RAPID COMMUNICATIONS

PHYSICAL REVIEW A 79, 051402(R) (2009)

Demonstration of a multipulse interferometer for quantum kicked-rotor studies

A. Tonyushkin,>l< S. Wu,Jr and M. Prentiss
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 11 June 2008; published 27 May 2009)

We implemented a multipulse interferometer scheme that allows us to study a quantum kicked rotor by
observing dephasing of momentum coherence. Our study shows that momentum coherence can be nearly
perfectly preserved under conditions where the mean energy as a function of the kick number is known to
increase without bound. The accompanying width narrowing of these coherences may provide a new method

for accurate measurement of the recoil frequency.
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Coherence and interference are fundamental properties of
quantum mechanical systems that cause quantum dynamics
to be different from classical dynamics. With the advent of
the atomic delta kicked rotor (ADKR) [1] it has been pos-
sible to probe a boundary between classical and quantum
dynamics in a single system. These studies showed predicted
phenomena such as quantum resonances [1,2] as well as un-
expected ones such as quantum accelerator modes [3,4], dy-
namical localization of momentum [5,6], and chaos-assisted
tunneling [7]. The stability [8] and scaling [9] of ADKR
features are still an open field for both theoretical and experi-
mental studies that not only promise to answer fundamental
questions about quantum mechanics but could offer novel
schemes for atom-optics-based sensors.

The conventional ADKR implementation consists of a
system of cold atoms periodically perturbed by pulsed off-
resonant standing waves; the system dynamics is studied by
observing the momentum distribution and the mean energy.
In previous interferometry approaches the ADKR was ap-
plied to momentum states, but the interferometer output
probed the coherence between internal states that were not
directly affected by the ADKR [4]. In contrast, we offer a
scheme for experimental study of the effect of a kicked rotor
on atomic coherences by measuring the dephasing induced
by an ADKR that acts on the momentum states whose coher-
ence is measured by the output of an external state atom
interferometer [10]. With our scheme we are able to experi-
mentally realize the main and fractional quantum resonances
for momentum coherences and study them in the broad range
of perturbation with high resolution. Our results provide a
surprisingly close match to the corresponding features in the
mean energy of previous ADKR realizations. We demon-
strate that the coherence between different momentum states
that is established by the interaction with the first optical
grating in the atom interferometer can be nearly perfectly
preserved at a quantum resonance (QR) while additional
fringes exist in the vicinity of QR [11]. We directly show that
fractional QR corresponds to higher order momentum coher-
ences in the atom interferometer. Our method is also suitable
to investigate the scaling of recently predicted fractional
resonances of a d-kicked accelerator for thermal atoms [12],
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which is attractive for accurate measurement of gravitational
acceleration due to the lack of mean-field effects. Finally, we
show that our system may be used as a tool for precision
measurements of atomic recoil frequency [13].

The experimental setup and matter-wave diffraction
scheme are shown in Fig. 1. In our experiment we subject a
cloud of cold ®Rb atoms in a magnetic guide to periodic
kicks from a sinusoidal potential created by standing wave
(SW) pulses of off-resonant laser light along the guiding di-
rection. A detailed description of the de Broglie wave inter-
ferometer in a magnetic guide is given elsewhere [14]. The
interferometer SW consists of the two counterpropagating
traveling waves with k vectors k precisely aligned along the
guide and the SW field is ~20I" blue detuned from F=1
— F' =2 transition. The schematic of matter-wave diffraction
in the atom interferometer is conveniently described by the
recoil diagram (see, for example, Refs. [15,16]) in Fig. 1(b).
We realize the ADKR potential by applying a train of off-
resonant SW pulses in between the two interferometer pulses
[SW, and SW, in Fig. 1(b)]; therefore we treat a S-kicked
rotor as a perturbation to the matter wave’s dynamics in a de
Broglie wave interferometer. The long trapping time and cor-
responding long coherence time (~60 ms) of the atom in-
terferometer in a magnetic guide [14] allow us to investigate
ADKR for the large number of pulses N and over a broad
range of kicking strengths, characterized by the pulse area 6.
For sufficiently short kicks, the motion of atoms during pulse
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FIG. 1. (Color online) Schematic diagram of experimental
setup: (a) configuration along the magnetic guide; (b) matter-wave
recoil diagram. Here, Al=atom interferometer, APD=avalanched
photodiode, ADKR=atomic &-kicked rotor, and SW, ,=first and
second standing waves of Al
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FIG. 2. (Color online) A qualitative diagram of wave-packet
dynamics with coherence preservation. At time t=0 the wave
packet (shown in red) is diffracted by the interferometer SW pulse
into many (only two shown for clarity) wave packets which at time
T interact with kicking SW (shown by blue arrows). Here, I(x)
laser intensity pattern created by retroreflection from the mirror M.

