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With a recently developed time-evolving block decimation algorithm, we numerically study the ground-state
quantum phase diagram of Fermi mixtures with attractive interspecies interactions loaded in one-dimensional
optical lattices. For our study, we adopt a general asymmetric Hubbard model with species-dependent tunnel-
ing rates to incorporate the possibility of mass imbalance in the mixtures. We find clear signatures for the
existence of a Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� phase in this model in the presence of population
imbalance. Our simulation also reveals that in the presence of mass imbalance, the parameter space for FFLO
states shrinks or even completely vanishes depending on the strength of the attractive interaction and the
degree of mass imbalance.
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The pairing of fermions in multicomponent Fermi mix-
tures is of fundamental interest for a broad range of active
research fields in most branches of modern physics, such as
superconductivity in condensed-matter physics, novel states
of matter in ultracold atom systems, neutron stars in astro-
physics �1�, as well as color superconductivity of quark mat-
ter in nuclear and elementary particle physics �2�. When the
Fermi surfaces of the component species are mismatched due
to unequal densities, possibilities open up for exotic pairing
mechanisms such as the Fulde-Ferrell-Larkin-Ovchinnikov
�FFLO� �3,4� and the breached pair �BP� states �5,6�. While
these interesting states of matter remain experimentally elu-
sive, controversies about their stability have been long stand-
ing. Recently, this subject has received renewed intense at-
tention due to the atomic physics experimental studies on
population-imbalanced ultracold fermions �7�. The advent of
the techniques for precisely controlling and detecting ultra-
cold atoms is making it possible to systematically study the
FFLO and/or the BP states with exotic fermionic pairing,
which has turned out to be impossible to do in conventional
solid-state systems.

Inspired by the experimental achievements, over the past
few years a large body of theoretical studies have been re-
ported on the exotic pairing states in ultracold atomic fer-
mion systems with population imbalance �8–11�. It has been
found that both the FFLO �8� and the BP states �9� could
exist in three-dimensional �3D� systems. Particularly, a con-
sensus has developed that the stability region of the 3D
FFLO states is very narrow especially at finite temperature,
making it very difficult to observe experimentally. In con-
trast, due to the Fermi-surface nesting it could be much
easier to observe the FFLO-type states in one-dimensional
�1D� or quasi-1D systems �10,11�. In this work we present
numerically calculated exact quantum phase diagrams for the
population imbalanced 1D Fermi mixtures with unequal
masses for the component species.

Fermi mixture systems with mass imbalance could be
characterized by the asymmetric Hubbard model �AHM�
with species-dependent tunneling rates. With equal spin
populations, a phase diagram for the 1D AHM has been ob-
tained with the renormalization-group technique �12�, and

possible spin segregation in this model with repulsive inter-
actions has been investigated with bosonization and density-
matrix renormalization-group �DMRG� techniques �13�.
Nonetheless, it is not surprising that more attention has been
given to the case with both mass and population imbalances,
in which stabilities of FFLO and BP states in 3D systems
have been extensively studied �14�. Very recently, a quantum
Monte Carlo �QMC� study on finite-size Fermi mixtures in
1D optical lattices with imbalanced populations and masses
has been reported �15�, in which the evidence of 1D analog
of FFLO-type states has been found. The QMC simulation
also reveals that when the mass difference is large enough,
instead of being an FFLO-type state, the ground state of the
system will become an inhomogeneous “collapsed” state.

In this Rapid Communication, we report a time-evolving
block decimation �TEBD� numerical study on Fermi mix-
tures with unequal masses and attractive on-site interaction
in 1D optical lattices. Our study is complementary to the
QMC simulation in Ref. �15�, in that we obtain the phase
diagrams for such Fermi mixture systems. Consistent with
the QMC results, we find that FFLO states are the only pos-
sible class of polarized pairing states in such systems. As the
mass imbalance increases, the parameter space for FFLO
states shrinks and eventually vanishes completely. Since we
study the homogeneous system in the thermodynamic limit,
the inhomogeneous collapsed state does not show up here, in
contrast to Ref. �15�.

