows no
resonance structure at all. �b� Distribution of several complex poles of the transmission amplitude in the 	�kL plane for the potentials in
�a�: for b=4.0 nm �circles� and for b=0.4 nm �stars�. One sees that by diminishing the values of b, and hence of w, one goes from a system
with sharp resonances �poles very close to the real axis� to one with no resonances at all �all poles far away from the real axis�. See text.
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are zero and the well widths are twice the barrier widths. In
system 1 �dotted line�, the barrier and well widths are ten
times larger than in system 2 �dashed line�. One sees that
system 1 exhibits two well-defined resonances along the tun-
neling region, whereas system 2 exhibits no resonances at
all. The above behavior of the transmission coefficient re-
flects itself in the distribution of the complex poles kn=
n
− i�n of the corresponding transmission amplitude, shown in
Fig. 1�b�. In the case of system 1 �circles�, there appear two
complex poles very close to the real 	�kL axis and one may
follow well-known arguments to show that each of them
yields a Lorentzian or Breit-Wigner analytical expression for
the transmission coefficient near resonance energy �16,17�.
From the third pole onward the width of the poles increases
steadily and one sees that the transmission coefficient even-
tually approaches unity. In the case of system 2 �stars�, the
poles are all situated away from the real axis, except for an
antibound pole situated no far from the threshold value. We
shall see below how important poles near threshold are for
invisibility. Notice that since complex poles obey, from time-
reversal invariance considerations �16�, the relationship k−n
=−kn

�, only poles seated on the fourth quadrant of the 	 plane
have been depicted.

III. INVISIBLE SYSTEMS

A. Rectangular barrier and Pöschl-Teller potentials

Recently it has been shown that total transparency of a
very thin single-barrier rectangular potential at all except
very small energies follows from a distribution of poles that
consists of an antibound pole seated very close to k=0 and
all other complex poles away from the real k axis and over-
lapping with each other �18�. The antibound pole ka may
written as �18�

�a � −
�mV0�L

�2 . �3�

A similar situation holds for the P-T barrier potential
W�x�=V0 /cosh2�x /d� �9�. Here, we may also denote, respec-
tively, the corresponding barrier height or depth by V0 or
−U0 and the barrier or well widths by the parameters db or
dw. The transmission amplitude for the P-T barrier potential
reads

t�k� =
sinh��kd�ei


sinh��kd� + i cos���/2��1 − ��
, �4�

with 
 as a phase and �=8mU0d2 /�2. Equation �4� has poles
at the zeros of its denominator. For ��1, the P-T potential
has an antibound pole very close to k=0, namely, at

�a � −
�2mV0�d

�2 , �5�

which resembles that for the thin rectangular barrier potential
written above. Clearly for a P-T well, where the potential
parameter is negative, i.e., −U0, a similar relationship holds
for a bound state �b. The above analytical behavior is differ-
ent from the well-known total transparency of a single P-T

well at all energies, including E=0, which occurs for 1+�
= �2n+1�2, with n=0,1 ,2 , . . . �9�. In this case � may be quite
large and the corresponding outgoing Green’s function has,
as only singularity, a pole at k=0. The above results for near
energy threshold bound or antibound poles suggest to look
for a similar behavior in systems formed by different combi-
nations of barriers and wells for either rectangular or P-T
potential profiles. In the case of P-T potentials this necessar-
ily introduces a cutoff in the potential tails and hence the
analytical properties of the transmission amplitude become
analogous to that of rectangular potentials.

B. Multibarrier systems

For both rectangular and continuous potential profiles one
may consider different combinations of BWB or WBW sys-
tems to form, for example, chains of these systems, as the
quadruple-barrier system �2BWB� formed by two BWB sys-
tems separated by a distance h, etc. Figure 2 illustrates the
potential profiles for a two-double-barrier rectangular poten-
tial and a two-double-barrier P-T potential.

Figure 3 provides examples of these pole distributions on

FIG. 2. �Color online� Potential profiles of a two-double-barrier
rectangular �2BWB� system �dashed line� and a two-double-barrier
P-T potential �dotted line�.

