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I. INTRODUCTION

Entanglement is probably the most intriguing feature of
the quantum world, the hallmark of correlations that delimits
the boundary between classical and quantum behavior. Al-
though some amazing aspects of this phenomenon were al-
ready noticed by Schrödinger in the early stages of quantum
theory �1�, it was not until quite recently that it attracted a
considerable attention as a crucial resource for quantum in-
formation processing �2�.

The simplest instance of entanglement is most clearly il-
lustrated by the maximally entangled states between a pair of
qubits �known as the Bell states�, whose properties can be
found in many textbooks �3�. Despite their simplicity, they
are of utmost importance for the analysis of many experi-
ments �4�.

In consequence, as any sound concept, the Bell states de-
serve an appropriate generalization. However, this is a
touchy business since thoughtful notions for a pair of qubits
may become fuzzy for more complex systems. There are two
sensible ways to proceed: the first, is to investigate multipar-
tite entanglement of qubits. While the standard Bell basis
defines �for pure states� a natural unit of entanglement, it has
recently become clear that for qubits shared by more parties
there is a rich phenomenology of entangled states �5–11�.

The second possibility involves examining bipartite en-
tanglement between two multidimensional systems �12–16�.
Again there is no unique way of looking at the problem, and
different definitions focus on different aspects and capture
different features of this quantum phenomenon.

We wish to approach this subject from a new perspective:
our starting point is the notion of mutually unbiased
bases �MUBs�, which emerged in the seminal work of
Schwinger �17�, and it has turned into a cornerstone of quan-
tum information, mainly due to the elegant work of Wootters
and co-workers �18–21�. Since MUBs carry complete infor-
mation about single-particle attributes and Bell’s bases about
bipartite entanglement, one is led to look for a relation be-
tween them.

In this paper we confirm such a relation for qudits �22�
and take advantage of the well-established MUB machinery
�in prime power dimensions� to propose a straightforward
generalization of the Bell states for any dimension. The re-
sulting bases are analyzed in detail, paying special attention
to their symmetry properties. In view of our results, we con-

clude that these states constitute an ideal instrument to ana-
lyze bipartite multiqudit systems.

II. BIPARTITE QUDIT SYSTEMS

A. Mutually unbiased bases for qudits

We start by considering a qudit, which lives in a Hilbert
space Hd, whose dimension d is assumed for now to be a
prime number. The different outcomes of a maximal test con-
stitute an orthogonal basis of Hd. One can also look for other
orthogonal bases that, in addition, are “as different as pos-
sible.”

To formalize this idea, we suppose we have a number of
orthonormal bases described by vectors ���

n�, where
� ��=0,1 , . . . ,d−1� labels the vectors in the nth basis. These
are MUBs if each state of one basis gives rise to the same
probabilities when measured in other basis:

�����
n����

n��2 =
1

d
, n � n�. �2.1�

Equivalently, this can be concisely reformulated as

�����
n����

n��2 = �����nn� +
1

d
�1 − �nn�� . �2.2�

Note in passing that the Hermitian product of two MUBs is a
generalized Hadamard matrix, i.e., a unitary matrix whose
entries all have the same absolute value �23�.

If one wants to determine the state of a system, given only
a limited supply of copies, the optimal strategy is to perform
measurements with respect to MUBs �24�. They have also
been used in cryptographic protocols �25� due to the com-
plete uncertainty about the outcome of a measurement in
some basis after the preparation of the system in another if
the bases are mutually unbiased. MUBs are also important
for quantum error correction codes �26,27� and in quantum
game theory �28–31�.

The maximum number of MUBs can be at most d+1 �32�.
Actually, it is known that if d is prime or power of prime
�which is precisely our case�, the maximal number of MUBs
can be achieved.

Unbiasedness also applies to measurements: two nonde-
generate tests are mutually unbiased if the bases formed by
their eigenstates are MUBs. For example, the measurements
of the components of a qubit along x, y, and z axes are all
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unbiased. It is also clear that for finite quantum systems un-
biasedness is tantamount of complementarity �33,34�.

The construction of MUBs is closely related to the possi-
bility of finding d+1 disjoint classes, each one having d−1
commuting operators �excluding the identity� so that the cor-
responding eigenstates form sets of MUBs �35�. Different
explicit methods in prime dimensions have been suggested in
a number of recent papers �36–41�, but we follow here the
one introduced in Ref. �42�, since it is especially germane for
our purposes.