For our simulation, we adopt the asymmetric Hubbard
Hamiltonian to model the Fermi mixtures in 1D optical lat-
tices with unequal masses:

H = − �
�i,j�,�

t�c�i
† c�j + �

i

Un↑in↓i − �
i

��n↑i + n↓i�

+ �
i

���n↓i − n↑i� , �1�

where c�i ��=↑ or ↓� stands for the annihilation operator of
� fermion at site i, n�i�=c�i

† c�i� represents the corresponding
particle number operator, t� is the species-dependent tunnel-
ing rate �through out this Rapid Communication t↑ is set to
be the unit of energy�, U characterizes the on-site interspe-
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cies interaction strength, and ���� gives the chemical po-
tential of the ↑ /↓ fermion. In analogy with real spin systems,
�� will be referred as the effective magnetic field in the
following although our system is spinless with the ↑ /↓ com-
ponents corresponding to fermions with different masses.
The unequal mass effects are incorporated in the species-
dependent tunneling rates through

t↓
t↑

=
m↑
m↓

. �2�

We note that the asymmetric Hubbard model in Eq. �1� could
also be realized in mixtures of same-species fermions pre-
pared in two different internal states by engineering internal-
state-dependent optical lattices �16�.

To investigate the ground state properties of Hamiltonian
�1�, we use an infinite lattice version of the TEBD algorithm
�17�, which allows us to study the model in the thermody-
namic limit. A source of the intrinsic numerical error for
TEBD is due to the Trotter-Suzuki expansion �TSE� for the
decomposition of time evolution operator. �In our simulation
we have chosen the fourth-order symmetric TSE.� Further-
more, the convergence of the physical results with TEBD is
mainly controlled by a cut-off parameter �, which character-
izes how well one preserves the bipartite entanglement of the
system when truncating the Hilbert space. In this work, we
choose �=60. The convergence has been checked to be good
enough �within �O�10−4� for real-space correlation func-
tions� for our purpose by comparing with �=80 and 100
results.

To identify relevant �quasi�phases for our model, we cal-
culate the real-space spin-spin �Sr

m�, density-density �Dr�,
and pairing �Pr� correlations and their Fourier transforms
Xk=1 /	M�r=0

M Xr cos�kr�, where M +1 is the number of sites
involved in the transforms �for this work, we choose M
=100� and X stands for S, D, and P correlations. The real-
space correlation functions are defined as

Sr
m 
 �si

msi+r
m � − �si

m��si+r
m � ,

Dr 
 �nini+r� − �ni��ni+r� ,

Pr 
 �ci↑ci↓ci+r↓
† ci+r↑

† � , �3�

where the spin operators associated with site i is given by
si

m
ci�
† ���

m ci� /2, with � and �= ↓ ,↑ and �m �m=x ,y ,z�
stands for the Pauli matrices. In addition, we also calculate
�c�i

† c�i+r� and its Fourier transform �n�,k�, which gives the
momentum distribution of the � fermion.

In Fig. 1, we present the ground-state phase diagrams for
Fermi mixtures based on Hamiltonian �1� at U=−4. In the
shaded parameter regions around the centers of the diagrams,
all the lattice sites are partially filled by both species of fer-
mions and the effective magnetic field �� is not strong
enough to induce any population imbalance. In these regions,
the ground states of the system have either charge-density
wave �CDW� or singlet superfluid �SS� as the dominant
quasi-long-range order depending on the filling factor. As the
effective magnetic field increases, population imbalance is
introduced and the system could be brought into the regions

filled with solid dots as shown in Fig. 1. These regions are of
central interest to us since within them the ground state of
the system is found to be of the FFLO type. In the remaining
regions of the diagrams, at least one type of fermions has
zero or unity occupation number at all sites ��n�i�=0 or 1�
and the system behaves as normal Fermi gas. The solid lines
in Fig. 1 show the phase boundaries of the normal �N� states.
We note that the normal states here could be further divided
into different categories, i.e., vacuum state, fully occupied
state, and fully polarized state, according to the occupation
number and the degree of polarization. But as they are of
limited interest, we do not distinguish them in this work.

