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In this Reply, we show that the main argument of the criticism given in the preceding Comment is incon-
sistent with the assumption lying at the basis of the model introduced in the original paper [A. Matzkin, Phys.
Rev. A 77, 062110 (2008)]. We further clarify some issues concerning the interplay between noncommuting
measurements and conservation laws in order to reply to the additional criticism contained in the comment.
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In a recent paper [1], I examined models involving clas-
sical angular momentum distributions in light of the Bell
inequalities. Since it is well known that the existence of joint
probability distributions lies at the origin of the inadequacy
of Bell-type hidden variables models to account for
quantum-mechanical expectation values, the idea was to
come up with a classical model that would forbid joint dis-
tributions. Such a model was presented in Sec. IV of [1].
This model involves classical distributions and yields exactly
the same expectation value that is obtained in the quantum
Einstein-Podolsky-Rosen (EPR) —Bohm setting, known to
violate the Bell inequalities. Section V of [1] discussed to
what extent nonlocality needed to be explicitly involved in
order to account for the classical results. Indeed, since the
properties of the model arise by combining noncommutativ-
ity (precluding factorizability, see Sec. VB of [1]) and a
conservation law (imposed by rotational invariance) in view
of accounting for correlated outcomes, having recourse to
nonlocality or asserting that a conservation law is all that is
needed becomes a matter of taste—the central point being
that without some sort of interparticle action, nonfactorizable
models cannot account for any type of correlation between
outcomes. Note that [1] did not deal at all with quantum
mechanics.

In the preceding Comment [2], Tung appears to disagree
with several statements made in [1]. The main point dis-
cussed by Tung is an attempt to show that the model of Sec.
IV (that violates the Bell inequalities) is equivalent to the
model of Sec. III C (that does not). This attempt is based on
pinpointing the position of particle 2’s angular momentum J,
to a given position on the sphere. The pinpointing process
seems to be done by inferring the position of J, from the
known position of J;. Tung did not explain how this infer-
ence is made (in Ref. [2] of the Comment it is indicated that
counterfactual reasoning plays a role).

Nevertheless, it is easy to establish that the pinpointing
process is inconsistent with the model of Sec. IV. Actually
the point was already made in Sec. IV A 1 of [1] where I
wrote below Eq. (49) that “the main property of this particle-
detector interaction based model is that the detected result
does not depend on a phase-space point (or on a given indi-
vidual position of the particle’s angular momentum on the
sphere)....” The proof was given right after. It was moreover
repeatedly emphasized that this main property—the inconsis-
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tency of the model with the existence of elementary prob-
ability functions depending on an individual position of
J—holds relative to a single particle and is thus not a con-
sequence of the correlation in a two-particle system. A prop-
erty that does not hold in a single-particle system cannot be
expected to be valid in a two-particle system.

We will not repeat the proof given in Egs. (50) and (51) of
[1] here. The important point to bear in mind is that the
defining assumption of the model is, for a single particle,
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where R,= *+ % denotes the outcome for measurements along
the b axis. Equation (1) means that the average obtained over
the discrete measurement outcomes matches the average an-
gular momentum projection J, over the distribution p,, (a
uniform distribution localized on the hemispherical surface
3...)- Equation (1) along with normalization of the P(R,
=k, p,,) is sufficient to impose the value of the probabilities
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On the other hand, assume the existence of elementary prob-
ability functions p(R,=* %,J ) depending only on J such
that

’pa+>=Jp(Rb= * %,J)pM(J)dJ (3)

Then because we must have p(R,==* % ,J)=1 for any J
€ pps and p(R,=* %,J):O for any J € p,_ [in order to com-
ply with Eq. (2) when b=a], and because the distributions
are uniform, Eq. (3) becomes

e
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This result obviously contradicts Eq. (2) thereby showing
that even in the single-particle case, assuming probability
functions p(R,= t%,J) is inconsistent with the basic as-
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sumption (1) of the model, except if the elementary prob-
abilities further depend on the distributions (see Appendix B
of [3], where a step-by-step derivation is given). Thus it
makes no sense to pinpoint an individual position of the
angular momentum on the sphere; Tung’s assertion by which
the model of Sec. IV “reveals itself to be just a disguise” of
the model of Sec. III is refuted. From a physical standpoint
there are many classical situations leading to the nonexist-
ence of elementary probability functions. For example, imag-
ine a single particle having a stochastic motion uniform on
..+ characterized by J,>0 and (J,)=1/2. If the time scale
of this motion is much shorter than the time scale of a mea-
surement, R, will appear as the time average of the particle’s
angular momentum projection on the a axis; see Eq. (53) of
[1]. If R, is measured instead, by the time the measurement
is over the stochastic motion will have changed—precisely
because of the measurement interaction—from being sto-
chastic over %, previous to the measurement to being sto-
chastic over either X,, or %,_ (corresponding to the out-
comes R,=+1/2 or —1/2) at the end. It is not possible to
pinpoint the angular momentum to a fixed position J for
which the projection J, would be well defined along any
number of arbitrary axes ¢: a measurement can only change
the hemisphere over which the stochastic motion takes place.
The pinpointing process simply does not make sense within
this model. Again, this has nothing to do with the issue of
locality, but is instead related to the noncommutativity of
these classical measurements which does not allow one to
obtain jointly outcomes R, resulting from measurements
along different axes ¢ [since a measurement modifies the
premeasurement situation and leads to a post measurement
situation incompatible with that arising from a measurement
made along a different axis (see Sec. IT A)].

Finally, I respond to the other criticism made in [2] for-
mulated in very brief remarks. First, Tung asserted that the
model involves non-pre-existing conserved quantities that do
not affect one another. This is wrong: as recalled above they
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do affect one another, so that R,,=—R,, holds for any axis g,
via a conservation law (which can be postulated to hold as
such or be transmitted through a field or produced by a non-
local mechanism). Then Tung stated that the present model
cannot be taken as a hidden-variable theory accounting for
the quantum correlations. I agree: [1] is not concerned by
quantum mechanics but by Bell’s theorem—which is a math-
ematical result unrelated to any specific physical theory—
and its possible meaning when dealing with certain types
of distributions in classical mechanics. It is also asserted in
[2] that a field transport of the angular momentum would
imply infinite velocities in order to explain the correlations
of simultaneous quantum measurements. Again, [1] did not
discuss the quantum-mechanical situation, though it may be
remarked that from an experimental perspective “simulta-
neous” (whatever the specific frame of reference) means im-
posing time constraints on models providing for some type
of communication between the particles; in this particular
context Leggett [4] recently argued that present experiments
do not rule out wave-function collapse theories accounting
for quantum correlations.

To conclude, the mistake made in [2] is to attribute to the
model of Sec. IV properties specific of Bell-type models. The
important underlying question is whether factorizability—
which implies commutativity—is necessary in order to
implement locality. If locality is defined so as to preclude
any type of action (through communication or “influence” as
could be the case for conservation laws) between the par-
ticles and/or measurement apparata, then it appears that posi-
tively defined classical distributions of particles will not be
able to match the correlations obtained in the EPR quantum
type of experiments. Bell-type factorizable models will obey
the relevant Bell inequality; noncommutative models (such
as the one given in Sec. IV of [1]) will violate trivially the
Bell inequality, i.e., with the bound being 4 as expected for
independent noncorrelated events [5].
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