duration 7,~0.5 us can be neglected. Also for a pulse du-
ration much less than the kick period T}, one can approximate
each kick as a delta function [6]. The kicking pulses are 6.8
GHz red detuned from the upper manifold of ®’Rb D, and
the maximum achievable pulse area §#=9.5. As shown in
Fig. 1(a), the propagation direction of the kicked-rotor SW is
tilted by up to 40 mrad angle with respect to the interferom-
eter SW. The grating vectors Q and Q' of the respective
interferometer and kicked-rotor SW fields are not equal. Our
detection method relies on coherent backscattering of the
probe pulse from the atomic grating induced by the interfer-
ometer pulses; therefore, it is only sensitive to spatial distri-
butions with the periodicity 277/ Q of the interferometer SW.
Thus, in order to be detected the final coherence has to be
converted to 27/ Q.

The ADKR Hamiltonian is presented elsewhere [1]. A
schematic diagram of the interaction of a kicked rotor with
matter waves is given in Fig. 2. The atomic wave packet is
split by the interferometer SW pulse at time =0 into wave
packets with momenta that differ by integer multiples of AQ;
thus the momentum coherence is created. The interaction
with the kicked-rotor potential begins at a time =T, when
the first kicking SW with a grating vector Q' is applied. If
the spatial displacement between any two diffracted wave
packets at the time of interaction is commensurate with the
spatial period of the kicking SW pulse then those wave pack-
ets experience the same potential; therefore, the differential
phase between the wave packets is equal to zero and the
interferometer signal is unaffected by this interaction [17].
The same argument applies for interactions at times {7,
+IT )5}, where [ is an integer, T ,=7/ wy is the half-Talbot
time (Ty,~33.2 us for ¥’Rb), and wor=hQ"?*/2m is a two-
photon atomic recoil frequency for the kicked-rotor poten-
tial. As compared with the resonances at the other T, that
require regular spacing and strength of the applied SW
pulses [18], in our case the invariance under the ADKR per-
turbation does not rely on the temporal pattern of the kicks
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FIG. 3. (Color) Matter-wave coherence dynamics: (a) experi-
mental data and (b) corresponding simulations (6#=0.7). The data
show the coherence preservation (red color on the contour plot) in
the narrow vicinity of the kicking period 7= (Ty=~33.2 us): the
horizontal axis is the normalized kicking period and the vertical
axis is the number of kicks.

and is still valid for the infinitely large single kick or random
strength kicks separated by irregular integer multiples of
T,,,. To distinguish between other types of quantum reso-
nances we call the latter a robust resonance in a similar
fashion as was done for mean energy QR [19]. To study the
dephasing of the interferometer signal due to ADKR we use
a normalized echo amplitude A, given by the first Fourier
harmonic of the atomic density p_n(T) which is obtained by
the backscattering technique. The normalized echo amplitude
A=p§Q(T)/ p-o(T) depends on the parameters of perturbation
potential A and it is independent of the parameters of atom
interferometer. For the kicked SW with the period [T, the
wave-packet spatial displacement is given by X(Tgum)
= Ox(Tyar) + 217/ Q' , where 8x(Tg,,) is the initial spatial dis-
placement. The robust resonance condition introduced above
(also see Fig. 2) corresponds to &x(Ty,) Which is commen-
surate to the period 277/ Q" of the kicking SW. Therefore, we
can write the displacement as X(7,,)=2(I+m)m/ Q" for I,m
integers. The differential strength defined as [18] ¢
=20 sin Q' X(Ty,)/2 is equal to zero for such a condition,
therefore providing the invariance of the coherence signal on
the perturbation strength € at any given kick.

