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We study suppression of the collapse and stabilization of matter-wave solitons by means of time-periodic
modulation of the effective nonlinearity, using the nonpolynomial Schrödinger equation for Bose-Einstein
condensate trapped in a tight cigar-shaped potential. By means of systematic simulations, a stability region is
identified in the plane of the modulation amplitude and frequency. In the low-frequency regime, solitons
feature chaotic evolution, although they remain robust objects.
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I. INTRODUCTION

Dilute atomic Bose-Einstein condensates �BECs� are ac-
curately described by the Gross-Pitaevskii equation �GPE�,
alias the cubic nonlinear Schrödinger equation �NLSE� �1�.
The sign of the cubic term in the GPE corresponds to the
self-defocusing or focusing if interactions between atoms in
the condensate are characterized, respectively, by the posi-
tive or negative s-wave scattering length. The self-focusing
GPE in any dimension �one dimension �1D�, two dimensions
�2D�, or three dimensions �3D�� gives rise to soliton solu-
tions, which are stable in the 1D case. The creation of 1D
matter-wave solitons has been reported in experimental
works �2�, while 2D and 3D solitons are unstable against the
critical and supercritical collapse, respectively �these 2D
states are usually called Townes solitons �TSs�� �3�. It was
predicted that TSs may be stabilized in the framework of the
2D GPE, without using an external potential, if the constant
scattering length is replaced by a time-dependent one that
periodically changes its sign �4�. In BEC, this can be imple-
mented by means of the Feshbach-resonance management
�FRM�, i.e., by applying a low-frequency ac magnetic field
which acts via the Feshbach resonance �5�. This stabilization
mechanism was demonstrated in optics, in terms of the trans-
mission of a light beam through a bulk medium composed of
layers with alternating signs of the Kerr nonlinearity �6�, and
then in the framework of the 2D GPE �7,8�. A somewhat
similar technique was proposed recently, making use of a
linear coupling, induced by means of a resonant electromag-
netic wave, between two different hyperfine states of atoms,
which feature opposite signs of the scattering length �9�. The
analysis of the FRM was extended to include averaging tech-
niques �10�, generation of solitons from periodic waves �11�,
the stabilization of higher-order solitons �12�, management
of discrete arrays �13�, and the case of a chirped modulation
frequency �14�. However, the stabilization based on the FRM
may be, strictly speaking, a transient dynamical regime, as
extremely long simulations suggest that the FRM-stabilized
TS may be subject to a very slow decay �15�.

The stabilization of 3D solitons by means of the FRM
technique alone is not possible, but stable 3D solitons were

predicted in a model combining the FRM and a 1D periodic
potential �16�. Similarly, the stabilization is possible when
the FRM is applied in combination with a parabolic poten-
tial, which strongly confines the condensate in one direction
�8�. Most relevant to the experiment is the “cigar-shaped”
setting, with the BEC tightly confined in two transverse di-
rections, while the third direction remains free �2�. In the
usual approximation, with the cubic nonlinearity in the cor-
responding 1D GPE, the analysis of the FRM in the latter
setting amounts to that reported in Ref. �5�. However, if the
density of the condensate is not very low, the description in
terms of the cubic nonlinearity is inappropriate, the respec-
tive 1D equation taking the form of the nonpolynomial
Schrödinger equation �NPSE�. In particular, it admits the
onset of the collapse in the self-attractive condensate in the
framework of the 1D description �17�. Accordingly, a rel-
evant problem, which is the subject of the present work, is to
study the possibility of the collapse suppression by means of
the FRM technique in the framework of the 1D NPSE. It is
relevant to mention that the NPSE was recently used to de-
scribe Faraday waves generated in the cigar-shaped trap by a
time-periodic modulation of the strength of the transverse
confinement �18�. We introduce the model in Sec. II, and
report results obtained by means of systematic numerical
simulations in Sec. III.

II. NONPOLYNOMIAL SCHRÖDINGER EQUATION

The normalized form of the 3D GPE with the transverse
harmonic trapping potential, which acts in the �x ,y� plane, is

i�t� = �− �1/2���x
2 + �y

2 + �z
2� + �1/2���

2 + V�z� + 2�g���2�� .