β

β

FIG. 3. �Color online� Distribution of the complex poles of the
transmission amplitude in the 	�kL plane for several potential
profiles: BWB �triangles�, 2BWB �stars�, 5BWB �dots�, and
quadruple-barrier Pöschl-Teller potential �circles�. Each potential is
characterized by having a bound or an antibound pole very close to
the threshold 	=0 �see inset� and all other poles overlapping and
away from the real 	 axis. See text.
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the 	�kL plane, for a number of systems: a BWB �tri-
angles�, a quadruple-barrier 2BWB �stars�, a ten-barrier
5BWB �dots�, and a quadruple-barrier P-T potential �circles�.
For all the rectangular potential systems, we consider also
parameters typical of semiconductor heterostructures: b
=0.4 nm, w=0.8 nm, h=0.8 nm, and also V0= 	U0	
=0.12 eV, except for the 5BWB system, where the depth of
the second and fourth wells is U=−0.113 eV. For the P-T
potential we choose V0= 	U0	=0.12 eV, db=0.0709 nm, and
dw=0.1399 nm. The effective electron mass is taken also as
in the examples considered in Fig. 1, i.e., m /me=0.067. It is
worth noticing that in all examples �n�� /L, which estab-
lishes a scale for the distance from the real k axis of the
overlapping complex poles, which fulfill 
n+1−
n
� /L.
The inset shows a zoom of the positions of bound and anti-
bound poles close to k=0 for the above systems. The values
of bound or antibound poles may be controllable by choosing
appropriately the parameters of the potential, as the 5BWB
potential exemplifies. Notice that in order to obtain values
for the bound or antibound poles so close to the threshold,
avoiding extreme values of the barrier widths, it seems nec-
essary that the well depths U0 differ from zero.

From an analytical point of view the above results for the
distribution of the complex poles suggest that the outgoing
Green’s function in these systems is governed, similarly to
the transparent rectangular barrier �18�, by the purely imagi-
nary pole seated close to the threshold k=0, namely,

G+�0,L;k� �
1

2i�k − i�q�
eikL, �6�

where q=a or b refers, respectively, to antibound or bound
pole and 1 /2i follows from the residue rq at the imaginary
pole kq� i�q �18�. We have verified numerically the validity
of the above value of rq for the distinct systems considered.
Substitution of the expression for G+�0,L ;k� given by Eq.
�6� into Eq. �2� yields

t�k� �
1

1 − i�q/k
, �7�

where we have used exp�−ikqL��1. Notice that kq�0 im-
plies that the modulus of t is very close to unity and that its
corresponding phase ���q /k is close to zero except at very
small values of k and hence of energy. It is worth noticing
that the expression for G+�0,L ;k�, given by Eq. �6�, exhibits
a singularity very close to k=0, which resembles the singu-
larity at k=0 of the free outgoing Green’s function,

G0
+�0,L;k� =

1

2ik
eikL. �8�

It follows from Eq. �7� that the transmission coefficient
reads

T�E� = 	t�E�	2 �
1

1 + Eq/E
, �9�

where Eq= ��2 /2m��q
2. Figure 4 exhibits a plot of T�E� as a

function of energy in units of the potential height V0, for
several of the systems considered in Fig. 3: 2BWB �dotted�
and 5BWB �short-dashed line�, for rectangular barrier-well

potentials and a quadruple-barrier P-T potential �dashed line�
as that depicted in Fig. 2. The corresponding values of Eq for
the these potentials are, respectively, E2BWB=8.68
�10−6 eV, E5BWB=1.67�10−7 eV, and EP-T=6.19
�10−10 eV. It might be of interest to compare the above
values of Eq, for multibarrier rectangular systems, with that
of a single rectangular barrier. This follows by substitution of
Eq. �5� into the above expression for Eq to give Eq
= ��2m /�2�V0

2 /4�L2. For example, for a barrier of both, with
similar height �i.e., V0=0.12 eV� and effective mass �i.e.,
m /me=0.067�, a value of Eq
10−6 eV would require a
width b=L=0.012 nm and for Eq
10−8 eV, b=L
=0.0012 nm. The above values for L are extremely small.
The widths of barriers and wells in multibarrier systems
along the unity-transmission regime are much larger than for
a single-barrier system. A similar situation holds regarding
P-T potentials.