By comparing the diagrams corresponding to different t↓,
we can make the following observations. First, the parameter
space supporting the FFLO state shrinks with the increase in
the imbalance in t� or, equivalently, in the fermion masses.
This can be understood by considering the bandwidth. A
larger mass imbalance effectively leads to a narrower band-
width ��4t↓

2 /U�; hence when we tune � or �� it is easier for
the system to fall into the n↓=0 or 1 bands and become
normal. A second observation is that the symmetry of the
t↓�1 diagrams is different from that in the t↓=1 case. When
t↓�1, the diagrams are only symmetric about the center
point ��=U /2,��=0�, reflecting the fact that the Hamil-
tonian is invariant under the particle-hole transformation
combined with the inversion about ��=U /2,��=0�. In the
t↓=1 case, the diagram is symmetric about the two axes �
=U /2 and ��=0 since the Hamiltonian now possesses an
extra symmetry, namely, the invariance under spin flip com-
bined with the inversion about ��=U /2,��=0�.

We present in Fig. 2 the ground-state phase diagram for
U=−10. One can see that the key features are the same as
those in the U=−4 case. Namely, FFLO states are the only
partially polarized superfluid states in the phase diagrams,
and their parameter spaces shrink with an increase in mass
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FIG. 1. �Color online� Effective magnetic field vs chemical po-
tential ground-state phase diagrams for U=−4. From left to right,
the six panels correspond to t↓=0.1, 0.15, 0.3, 0.5, 0.7, and 1, re-
spectively. The ground states of the system in the regions filled with
solid dots are found to be of the FFLO type. In the shaded regions
around the center of each panel, the system has balanced population
in its ground states. From ��−U /2�=0+ to �c, the dominant or
subdominant quasi-long-range orders changes from CDW or SS to
SS or CDW. In the remaining regions, at least one species of fer-
mions satisfies �n�i�=0 or 1 and the system behaves as normal
Fermi gas. The unit of energy is set to be t↑.
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imbalance. Furthermore, the shape and symmetry of the dia-
grams also resemble those in the U=−4 case. Nonetheless,
there are noticeable differences. With a stronger on-site at-
traction, it is harder to break the pairs. Hence we have higher
critical fields ��c in the U=−10 case. Besides, the effects of
unequal masses become more dramatic when the on-site in-
teraction is stronger. For example, in contrast to the U=−4
case, when U=−10 and t↓=0.3 one can barely find the FFLO
phase and at t↓=0.15 the parameter space for FFLO com-
pletely disappears for U=−10.

It is also of interest to compare our results with previous
studies on Fermi mixtures in harmonic traps with population
imbalance and equal mass �11�. When t↓=1, Hamiltonian �1�
reduces to the conventional Hubbard model. By fixing ��
and reducing � in the dilute case �at most half-filled at the
trap center�, one can mimic the scenario of moving from the
center to the edge in a harmonic trap according to the local-
density approximation �LDA�. With finite polarization, at the
trap center the system is in an FFLO-type state. At large ����,
a phase separation between the FFLO and fully polarized
normal states is found �see the solid horizontal line in Fig. 2�.
In the case with small population imbalance, the Fermi mix-
ture could be found in FFLO across the entire trap �see the
dashed horizontal line in Fig. 2�. Therefore our results are in
qualitative agreement with previous studies.

In Fig. 3, we show the pairing correlation functions and
particle number distributions in the momentum space for six
sample data points with various �t↓ ,� ,�� in the FFLO re-
gimes of Fig. 1. An FFLO pair is known to have nonzero
center-of-mass momentum, and as its signature, the pairing
correlation function Pk shows a peak at the nonzero momen-
tum �k↑F−k↓F�, with k�F
�n�i�	 as the Fermi momentum of
noninteracting free fermions. From the solid curves in Fig. 3,
we can clearly see the peaks of Pk at nonzero momenta
kp= �k↑F−k↓F�, indicating the presence of the FFLO pairing.
One can also see that the particle number distribution func-
tions N↑k and N↓k drop sharply at k↑F and k↓F, respectively.
Another noteworthy point is that the momentum distribution
function for the “heavier” species �↓ fermion� in an FFLO
state clearly exhibits a dip at momentum 2k↑F−k↓F.

