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The equation of state of a weakly interacting two-dimensional Bose gas is studied at zero temperature by
means of quantum Monte Carlo methods. Going down to as low densities as na2�10−100 permits us to obtain
agreement on beyond mean-field level between predictions of perturbative methods and direct many-body
numerical simulation, thus providing an answer to the fundamental question of the equation of state of a
two-dimensional dilute Bose gas in the universal regime �i.e., entirely described by the gas parameter na2�. We
also show that the measure of the frequency of a breathing collective oscillation in a trap at very low densities
can be used to test the universal equation of state of a two-dimensional Bose gas.
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The calculation of properties of weakly interacting quan-
tum gases was historically a very important and productive
task as it led to the development of perturbative methods,
such as the Bogoliubov diagonalization approach, Feynman
diagrams, etc. The equation of state of a three-dimensional
Bose gas dates back to 1957 when the beyond mean-field
�MF� �BMF� correction was obtained by Lee, Huang, and
Yang �1�. In the beginning of 1960s the equation of state of a
dilute one-dimensional Bose gas was obtained by Girardeau
�2�. From this perspective it is rather surprising that even
until now the equation of state of a dilute two-dimensional
�2D� gas remains an open question. In the last 30 years, the
problem has been addressed in different studies �3–15� but
the results obtained are often incomplete and even contradic-
tory, which indicates that the two-dimensional problem is
extremely complicated. Indeed, a peculiarity of two-
dimensional systems is that the coupling constant depends on
the density, contrarily to three- and one-dimensional cases,
where it is entirely defined by the s-wave scattering length a
and the particle mass m. This feature makes the analytical
derivation of the equation of state much more involved.

When perturbative theories fail, one can resort to ab initio
numerical simulations. The correctness of perturbative equa-
tions of ground state has been checked in three dimensions
�16� and in one dimension �see, e.g., Ref. �17�� using diffu-
sion Monte Carlo �DMC� methods. Analogous attempts
�18,19� to find numerical agreement with beyond mean-field
terms in 2D systems have not succeeded as in this case the
expansion parameter has logarithmic dependence on the gas
parameter na2. In particular, densities as low as na2�10−5

�20�, 10−7 �18�, and 10−6 �19� have been reached. Our esti-
mation below shows that for confident testing of the BMF
terms the density should be smaller than 10−69, which obvi-
ously is an extremely challenging task. In this work we do an
effort toward calculations at considerably smaller densities in
order to test different expressions for beyond mean-field
terms present in the literature.

We use the DMC method to address the problem. DMC
solves stochastically the Schrödinger equation providing ex-
act results for the ground-state energy within controllable
statistical errors. The construction of the guiding wave func-

tion is as in Ref. �21�. In Table I we report the energy per
particle in the thermodynamic limit as a function of the den-
sity. The scattering at low densities is universal: it is inde-
pendent of a particular choice of interaction potential and is
described by a single parameter, the s-wave scattering length.
Although the calculations are done for the dipolar interaction
there is no difference between results for different interaction
potentials for densities nr0

2�10−10. For convenience we keep

TABLE I. DMC energy per particle for dipolar interaction as a
function of the density nr0

2 obtained by extrapolating the results for
N=100–800 particles to the thermodynamic limit. Conversion to
units of s-wave scattering length a can be easily done according to
the relation a=3.17222r0. The energy is given in units of �2 /mr0

2.
Statistical errors on the last digit are shown in parentheses.

nr0
2 E /N nr0

2 E /N

2−4 0.23338�9� 2−24 2.6070�10��10−8

2−5 0.095917�38� 2−25 1.2402�5��10−8

2−6 0.039924�16� 2−26 5.9130�24��10−9

2−7 0.016817�7� 2−27 2.8268�11��10−9

2−8 0.0071709�28� 2−28 1.3536�5��10−9

2−9 0.0030943�12� 2−29 6.4953�26��10−10

2−10 0.0013491�5� 2−30 3.1218�12��10−10

2−11 5.9355�24��10−4 2−31 1.5029�6��10−10

2−12 2.6408�10��10−4 2−32 7.2448�29��10−11

2−13 1.1846�5��10−4 3�10−11 8.4396�51��10−12

2−14 5.3611�21��10−5 3�10−12 7.6254�46��10−13

2−15 2.4421�10��10−5 10−13 2.2249�13��10−14

2−16 1.1206�4��10−5 10−15 1.9048�11��10−16

2−17 5.1710�21��10−6 10−17 1.6659�10��10−18

2−18 2.3987�10��10−6 10−20 1.4028�3��10−21

2−19 1.1179�4��10−6 10−25 1.1116�2��10−26

2−20 5.2340�21��10−7 10−33 8.3539�34��10−35

2−21 2.4604�10��10−7 10−50 5.4752�22��10−52

2−22 1.1604�5��10−7 10−67 4.0746�16��10−69

2−23 5.4925�22��10−8 10−100 2.7251�10��10−102
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the name of “dipoles” in order to distinguish between differ-
ent series of calculations.