In each experiment we fix the total interferometer time
T=20 ms that corresponds to the optimal “echo” signal and
record its amplitude; then we turn on the perturbation poten-
tial and record the signal as we modify one or several pa-
rameters of perturbation. Figure 3 shows the effect of the
ADKR on the coherence between the momentum states that
differ by 2%k for up to N=80 kicks applied and the pulse
area of the kicking SW 6=0.7, as determined by fitting the
data to simulation curve with no free parameter. The experi-
mental data are given in Fig. 3(a) where for each fixed N we
measured the backscattered echo signal at time T as a func-
tion of the normalized kicking period 7=w¢:Ty. In practice
wy— Wy <KW, SO for convenience we ignore the difference
and use Ty ,=7/{wy)=33.2 us. The experimental scan as a
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FIG. 4. Robustness of coherence resonances: (a) coherence am-
plitude at N=40 vs kicking period corresponding to the regular
(circles) and random (open squares) kicking sequences (the curves
are used to guide the eyes); the inset shows an example of random
amplitude kicking pattern as monitored by fast photodiode; (b)
resonance peak with fringes at finer time scale (T}
=33.2+2.7 us) for regular kicks at N=20 and 60=0.9,2.0,9.5,
where high pulse area produces fringes with higher contrast (the
solid curves correspond to multiple peak fits).

function of the kicking period consists of two parts: coarse
for N=1-40 and fine for N=41-80, where for greater detail
we scanned the kick period with higher resolution in the
narrow vicinity of the resonance 7/2m e[0.44,0.55]. The
corresponding results of numerical simulations are shown in
Fig. 3(b). The normalized signal A is represented by false
color scaled according to the color bar where red corre-
sponds to unity. It is seen from the data that the coherence
gets depleted everywhere except a narrow vicinity of the
resonance where it remains unity. The delay time T, is
chosen so that the separation between the two atomic wave
packets is an integer multiple of 77/ Q’. We precisely deter-
mine the required 7, which corresponds to a maximum of
an echo amplitude from the recoil oscillations experiment
where A is plotted versus T, In agreement with the quali-
tative picture given in Fig. 2, both simulations and experi-
ment show that the lowest order coherence is nearly perfectly
preserved for the main QR condition 7=7. In fact, we ex-
perimentally confirmed this result for even and odd integer
multiples of the main resonance up to 7=37. Our results
agree with the recently observed similar behavior for mean
energy resonances for up to 207 [20].

In addition to the central peak at the resonance the data
(Fig. 3) show finer fringes. For sufficient power the contrast
of these fringes is close to 100%. Similar oscillations around
the main resonance were predicted [19] and observed [11]
for the mean energy. In our case we relate these fringes to a
complicated interference of matter waves on the N scattering
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FIG. 5. (Color online) Effect of ADKR on higher order coher-
ence (fractional quantum resonance): (a) the recoil diagram for one
representative loop of the second echo scheme as compared to the
first echo scheme (dashed line); (b) experimental data; and (c) simu-
lations (#=1). On the contour plots the color represents the ampli-
tude of interference signal, the horizontal axis is the normalized
kicking period, and the vertical axis is the number of kicks.