First, in the computational basis ��� of Hd we introduce
the basic operators

X��� = �� + 1�, Z��� = ������� , �2.3�

where addition and multiplication must be understood
modulo d and, for simplicity, we employ the notation

���� = �� = exp�i2��/d� , �2.4�

�=exp�i2� /d� being a dth root of the unity. These operators
X and Z, which are generalizations of the Pauli matrices,
were studied long ago by Weil �43�. They generate a group
under multiplication known as the generalized Pauli group
and obey ZX=�XZ, which is the finite-dimensional version
of the Weyl form of the commutation relations �44�.

We consider the following sets of operators:

�̃�m� = Xm, ��m,n� = ZmXnm, �2.5�

with m=1, . . . ,d−1 and n=0, . . . ,d−1. They fulfill the pair-
wise orthogonality relations

Tr��̃�m��̃†�m��� = d�mm�.

Tr���m,n��†�m�,n��� = d�mm��nn�, �2.6�

which indicate that, for every value of n, we generate a maxi-
mal set of d−1 commuting operators and that all these
classes are disjoint. In addition, the common eigenstates of
each class n form different sets of MUBs.

If one recalls that the finite Fourier transform F is �45�

F =
1
�d

	
�,��=0

d−1

������������� , �2.7�

then one easily verifies that

Z = FXF†, �2.8�

much in the spirit of the standard way of looking at comple-
mentary variables in the infinite-dimensional Hilbert space
�46�: the position and momentum eigenstates are the Fourier
transform one of the other.

The operators ��m ,n� can be written as

��m,n� = ei��m,n�VnZmV†n, �2.9�

where V turns out to be �d�2�

V = 	
�=0

d−1

��− 2−1�2���̃���̃� , �2.10�

and the phase ��m ,n� is �47,48�

��m,n� = ��2−1nm2� . �2.11�

Here 2−1 denotes the multiplicative inverse of 2 mod d �that

is, 2−1= �d+1� /2� and ��̃� is the conjugate basis, which is
defined by the action of the Fourier transform on the com-

putational basis, namely, ��̃�=F���.
The case of qubits �d=2� requires minor modifications: V

is now

V =
1

2

1 + i 1 − i

1 − i 1 + i
� , �2.12�

while its action reads as VZV†=−iZX.
The operator V has quite an important property: its pow-

ers generate MUBs when acting on the computational basis.
Indeed, if

���
n� = Vn��� , �2.13�

one can check by a direct calculation that the states ���
n�

fulfill Eq. �2.2�, which confirms the unbiasedness. If we de-
note �����m ,n�= �����m ,n�����, according to Eq. �2.9�, we
have

�����m,n� = ei��m,n����
n�Zm����

n � . �2.14�

Therefore, up to an unessential phase factor, �����m ,n� are
the matrix elements of the powers of the diagonal operator Z
in the corresponding MUB. This provides an elegant inter-
pretation of these objects, which will play an essential role in
what follows.

B. Qudit Bell states

For the case of two qudits, a sensible generalization of
Bell states was devised in Ref. �49�, namely,

��mn� =
1
�d

	
�=0

d−1

��m�����A�� + n�B, �2.15�

where, to simplify as much as possible the notation, we drop
the subscript AB from ��mn�, since here we deal only with
bipartite states. For further use, we also define

��̃m� =
1
�d

	
�=0

d−1

���A�� + m�B. �2.16�

In the same vein, some generalized gates have been proposed
to create these d2 states �50,51�. Relations between maxi-
mally entangled vectors and orthonormal unitary bases have
also been highlighted �52,53�.

This set of states is orthonormal

��mn��m�n�� = �mm��nn�, ��̃m��̃m�� = �mm�,

��mn��̃m�� = �m0�m�0, �2.17�

and allows for a resolution of the identity

	
m=1

d−1

	
n=0

d−1

��mn���mn� + 	
m=1

d−1

��̃m���̃m� = 1 , �2.18�
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so they constitute a bona fide basis for any bipartite qudit
system. As anticipated in the introduction, there must be then
a connection with MUBs. And this is indeed the case: it
suffices to observe that states �2.15� and �2.16� can be recast
as

��mn� =
1
�d

	
�,��=0

d−1

�����m,n����A����B,

��̃m� =
1
�d

	
�,��=0

d−1

�̃����m����A����B, �2.19�

which can be checked by a direct calculation and �����m ,n�
and �̃����m� are the matrix elements of operator �2.5�.