The leading contribution in the 2D equation of state is
described by mean-field Gross-Pitaevskii �GP� theory in
which all particles are considered to be in the condensate.
The chemical potential is linearly proportional to the density
�=g2Dn and the coefficient of proportionality is the coupling
constant. Unlike three- and one-dimensional systems, where
the coupling constant is independent of the density, in a two-
dimensional system g2D itself depends on density making the
construction of a precise theory very complicated. The lead-
ing contribution to the purely 2D coupling constant was first
obtained by Schick �3� in 1971 who made use of the Beliaev
method �22�. Contrary to three- and one-dimensional cases,
the dependence of the coupling constant on the s-wave scat-
tering length a is very weak. Indeed, a enters under the loga-
rithm,

g2D
MF =

4��2

m

1

�ln na2�
. �1�

Recently, it has been shown that a rigorous derivation of a
two-dimensional Gross-Pitaevskii theory leads to the same
result �12�.

Before discussing beyond mean-field terms it is necessary
to note that the usual mean-field relation between energy per
particle and chemical potential is accurate only in the leading
term, while in three- and one-dimensional systems the MF
relation is exactly linear. Indeed, the chemical potential is
proportional to the coupling constant g2D: �2D

MF=g2Dn
=4��2n / �m ln na2�. The energy per particle, which is found
by integrating the chemical potential, is EMF /N
=4�	�0,2�ln na2���2 / �mna4�, where 	�a ,x� is the incom-
plete gamma function. The energy expansion in the dilute
regime na2→0 can be obtained from the large argument ex-
pansion of 	�0,x� as follows:

EMF

N
=

2�n�2/m
�ln na2� + 1/2 − 1/�4�ln na2�� + ¯

. �2�

We see that there are differences between Eq. �2� and the
usual MF expression EMF /N=gn /2. The differences contain
logarithmically small terms that exceed the accuracy of the
mean-field theory. However, in the study of beyond MF ef-
fects terms of this order are significant.

The dominant beyond mean-field terms were obtained by
Popov �4� in 1972 �see also his book �23��. He obtained a
recursive expression relating chemical potential � and den-
sity n. At zero temperature his expression reduces to

n =
m�

4��2�ln

0

�
− 1� , �3�

where 
0 is on the order of �2 /mr0
2 with r0 being the range of

the interaction potential. We write the last relation introduc-
ing an unknown coefficient of proportionality C1: 
0
=C1�2 /ma2. By solving Eq. �3� iteratively one obtains the
following expression for the chemical potential:

�Popov =
4�n�2/m

�ln na2� + ln�ln na2� − ln 4� + ln C1 − 1. . .
. �4�

Mathematically, the leading beyond MF term in � and
E /N is a double logarithm ln�ln na2�, and if the density is low
enough inclusion of this term should be sufficient to repro-
duce the energy correctly. From a practical point of view this
term works at such extremely low densities; that inclusion of
the double logarithm term alone might even lead to larger
deviations in the energy. Indeed, the second subleading term
is some constant on the order of ln 4�. To estimate a typical
density of applicability of a double-logarithm term we ask
that the term ln�ln na2� be m times larger than typical con-
stant term ln 4�. This leads to an estimation of a character-
istic density na2�e−�4��m

. Asking for a factor m=2 �i.e., 50%
accuracy� we get an extremely low density na2�10−69, ask-
ing for m=3 �i.e., 33% accuracy� the density drops to a quite
unrealistic number na2�10−862. We note that the universal
regime where the energy depends only on the gas parameter
na2 extends to much larger densities, such as na2�10−6.
This situation should be contrasted with three- or one-
dimensional case, where the universal regime is perfectly
described by the first beyond MF correction. We note that
problems due to a logarithmic correction arise also in four
dimensions �24�. Another important peculiarity of two-
dimensional world is that second and third beyond MF cor-
rections have different signs. Furthermore, it follows that
such corrections can compensate each other at some rela-
tively “large” density. In fact, this effect has been observed
in a full many-body calculation �19� at density na2�10−6.
Notwithstanding the energy in this point is reproduced cor-
rectly by the mean-field theory; other properties �for ex-
ample, the condensate fraction� are not described precisely.