Considering the potential interests in studying the mix-
tures of 6Li and 40K experimentally �18�, we also present the
momentum space pairing �Pk� and density �Dk� correlations
for the asymmetric Hubbard model at U=−4 and
t↓ / t↑=0.15. The two upper panels of Fig. 4 show the pairing
and density correlations in the case with population imbal-
ance, while the lower panels show the case with equal popu-
lations. From the visibility and height of the peaks in the
correlation functions, one can tell which kind order is more
dominant. First, we look into the case with equal popula-
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FIG. 2. �Color online� Effective magnetic field vs chemical po-
tential ground-state phase diagrams for U=−10. From left to right,
the six panels correspond to t↓=0.1, 0.15, 0.3, 0.5, 0.7, and 1, re-
spectively. The ground states of the system in the regions filled with
solid dots are FFLO-type states. In the shaded regions, the fermions
of different species have equal population. In the remaining regions,
the system behaves as normal Fermi gas. The unit of energy is set to
be t↑.
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FIG. 3. �Color online� Fourier transforms of the pairing corre-
lation functions �Pk� and particle number distributions �N↑k and
N↓k� for the partially polarized asymmetric Hubbard model at
U=−4. Pk, N↑k, and N↓k are depicted by the solid, dashed, and
dash-dotted curves, respectively. Other parameters �t↓ ,� ,��: �a�
�0.1,−2.2,−1.4; �b� �0.3,−1.7,1.4; �c� �0.3,−2.3,−1.4; �d�
�0.5,−2.4,−2.1; �e� �0.5,−2.4,0.7; and �f� �0.7,−1.7,2.6. The
unit of energy is set to be t↑. Note that the data points corresponding
to these parameter sets are marked in Fig. 1.
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U=−4t↑ and t↓ / t↑=0.15, which is exactly the mass ratio between
6Li and 40K.
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tions. When the filling factor slightly deviates from half fill-
ing, charge-density wave is the dominant quasi-long-range
order. As an example, for ��=1.1 and �=−1.9, we have
�ni�=2k↑F=2k↓F�1.09. One can observe a sharp peak for Dk
locating at k�0.9	�=2	−2k�F�, while Pk shows a much
broader and lower peak at k=0 indicating that CDW is more
dominant than SS. When the filling factor is further away
from half filling, the singlet superfluid order becomes more
dominant. �The peak of Dk moves toward k=0 with decreas-
ing visibility and height, while the peak of Pk remains at
k=0 and becomes sharper.� Next, we examine the case with
population imbalance. From the upper left panel of Fig. 4,
we can see that Pk has maxima at nonzero momenta, which
are verified to be directly given by the difference in particle
number density, signaling the presence of FFLO pairing. The
results in Fig. 4 indicate that in order to observe the FFLO
state in mixtures of spinless 6Li and 40K, one should keep the
density of 40K well away from half filling and avoid large
interspecies interactions. It is well known that if weak tun-
neling between arrays of 1D tubes is allowed �quasi-1D�, the
leading quasi-long-range order in a 1D system could be sta-
bilized and become real long-range order. Also the Fermi-
surface nesting is greatly enhanced in lower dimensions as
compared with the 3D case. So it could be advantageous to
carry out the experiments in the quasi-1D setup in order to
observe FFLO states. Finally, The experimental detection of

FFLO states is also an important issue. One of the well-
established probes for the phase correlation is the dynamical
projection of the fermion pairs into condensate of deeply
bound molecules followed by the measurement on the pair
momentum distribution of the condensate with time-of-flight
imaging. The signature of an FFLO state would be a peak at
finite momentum set by the excess fermion density
q= �n↑−n↓�	. In addition to the traditional time-of-flight im-
aging technique, schemes such as atom shot-noise correla-
tion measurement �19� and Fourier sampling of time-of-flight
images �20� have been proposed to probe the state of matter
in ultracold Fermi gases. The noise correlation of the time-
of-flight image G����k ,k��
�n�,kn��,k��− �n�,k��n��,k�� can
detect the presence of FFLO states unambiguously by show-
ing correlation at momenta satisfying �k+k��=q.

In summary, we have presented the effective magnetic
field ���� vs chemical potential ��� quantum phase diagrams
for Fermi mixtures with unequal masses and attractive on-
site interspecies interactions loaded in 1D optical lattices. We
find that with mass and population imbalance the ground
state of the system could be either an FFLO state or a normal
state. With the increase in mass imbalance, the parameter
space for the FFLO states shrinks. When the mass imbalance
gets too large, the FFLO states are no longer stable.
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