The matrices � possess quite an interesting symmetry
property

�����m,n� = ��m2n������m,n�, �̃����m� = �̃����m� .

�2.20�

In consequence, �̃�m� are always totally symmetric under
the permutation of subsystems A and B and so are the corre-
sponding Bell states. Whenever ��m2n�= 	1, ��m ,n� are
either symmetric or antisymmetric. This happens for mn=0
�mod d�, and this is only possible for qubits: the symmetric

matrices are �̃�0�, �̃�1�, and ��1,0�, while the antisymmet-

ric is ��1,1�. The symmetric states are ��̃0�= �
+�,
��̃1�= ��+�, and ��1,0�= �
−�, and ��1,1�= ��−� is the anti-
symmetric one.

Finally, we can sum up the projectors of the bipartite
states �Eq. �2.15�� over m, obtaining the following interesting
property:

	
m=0

d−1

��mn���mn� =
1

d
	
�=0

d−1

�Xn�Z−��A � �Xn�Z��B,

	
m=0

d−1

��̃m���̃m� =
1

d
	
�=0

d−1

�X��A � �X��B. �2.21�

In words, this means that the sum of projectors over the
index m is the sum of direct products of commuting opera-
tors for each particle. The proof of this statement involves a
tedious yet direct calculation.

For the case of two qubits, this means that

	
m=0,1

��m1���m1� =
1

2
�1 + �XZ�A � �XZ�B� ,

	
m=0,1

��̃m���̃m� =
1

2
�1 + �X�A � �X�B� . �2.22�

III. BIPARTITE MULTIQUDIT SYSTEMS

A. Mutually unbiased bases for n qudits

The previous ideas can be extended for n-qudit systems.
Instead of natural numbers, it is then convenient to use ele-

ments of the finite field Fdn to label states, since then we can
almost directly translate all the properties studied before for
a single qudit. In the Appendix we briefly summarize the
basic notions of finite fields needed to proceed.

We denote as ��� �from here on, Greek letters will repre-
sent elements in the field Fdn� an orthonormal basis in the
Hilbert space of the quantum system. Operationally, the ele-
ments of the basis can be labeled by powers of a primitive
element, which can be found as a root of a minimal irreduc-
ible polynomial of degree n over Zd.

The generators of the generalized Pauli group are now

X���� = �� + ��, Z���� = 
������� , �3.1�

where 
��� is an additive character �defined in the Appen-
dix�. The Weyl form of the commutation relations reads as
Z�X�=
����X�Z�.

In agreement with Eq. �2.5�, we introduce the set of mo-
nomials

�̃��� = X�, ���,�� = Z�X��, �3.2�

and their corresponding eigenstates also form a complete set
of dn+1 MUBs.

The finite Fourier transform in our case reduces to �54�

F =
1

�dn 	
�,���


������������ , �3.3�

and thus

Z� = FX�F†. �3.4�

The rotation operator V� transforms the diagonal Z� into an
arbitrary monomial according to

���,�� = ei���,��V�Z�V�
†, �3.5�

and is diagonal in the conjugate basis �defined, as before, via

the Fourier transform ��̃�=F����

V� = 	
�

c����̃���̃� , �3.6�

where the coefficients c�� satisfy the following relations:

c0� = 1, c�+��� c��
� = c��� 
�− ����� , �3.7�

When d�2, a particular solution of Eq. �3.7� is

c�� = 
�− 2−1�2�� . �3.8�

Again, if we define the states

���
�� = V���� , �3.9�

they are unbiased and ������ ,�� are the matrix elements of
the diagonal operator Z� in the corresponding MUB

������,�� = ei���,�����
��Z�����

� � . �3.10�

B. Multiqudit Bell states

For a bipartite system of n qudits, it seems natural to
extend the previous construction in Eq. �2.19� by introducing
the d2n states
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����� =
1

�dn 	
�,��

������,�����A����B,

��̃�� =
1

�dn 	
�,��

�̃���������A����B. �3.11�

This means that, apart from an unessential global phase, we
have

����� =
1

�dn	
�


�������A�� + ��B,

��̃�� =
1

�dn	
�

���A�� + ��B, �3.12�

which look as quite a reasonable generalization. One can
prove the orthogonality

����������� = ��������, ��̃���̃��� = ����,

������̃��� = ��0���0, �3.13�

and the completeness relation

	
��0,�

���������� + 	
�

��̃����̃�� = 1 , �3.14�

which confirms that they constitute a basis. Moreover, the
reduced density matrices for both subsystems are completely
random,

TrA������������ =
1

dn	
�

���BB��� �3.15�

�and other analogous equation with A and B interchanged�,
showing that they are maximally entangled states.