The complexity of the problem explains the large number
of works dedicated to the analytical study of the equation of
state of dilute 2D Bose gas. A summary of these works is
presented in Table II, where we report the expression for the
energy per particle. Almost all beyond MF theories agree on
the presence of the ln�ln na2� term but differ in the constant,
or explicitly discuss that the constant term cannot be ob-

TABLE II. Literature overview, equation of state of a dilute
two-dimensional Bose gas. Fifth column, terms of the low-density
expansion appearing as straight lines in Fig. 1 in the limit of large
ln�ln na2�.

Year Ref. First author Type Terms

1971 �3� Schick MF EMF /N=2��2n / �m�ln na2��
1971 �4� Popov �25� BMF ln�ln na2�−ln 4�−1 /2

1978 �5� Lozovik BMF ln�ln na2�−ln 4�+1 /2

1978 �6� Hines BFM ln�ln�na2 /���−ln 2�3−2�+3 /2

1988 �7� Fisher BFM ln�ln na2�−ln 4�−1 /2

1992 �8� Kolomeisky BFM ln�ln�4�na2��−ln 4�

1993 �9� Ovchinnikov BMF ln�ln na2�
2001 �12� Lieb MF EMF /N=2��2n / �m�ln na2��
2001 �11� Cherny BMF ln�ln na2�−ln �−2�−1 /2

2002 �13� Andersen BMF ln�ln na2�−ln 4�−1 /2

2003 �14� Mora BMF ln�ln na2�−ln �−2�−1 /2

2004 �15� Pricoupenko BMF ln�ln na2�−ln �−2�−1 /2

2005 �18� Pilati BMF 0.86 ln�ln na2�−2.26
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tained within the used approach. Previous diffusion Monte
Carlo calculations �18,19� have shown the existence of a
universal equation of state, but even at the smallest consid-
ered densities none of the equations of state given in Table II
was able to reproduce the energy correctly.

In the present DMC calculation at ultralow densities
we reach the regime where the analytical expansions from
Table II are applicable and therefore it is possible to test
them. According to the majority of theories the complete
expression for the energy can be generalized as E /N
=2��2n / �m��ln na2�+ln�ln na2�−const+¯��. Then, the be-
yond MF terms should be tested by inverting the energy and
subtracting the MF term, according to the combination
2��2n / �mE /N�− �ln na2�=ln�ln na2�−const. Figure 1 shows
DMC results of this combination as a function of the double
logarithm of the gas parameter ln�ln na2� for hard disk and
dipolar interaction potentials. The analytical results from
Table II are drawn with lines. The majority of approaches
predict the first beyond mean-field term as ln�ln na2� that
would correspond to a linear behavior with unitary slope in
Fig. 1. The only two exceptions are the theory of Hines et al.
�6� and a fit to DMC results of hard disks �18�. The region of
applicability of the latter fit is limited to 1.5� ln�ln na2�
�2.8. Our results for dipolar interaction potential are com-
patible with the linear dependence and unitary slope �for the
largest x=ln�ln na2�4 the numerical simulations are very
difficult and the error �E in the estimation of the energy is
exponentially amplified in the quantity of interest as
�n�E� /E2�ex��E� /E�. The third beyond mean-field correc-
tion corresponds to a constant shift in Fig. 1. Here there are
the major discrepancies between theories. The reason for that
is the complexity of perturbation theory in two dimensions.
One has to evaluate correctly all the terms contributing to a
given level of accuracy. Just to name some sources for this
constant, already from the recursive expression �3� one sees
that the self-consistent evaluation of � contributes to its
value. Also the effect of the quantum fluctuations �depletion
of the condensate density�, the difference between cutoff

length, the range of the potential, and the s-wave scattering
length contribute on this level. The Euler gamma constant �
appearing in some of the theoretical results is related to the
dependence in the ladder approximation of the chemical po-
tential on the scattering amplitude �22�, which in turn con-
tains � in its short-range expansion �6�.

Our DMC results are in agreement within error bars with
the constant shift −ln �−1 /2−2� obtained in Refs.
�11,14,15� for ln�ln na2�3. Cherny and Shanenko �11� do
expansion in terms of a dimensionless in-medium scattering
amplitude u obeying the equation 1 /u+ln u=−ln��na2�
−2�. The dimensionless energy 
=Em / �2��2nN� is then ex-
panded as a series 
=u+u2 /2−u3+¯. We test the accuracy
of this description and find that the agreement with the first
two terms of this expansion is notably good. The deviations
enter on the level of the third beyond MF term. We apply a
fitting procedure to find the coefficient in front of u3 with the
�2 criterion; the result is mE / �2��2Nn�=u+u2 /2−2.0�1�u3.
This fit describes correctly the energy in the universal regime
�where results for dipoles and the hard disks coincide� and at
densities ln�ln na2�2 for hard disks. We note that the hard
disk interaction potential is completely described by only
one parameter and its equation of state is expected to be the
most universal.