nodes. The observed signal as a function of time is analogous
to the intensity pattern as a function of angle for light dif-
fracted by a double-slit grating, where the slit separation is
proportional to N and relative transmission of two slits is
weighed by 6. In agreement with the above support model,
we found both experimentally and from numerical simula-
tions that the fringe period and the width of a fringe scale as
~1/N. If the kicking strength is sufficiently small, these
fringes wash out producing high background around the
sharp robust resonance peak. Even for 7~ 7 the background
can be removed by either applying high pulse area optical
pulses or by randomizing the strengths of successive low
power pulses [19]. Figure 4(a) shows the removal of the
background due to application of random amplitude kicks
generated by an optical chopper, which randomly blocks the
kicked-rotor light. For the presented data the kicking period
was scanned near the third resonance 7=37 and the chop-
ping period was of the same order but incommensurate with
it. Though the background is removed, the coherence of the
robust central resonance is preserved. The removal of the
background by high strength regular kicks is illustrated in
Fig. 4(b), where the number of identical kicks is fixed at N
=20. At the highest §#=9.5, the coherence loss due to spon-
taneous emission becomes important, resulting in a decrease
in the robust resonance height.

In general, only the coherences due to momentum differ-
ence 2fik are considered in the so-called “first echo” scheme,
as shown in Fig. 1(b), where interferometer pulses are ap-
plied at times r=0 and 7/2. Atomic fringe patterns due to the
second-order coherences were observed using similar detec-
tion method in Ref. [16] and using an optical mask technique
in Ref. [21]. In our experiment we apply ADKR when the
different momentum states are separated in phase space by
different amounts, so the detected signal encodes the infor-
mation of the effect of ADKR on higher order coherences.
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This effect results in the formation of fractional quantum
resonances which were recently observed with Bose-Einstein
Condensate and ultracold atoms in an optical lattice with
velocity selection [22]. To realize such fractional resonance
we employed a so-called “second echo” configuration [15] as
shown in Fig. 5(a) where the two interferometer SW pulses
are applied at times =0 and 7/3 and the lowest order co-
herences correspond instead to a 4k momentum difference.
Figures 5(b) and 5(c) show experimental and simulation
data, respectively, of the second-order coherence evolution
for up to 30 kicks near 7/27=0.25 (Ty=16.6 us). We note
that there is no quantum resonance at 7/27=0.25 for the first
echo scheme. An arbitrary high order fractional QR at inte-
ger multiples of 7=m/n can be probed similarly in the
nth-echo configuration with the second interferometer pulse
applied at t=T/(n+1) for integer n.

The described robust resonance phenomena could be used
for precision measurements of atomic recoil frequency wy:
and hence 7i/mpy, [13]. The sharpness of the resonance peak
(see Fig. 4) can be used to determine precisely the resonance
period and thus the recoil frequency. The precision of such a
measurement is defined by Awy:/wy =AT))/(IT,);) for an
integer /. Theoretical analysis of the resonance width shows
that it should scale as AT, ~ 6T,/ (I6ONP), where 8T is the
width after single kick and p is a decay factor. For high
enough N we obtained p=1 [23]. With experimentally fea-
sible parameters the estimated precision is better than several
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parts per million for single run, which, at this level, is not
affected by systematic effects described in Ref. [24]. In order
to reach high precision, however, it is necessary to use the
same SW for interferometer and kicking pulses; there is also
a stringent requirement on the optical beam alignment with
respect to the guide axis. In general, the precision scales
favorably with the pulse area; however, a number of kicks
that can be applied are limited by the total interrogation time
of interferometer.

In conclusion, we demonstrated an application for de Bro-
glie wave atom interferometer to study reach ADKR phe-
nomena. We showed nearly perfect coherence preservation
of matter waves perturbed by a train of optical lattice pulses
when the time between successive pulses is a half integer
multiple of the Talbot time corresponding to the quantum
resonance. The combination of interferometry and ADKR
may provide a method for an accurate measurement of recoil
frequency. Finally, we note that our scheme can be ap-
proached from the multipulse atom interferometer point of
view to study an external state de Broglie atom interferom-
eter with more than four pulses [25].
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