�1�

Here ��x ,y ,z , t� is the mean-field wave function and ��
2

�x2+y2. Further, g=2asN /a� is the nonlinearity strength,
with as the s-wave scattering length, N the total number of
atoms in the condensate, and a�=	� / �m��� the confine-
ment radius imposed by the transverse harmonic potential of
frequency ��, with m the atomic mass. In Eq. �1� length and
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time are measured in units of a� and ��
−1. As usual, g�0 and

g�0 correspond to the repulsion and attraction between at-
oms in the BEC, respectively, and V�z� is a weak axial po-
tential, which may be present in addition to the strong trans-
verse confinement. Being interested in the stabilization
mechanism that does not require the extra potential, we set
V�z�=0. Then, the 3D equation can be reduced to the NPSE
by means of ansatz �17�

����,z,t� =
1

	���z,t�
exp
−

r2

2���z,t��2� f�z,t� , �2�

where 1D wave function f�z , t� is subject to the normaliza-
tion condition, �−	

+	�f�z , t��2dz=1. Following Refs. �17–20�,
one can eliminate the transverse width, �4=1+g�f �2, arriving
at the NPSE

i
� f

�t
= 
−

1

2

�2

�z2 + V�z� +
1 + �3/2�g�f �2

	1 + g�f �2 � f . �3�

In the case of g=const, stationary solutions are looked for as
f =exp�−i
t���z�, where 
 is the chemical potential and real
function ��z� obeys equation


� = 
−
1

2
�� + V�z�� + g

1 + �3/2��2

	1 + g�2 �� . �4�

Some numerical methods for simulations of the GPE and
NPSE �with g=const� were presented in Ref. �21�.

In the case of the attractive nonlinearity, g�0, the form of
Eq. �3� implies that the amplitude of the wave function is
limited from above by a critical value,

�f �2 � ��f �2�cr = 1/�g� . �5�

A dynamical collapse sets in, with transverse width � shrink-
ing to zero and the solution developing a singularity in finite
time, as �f �2 approaches the critical value �19�. In Ref. �22�,
this was called two-dimensional primary collapse, as it is
related to the transverse 2D dynamics.

In addition to the dynamical collapse, the NPSE also ad-
mits a static collapse, in the framework of stationary Eq. �4�:
for g�0 and V�z�=0, this equation admits bright-soliton so-
lutions only below the critical value of the nonlinearity
strength, �g�� �gc��4 /3 �19�. At �g�� �gc�, the axial density

���z��2 in the bright-soliton solution is smaller than the criti-
cal value imposed by condition �5�. In Ref. �22�, this kind of
the collapse was called three-dimensional primary collapse,
as it involves a quasispherical 3D soliton. With regard to the
definition of g, this restriction determines the largest number
of atoms possible in the soliton, N�Nmax= �2a� /3�as��. With
a� and �as� on the order of 
m and 0.1 nm, respectively,
which is typical for experiments in the 7Li condensate �2�,
one has Nmax�104 atoms.

The FRM technique which makes it possible to stabilize
2D matter-wave solitons is based on the respective GPE,
i�t�= �−�1 /2���x

2+�y
2�+2�g�t����2��, where constant g�0 is

replaced by a periodic function, g�t�=gdc+gac sin��t�, with
�gdc��gac, so that g�t� alternates between attraction and re-
pulsion. The stabilization requires the presence of the con-
stant �“dc”� component, which corresponds to the self-
attraction on the average, i.e., gdc�0.

The action of the FRM within the framework of the NPSE
was not considered before. To explore this situation, we take
g�t� as indicated above, arriving at the following modifica-
tion of Eq. �3�:

i
� f

�t
= 
−

1

2

�2

�z2 +
1 + �3/2��gdc + gac sin��t���f �2

	1 + �gdc + gac sin��t���f �2 � f . �6�

Our objective is to identify a region in parameter space
�gac ,gdc ,�� where the solitons subjected to the “manage-
ment” represent stable solutions of Eq. �6�.

III. RESULTS

Localized solutions to Eq. �6� were categorized as stable
ones if, in direct simulations, they featured persistent pulsa-
tions, avoiding collapse or decay up to t=5000 �in some
cases, the stability was checked up to t=80 000�. However,
the application of this criterion to the case of �
0.5 is com-
plicated by the fact that under the action of the low-
frequency management, the soliton tends to develop an ap-
parently chaotic behavior, although without a trend to decay
�see below�. Fixing the time interval as that comprising a
large number of periods, simulations become increasingly
more difficult for �→0.