In terms of the gas parameter our best perturbative de-
scription for the chemical potential is given by

� =
4��2n/m

�ln na2� + ln�ln na2� + C1
� +

ln�ln na2�+C2
�

�ln na2� + ¯

, �5�

where C1
�=−ln �−2�−1=−3.30. . . and C2

�=−ln �−2�
+2.0�1�=−0.3�1�. The corresponding expression for the uni-
versal energy per particle is

E

N
=

2��2n/m

�ln na2� + ln�ln na2� + C1
E +

ln�ln na2�+C2
E

�ln na2� + ¯

, �6�

where C1
E=C1

�+1 /2 and C2
E=C2

�+1 /4 �in the mean-field
case, described by Eqs. �1� and �2�, relation between C1

E and
C1

� is similar, while relation between C2
E and C2

� is different
due to double-logarithm term present in Eq. �6��.

We illustrate the convergence of the series in Fig. 2 where
we plot the quotient between the energy and mean-field pre-
diction of Schick �3�. One sees that contrary to three- and
one-dimensional cases, the mean-field prediction is not pre-
cise even at extremely dilute values of the gas parameter
�19�. Moreover, differences between the expression of
Schick and the integrated Schick’s chemical potential matter
at the considered densities. Inclusion of the leading beyond
mean-field correction �i.e., double-logarithm term ln�ln na2��
does not improve the description for densities na210−100.
This term is negative and it leads to an underestimated en-
ergy. The second BMF correction �C1

E and C1
� terms in Eqs.

�6� and �5�� has a different sign and effectively cancels the
first BMF term at the density na2�10−6. Inclusion of this
term permits to recover the DMC results up to na2�10−30.
Inclusion of the third BMF term �Eq. �6�� extends the region
of applicability of the series expansion up to relatively
“high” densities na2�10−3.

FIG. 1. �Color online� Nonuniversal beyond MF corrections
2��2n / �mE /N�− �ln na2� in the energy per particle as a function of
the double logarithm of the gas parameter ln�ln na2�. Symbols de-
note DMC results. Up triangles, hard disks �18�; down triangles,
dipoles. Lines, different equations of state �see Table II�; black
dashed line, Eq. �6�.
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The correctness of the series expansion of the 2D equa-
tion of state can be verified in high-precision experiments
measuring the frequency � of the lowest breathing mode.
We note that the presence of a tight transverse harmonic

confinement modifies the coupling constant reducing the ef-
fectively s-wave scattering length a in Eq. �1� by an expo-
nentially small factor 	exp
−�� /2aho /a3D�, where aho is os-
cillator length and a3D is the s-wave scattering length �26�.
This makes ultradilute 2D densities be experimentally acces-
sible exploiting confinement-induced resonance. We use
local-density approximation �LDA� to describe a trapped gas
and show our predictions for � in the inset of Fig. 2. As one
can see, the effect is large and therefore the observation of �
provides a sensitive experimental tool for testing the equa-
tion of state.

To conclude, we study the zero-temperature equation of
state of weakly interacting 2D Bose gas down to ultradilute
densities na2�10−100 and confront the obtained energy with
a large number of different analytical expressions for the
energy. All theories agree at mean-field level and the major-
ity agrees on the first beyond MF term, which still does not
provide an accurate quantitative description even at such low
densities. A good agreement between perturbative series and
results of the present ab initio calculations is found. The
third beyond MF term is fitted and the corresponding equa-
tion of state is explicitly written in terms of the gas param-
eter. Finally, we suggest future experimental work to mea-
sure the frequency of a breathing collective oscillation in a
trap at very low densities since our results prove that this
frequency is a very sensitive tool for verifying the universal
2D equation of state.
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FIG. 2. �Color online� Main plot, energy in units of MF energy
E1

MF /N=2��2n / �m ln na2� as a function of the gas parameter. Inset,
square of the lowest breathing mode frequency �2 as a function
of the LDA parameter N1/2r0

2 /aho
2 . Thin dashed line �inset�, mean-

field linear equation of state �0
MF�n; thin solid line �inset and main

plot�, mean-field expression of Schick for the energy E1
MF; thick

solid line �main plot�, mean-field expression E2
MF /N

=4�	�0,2�ln na2���2 / �mna4�; dash line with one dot, first beyond
MF correction; dash line with two dots, second BMF correction;
short-dashed line, three BFM terms; circles, DMC results for di-
poles; squares, DMC results for hard disks.
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