The concept of symmetric and antisymmetric states can
be worked out for systems of n qubits, which constitutes a
nontrivial generalization of our previous discussion �55�. The
symmetric states �i.e., ������ ,��=������ ,���, correspond to
those pairs �� ,�� such that

tr���2� = 0, �3.16�

where tr, in small case, denotes the trace map in the field.

Clearly, ���0� and ��̃�� are symmetric. The antisymmetric
ones �i.e., ������ ,��=−������ ,��� are defined by the pairs
�� ,�� such that

tr���2� = 1. �3.17�

Finally, a property similar to Eq. �2.21� is fulfilled: summing
up the projectors over � one obtains

	
�

���������� = 	
�

�X��Z−��A � �X��Z��B,

	
�

��̃����̃�� = 	
�

�X��A � �X��B, �3.18�

whose interpretation is otherwise the same as for qudits.

C. Examples

Since we are dealing with n-qudit systems, we can map
the abstract Hilbert space Hdn into n single-qudit Hilbert
spaces. This is achieved by expanding the field elements in a
convenient basis �� j
 �with j=1, . . . ,n� so that

� = 	
j

� j� j , �3.19�

where � j �Zd. We can thus represent the states as
���= ��1 , . . . ,�n� and the coefficients � j play the role of quan-
tum numbers for each qudit.

For example, for two qubits, the abstract state
��0�+ ��3�� /�2, where � is a primitive element, can be
mapped onto the physical state �00�+ ��10�� /�2 in the poly-
nomial basis �1,�
, whereas in the self-dual basis �� ,�2
 it
is associated with ��00�+ �11�� /�2. Observe that, while the
first state is factorizable, the other is entangled.

The use of the self-dual basis �or the almost self-dual if
the latter does not exist� is especially advantageous since
only then the Fourier transform and the basic operators fac-
torize in terms of single-qudit analogs:

X� = X�1 � ¯ � X�n, Z� = Z�1 � ¯ � Z�n. �3.20�

For a bipartite 4�4 system the states are represented as
���= ��1 ,�2�, with � j �Z2. The Bell basis can be expressed as

�m1,n1;m2,n2�

=
�− 1�m1n2+m2n1

2 	
�1,�2

�− 1�m1�1+m2�2

���1 + m1n2 + m2n1,�2 + m1n1 + m2n2�A��1,�2�B,

�m1,m2
˜� =

1

2 	
�1,�2

��1 + n1,�2 + m2�A��1;�2�B. �3.21�

The conditions

m1n2 + m2n1 = �0

1
� �3.22�

determine the symmetric and antisymmetric states, respec-
tively. The solutions of this equation show that there are ten
symmetric states and six antisymmetric ones, whose explicit
form can be directly computed from previous formulas.

So far we have been dealing with systems made of n
qudits. However, sometimes they can be treated instead as a
single “particle” with dn levels. For example, a four-
dimensional system can be taken as two qubits or as a qu-
quart. If, for some physical reason, we choose for the quqart,
we can still use Eq. �2.15�, as in Ref. �49� even if now the
dimension is not a prime number. However, if we proceed in
this way the resulting basis contains six symmetric and two
antisymmetric states, while the other eight do not have any
explicit symmetry, contrary to our results.

To conclude, we observe that, for the prime-dimensional
case, the labeling of the Bell states �Eq. �2.19�� by indices
of the corresponding MUB operators is unique since
only straight lines in the discrete phase space define MUBs.
For multiqudit systems things are different: although in
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Eq. �3.11� we have used only the standard set of MUBs
operators to label such states, another construction of MUBs
exists. It has been shown in Ref. �56� that different and noni-
somorphic sets of MUBs can be associated with some spe-
cific curves in phase space. This opens the possibility to label
generalized Bell states also with points of such curves,
producing quite different form of � matrices: ��� ,��
=Z����X����, where ����� ,����� are points of curve such that
�Z����X���� ,Z�����X������=0 and � is a parameter along the
curve. Unfortunately, in this case no direct generalization of
sum rules �Eq. �3.18�� can be obtained.