The calculations using Eq. �9� are indistinguishable from
the corresponding exact numerical calculations using the
transfer-matrix method �1�. The differences among the dis-
tinct systems are only appreciable at very small energies.
Figure 4 exhibits also the transmission coefficient for a
quadruple-barrier potential with potential depths U=0,
2BSB, �short dots�. This case is similar to the BSB system
�dashed line� presented in Fig. 1. Although it possesses both
overlapping complex poles and an antibound pole, the en-
ergy of this antibound pole, E2BSB=4.18�10−2 eV, is not
sufficiently close to the energy threshold to exhibit unity
transmission along the tunneling region. Notice that it is sev-
eral orders of magnitude larger than the values for the other
systems.

1. Robustness

The phenomenon of invisibility is robust against some
variation in the values of the potential parameters of the in-

FIG. 4. �Color online� The transmission coefficient T�E� as a
function of energy in units of the potential height V0 is calculated,
using Eq. �9�, for some of the systems considered in Fig. 3: 2BWB
�dotted� and 5BWB �short-dashed line� for rectangular barrier-well
potentials and quadruple-barrier P-T potential �dashed line�. Also
shown is an exact calculation for a quadruple-barrier system
�2BSB� with the same parameters as that of 2BWB except that the
well depths U=0 �short dots�. In this case the transmission is not
unity along the tunneling region. All calculations are reproduced
exactly by numerical calculations of T�E�, as exemplified for the
5BWB system �solid line�. See text.
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visible system. Within certain limits the variation in effective
masses, barrier heights, well depths, barrier widths, and well
widths, either for rectangular or continuous shapes as the P-T
potentials, keeps the system invisible. To exemplify this, Fig.
5�a� exhibits a contour plot for the transmission coefficient as
a function of the energy E and the parameter V=V0= 	U	 for
rectangular quadruple-barrier systems 2BWB, where all the
other potential parameters have the same values as given
previously. Notice that for negative values of V the above
systems become quadruple-well systems 2WBW. It is also
worth noticing that along the “invisibility window,” the
2BWB and the 2WBW systems are indistinguishable from
each other. The plot for the contour of the transmission co-
efficient T�E� considers the range of values 0.5�T�E��1,
which is the range employed for resonance transmission.
There is a range of values of V around V=0, the free case,
that correspond to full transparent systems. One may also
consider a similar variation regarding the barrier and well
widths, and again within certain limits, full transparency re-
mains robust. Figure 5�b� exhibits the effect of the variation
in the effective mass m for the rectangular quadruple-barrier
system 2BWB discussed above. This figure displays a con-
tour plot for the transmission coefficient, where log10�m /me�
varies in a broad range of values for different incidence en-

ergies in units of the barrier height V0. The value used in the
previous calculations, m /me=0.067, which corresponds to a
GaAs quadruple-barrier P-T potential �circles�, yields
log10�0.067�=−1.1739, which clearly falls within the invis-
ibility regime. The same occurs for m /me=0.1, where
log10�0.1�=−1.0, a value commonly used for GaAsAl barri-
ers. Notice that as the effective mass increases, the system
eventually ceases to be invisible and may exhibit a resonance
structure.

C. Dwell time

Let us now investigate the dwell time �19� in these sys-
tems. The dwell time is defined as

�d�E� =
1

J0
�

0

L

	��x,E�	2dx , �10�

where J0=�k /m stands for the incoming flux. This quantity
measures the amount of time that the incident particle spends
within the internal region. One may write it in units of �0
=L /J0, the time it takes to a free particle to traverse the
distance L, and express it as �20,21�

�d

�0
=

1

L
�

0

L

	��x,E�	2dx = T +
1

L
�T�̇ + R
̇� +

R1/2

kL
sin 
 ,

�11�

where R stands for the reflection coefficient, �̇ and 
̇ refer,
respectively, to the so-called transmission and reflection
times, the dot representing the derivative with respect to k of
the phases � and 
 of the corresponding transmission and
reflection amplitudes t�k� and r�k�. Figure 6 yields a plot of
�d�E� in units of �0 vs E for several systems: 2BWB �solid
line� and 5BWB �dotted line�, with parameters as considered
above, and 10BWB �dashed line�, which is formed by two
5BWB systems separated also by a distance h=0.8 nm. The
10BWB system has a length of L=23.2 nm and possesses an
antibound pole at −1.091 18�10−3 nm−1. The exact numeri-

FIG. 5. �a� Transmission contour as a function of the energy E
and the parameter V=V0= 	U	, for quadruple-barrier systems
2BWB, and all other parameters fixed, for V�0, and quadruple-
well systems 2WBW, for V�0. �b� Transmission contour as a func-
tion of the energy E in units of the potential height V0 for a
quadruple-barrier system 2BWB vs log10�m /me�, where m is an
effective mass and me stands for the free-electron mass. See text.

FIG. 6. �Color online� The integral expression for the dwell time
�d in units of �0=L /J0, as a function of E /V0, is evaluated numeri-
cally for the systems 2BWB �solid line�, 5BWB �dotted line�, and
10BWB �dashed line�. Notice that except at very small energies �d

is very close to �0.
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cal calculation of �d�E� is obtained by integrating the prob-
ability density along the internal region of the potential using
the transfer-matrix method. One sees that in all cases, except
at very small energies, �d�E� is very close to �0�E�. The
above result implies that the sum of the last two terms on the
right-hand side of Eq. �11� adds to a vanishing contribution,
although each term by itself may not be small. One may
conclude that in these systems, except at very small energies,
the time that the tunneling particle spends along the internal
region of the potential is indistinguishable from that of a free
evolving particle. These systems might be used to make a
comparison of the different definitions for tunneling times,
which remains a long-debated and controversial subject
�19,22,23�.

D. Wave-packet scattering

The above discussion refers to monochromatic waves. Let
us now consider the tunneling of a Gaussian wave packet on
these systems. The initial wave packet ��x ,0� is represented
by

��x,0� = Ae−�x − x0�2/4�2
eik0x �12�

satisfying the condition 	x0	 /2��1, which guarantees that
the tail of the Gaussian wave packet is very small near the
interaction region 0�x�L, and may be solved analytically
�24�. We could make a comparison along the transmitted
region of a wave packet evolving freely, 	� f�x , t�	2, with the
wave packet that tunnels through the system, 	��x , t�	2. How-
ever, even if 	� f�x , t�	2= 	��x , t�	2 as a function of time, it is
not sufficient to conclude that the system is invisible, since
there might exist a dependence on the transmitted phase.
Indeed if we write

��x,t� = ei�� f�x,t� , �13�

in order to exhibit a possible phase dependence it is more
convenient to compare 	� f�x , t�	2 with Re�� f

��x , t���x , t�

=cos���	� f

��x , t�	2. Thus if cos���=1, we may conclude that
the system is invisible to the tunneling wave packet beyond
any doubt. Figure 7 illustrates that this is indeed the case. It
yields a comparison of ��x , t�=Re�� f

��x , t���x , t�
 �solid line�
for the system 2BWB discussed above with the correspond-
ing free time evolution wave packet � f�x , t�= 	� f�x , t�	2 �dots�
as a function of time in units of t0= �x−x0� /v0. One sees that
both solutions are indistinguishable from each other. The in-
set exhibits a similar comparison for the system 2BSB,
whose only difference with the system 2BWB is that the well
depths are zero, and hence it does no exhibit unity transmis-
sion along the tunneling region as shown in Fig. 6.

IV. CONCLUDING REMARKS

In summary, we predict the possibility of designing arti-
ficial quantum systems in 1D that are invisible to a passing
wave packet. Hence the system becomes undetectable by
matter waves. Although our examples refer to rectangular
and P-T multibarrier systems, they are of a general nature in
quantum physics and may also be considered in other artifi-
cial systems as ultracold atoms in optical lattices. Our results
depend on general analytical properties of the transmission
amplitude for coherent processes and may open the way to
the design, experimental scrutiny, and applications of these
quantum systems.
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