The simulations we performed by means of the Crank-
Nicolson algorithm with open-ended boundary conditions.
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FIG. 1. A typical example of a stable soliton solution to Eq. �6�.
�a� The evolution of the soliton’s amplitude in time. �b� A snapshot
of the soliton at t=100. The integration step is �t=0.05, and the
size of the integration domain is L=200. Parameters are gdc=−1,
gac=1.5, and �=1.
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FIG. 2. A typical example of the collapsing soliton. �a� The
evolution of the amplitude up to t�25, when it reaches critical
value �5�. �b� A snapshot of the soliton just before the onset of the
collapse. Parameters are the same as in Fig. 1, except for gac=2.
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The initial state was f0�z�=sech�z� that was refined by the
integration of Eq. �6� with gac=0 in imaginary time �21�. The
so generated configuration was then used as the input to
simulate Eq. �6� in real time.

Typical examples of stable and unstable solutions are
shown in Figs. 1 and 2 �in the model with gac=0, the respec-
tive soliton is stable�. In the latter case, a gradually growing
amplitude of the soliton attains critical value �Eq. �5�� at
finite t, which implies the onset of the dynamical collapse. It
happens when the argument of the square root in Eq. �6�
becomes zero, i.e., the transverse width of the soliton shrinks
to zero. Note that, with g=g�t�, critical density �5� of the
axial wave function does not necessarily correspond to the
maximum of g�t�. Indeed, in Fig. 2�a� the collapse happens at
g�t� smaller than its maximum value, �gdc�+ �gac�.

Results of systematic simulations are summarized in the
form of the stability diagram displayed in Fig. 3. The stabil-
ity thresholds shown in the figure, i.e., the maximum value
of gac admitting stable solitons, were found by slowly in-
creasing gac in steps of �gac=0.1, until the instability was
attained. The shape of the stability domain in the plane of the
management parameters, �gac ,��, is roughly similar to that
which was found in management models of a different type,
with the time-periodic modulation applied not to the nonlin-
earity, but to the optical-lattice potential, which is necessary
for the existence of stable solitons in those cases. These in-
clude the 1D model for gap solitons, with a positive scatter-

ing length �23�, and the 2D GPE with a negative scattering
length and 1D or 2D periodic potential that stabilizes TSs in
the respective settings �24�. As in those works, one may ex-
pect that here, at very large values of �, the stability region
will start to expand in the direction of larger values of gac, as
in the limit of �→	 the ac term averages to zero.

The stability borders in Fig. 3 are not extended to �
�0.5, as in the region of the low-frequency modulation the
solitons feature persistent but apparently chaotic evolution
�25�. In fact, the stability domain is well defined for ��1,
while in the intermediate region, 0.5���1, the randomness
of the soliton evolution makes the stability border dependent
on the integration time—see Fig. 4, which demonstrates a
natural trend to a decrease in the effective instability thresh-
old with the increase in the evolution time, if the threshold is
sensitive to it at all.

IV. CONCLUSION

We have used the NPSE, i.e., the 1D mean-field equation
for tightly trapped BEC, with the nonpolynomial nonlinear-
ity admitting the onset of the collapse in the framework of
the 1D description, for the study of the stabilization of soli-
tons by means of the Feshbach-resonant-management �FRM�
technique. The results were reported in the form of stability
diagrams in the plane of the management parameters,
�gac ,��. The stability domain is roughly similar to that re-
ported in linear-management models for 1D gap solitons and
2D Townes solitons �TSs�, supported by optical lattices sub-
jected to the time-periodic modulation. However, stability
domains of such a form have not been reported before in
models of the nonlinearity management. At small values of
the modulation frequency, the stability border becomes
fuzzy, as solitons feature chaotic evolution in that case.
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FIG. 3. �Color online�. Stability borders in the plane of the
time-modulation parameters, �� ,gac�, as obtained from systematic
simulations for different fixed values of gdc. In cases when the
threshold depends upon the integration time �see Fig. 4�, the respec-
tive symbol corresponds to the mean value, with the error bars
given as per the respective semidispersion.
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FIG. 4. Dependence of gac at the soliton’s instability border on
the integration time, for different modulation frequencies and gdc

=−1. Symbols denote the stability limits at different frequencies:
�=0.5 �diamonds�, =0.75 �crosses�, 1 �triangles�, and 1.5 �squares�.
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