IV. CONCLUDING REMARKS

In summary, we have provided a complete MUB-based
construction of Bell states that fulfills all the requirements
needed for a good description of maximally entangled states
of bipartite multiqudit systems.

Mutually unbiasedness is a very sound concept arising
from the exact formulation of complementarity. The deep
connection shown in this paper with the Bell bases is more
than a mere academic curiosity for it is immediately appli-
cable to a variety of experiments involving qudit systems.

APPENDIX: FINITE FIELDS

In this appendix we briefly recall the minimum back-
ground needed in this paper. The reader interested in more
mathematical details is referred, e.g., to the excellent mono-
graph by Lidl and Niederreiter �57�.

A commutative ring is a nonempty set R furnished with
two binary operations, called addition and multiplication,
such that it is an Abelian group with respect to addition, and
the multiplication is associative. Perhaps, the motivating ex-
ample is the ring of integers Z, with the standard sum and
multiplication. On the other hand, the simplest example of a
finite ring is the set Zn of integers mod n, which has exactly
n elements.

A field F is a commutative ring with division, that is, such
that 0 does not equal 1 and all elements of F except 0 have a
multiplicative inverse �note that 0 and 1 here stand for the
identity elements for the addition and multiplication, respec-
tively, which may differ from the familiar real numbers 0 and
1�. Elements of a field form Abelian groups with respect to
addition and multiplication �in this latter case, the zero ele-
ment is excluded�.

The characteristic of a finite field is the smallest integer d
such that

d1 = 1 + 1 + ¯ + 1

d times

= 0,
�A1�

and it is always a prime number. Any finite field contains a
prime subfield Zd and has dn elements, where n is a natural
number. Moreover, the finite field containing dn elements is
unique and is called the Galois field Fdn.

Let us denote as Zd�x� the ring of polynomials with coef-
ficients in Zd. Let P�x� be an irreducible polynomial of de-
gree n �i.e., one that cannot be factorized over Zd�. Then, the
quotient space Zd�X� / P�x� provides an adequate representa-
tion of Fdn. Its elements can be written as polynomials that

are defined modulo the irreducible polynomial P�x�. The
multiplicative group of Fdn is cyclic and its generator is
called a primitive element of the field.

As a simple example of a nonprime field, we
consider the polynomial x2+x+1=0, which is irreducible in
Z2. If � is a root of this polynomial, the elements
�0,1 ,� ,�2=�+1=�−1
 form the finite field F22 and � is a
primitive element.

A basic map is the trace

tr��� = � + �2 + ¯ + �dn−1
. �A2�

It is always in the prime field Zd and satisfies

tr�� + ��� = tr��� + tr���� . �A3�

In terms of it we define the additive characters as


��� = exp�2�i

p
tr���� , �A4�

which posses two important properties:


�� + ��� = 
���
����, 	
���Fdn


����� = dn�0,�. �A5�

Any finite field Fdn can be also considered as an
n-dimensional linear vector space. Given a basis �� j
,
�j=1, . . . ,n� in this vector space, any field element can be
represented as

� = 	
j=1

n

� j� j , �A6�

with � j �Zd. In this way, we map each element of Fdn onto
an ordered set of natural numbers �⇔ ��1 , . . . ,�n�.

Two bases ��1 , . . . ,�n
 and ��1� , . . . ,�n�
 are dual when

tr��k�l�� = �kl. �A7�

A basis that is dual to itself is called self-dual.
There are several natural bases in Fdn. One is the polyno-

mial basis defined as

�1,�,�2, . . . ,�n−1
 , �A8�

where � is a primitive element. An alternative is the normal
basis constituted of

��,�d, . . . ,�dn−1

 . �A9�

The choice of the appropriate basis depends on the specific
problem at hand. For example, in F22 the elements �� ,�2
 are
both roots of the irreducible polynomial. The polynomial ba-
sis is �1,�
 and its dual is ��2 ,1
, while the normal basis
�� ,�2
 is self-dual.

The self-dual basis exists if and only if either d is even or
both n and d are odd. However for every prime power dn,
there exists an almost self-dual basis of Fdn, which satisfies
the properties: tr��i� j�=0 when i� j and tr��i

2�=1, with one
possible exception. For instance, in the case of two qutrits
F32, a self-dual basis does not exist and two elements
��2 ,�4
, � being a root of the irreducible polynomial
x2+x+2=0, form a self-dual basis

tr��2�2� = 1, tr��4�4� = 2, tr��2�4� = 0. �A10�
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