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An analytical expression is given for the normalization of wave functions of a charge particle inside a
circular billiard in presence of an external magnetic field. The physical meaning of this normalizing factor is
related to the derivative of the energy eigenvalue with respect to the radius of the billiard. A classical estimate
of this factor gives another analytical expression which is in good numerical agreement with the quantum
analytical result.
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I. INTRODUCTION

A charged particle confined inside a circle in the presence
of an external magnetic field is a system usually called a
magnetic circular billiard. The quantum spectrum of this
two-dimensional system is well known �see, e.g., �1��. For a
study of the relations between classical periodic orbit theory
and quantum results for this system, see �2�. This system is a
crude but useful model for complex systems called artificial
atoms or quantum dots. For introductory papers on these
complex systems, see, e.g., �3,4� and for a review paper, see,
e.g., �5�.

Since the eigenfunctions of the Hamiltonian for a quan-
tum magnetic circular billiard can be expressed in terms of
Whittaker functions, normalization can simply be done by
numerical integration. This is the procedure proposed in �6�.
As shown in the present Brief Report, there exists however
an analytical expression for this normalization factor. This
analytical expression illuminates the physical meaning of the
normalization factor: its squared modulus is simply propor-
tional to the derivative of the energy eigenvalue with respect
to the confining radius. This interpretation leads to a classical
estimate for the normalization factor �an estimation based on
classical mechanics�. This classical estimate in turn yields an
approximate mathematical relation concerning partial deriva-
tives of Whittaker functions at zero points.

II. GREEN’S FUNCTION FOR LANDAU STATES

We consider the uniform magnetic field B chosen as z
axis, and the potential vector A= 1

2B�r �cylindrical gauge�.
Our study concerns the two-dimensional motion in the plane
of Cartesian coordinates x, y and polar coordinates r, �
where the radial coordinate is r=�x2+y2. In the x , y plane,
with the unit vector e�, A= Br

2 e�. Thus the uniform classical
motion along the z axis is not considered. Moreover, spin is
not taken into account and we use units such that the reduced
Planck constant � is unity. Introducing the angular frequency
�� eB

Mc , the Lagrangian �7� L= Mv2

2 + e
cA ·v can be expressed

as L= M
2 ��ṙ2+r2�̇2�+�r2�̇�. Note that according to the defi-

nition of �, � is negative for an electron and positive for a
positron. The general definition of the momentum pi associ-
ated with coordinate qi, namely, pi=

�L
�q̇i

gives pr=Mṙ and
p�=Mr2��̇+ �

2 �. The Lagrange equations give r̈=r�̇��̇+��
and p�=m, with m as a constant of motion. In quantum me-

chanics, one needs the Hamiltonian H and, according to the
general relation H=	ipiq̇i−L, one obtains after some calcu-
lations

H =
pr

2

2M
+

Mr2

2

 m

Mr2 −
�

2
�2

. �1�

Equation �1� makes clear that the energy cannot be negative.
Let the state �a ,m
 be a generalized eigenvector of the

radial position operator r, with eigenvalue a and an
eigenvector of the operator xpy −ypx with eigenvalue m. The
expression generalized vector means a normalization
with a Dirac distribution for the radial variable �r�m� �r ,m

=�m�m

��r�−r�
r . The relation between the state �a ,m
 and the

more familiar state �r
 corresponding to a particle
ideally localized at point r is �r �a ,m
= ��r−a�

a
exp�im��

�2�
. Let

G�z�= �z−H�−1 denotes the resolvent of Hamiltonian �1�. The
matrix element �r ,m�G�z��r1 ,m1
 corresponds to the radial
Green’s function of a charged particle in two-dimensional
space in the presence of a magnetic field. This function can
be calculated exactly �8�,

�r,m�G�z��r1,m1
 = − �mm1
M

�� 1+�m�
2 − ��

��1 + �m��

�
M�,�m�/2�	
�

�	


W�,�m�/2�	��
�	�

�2�

with

	 =
�e�B
2c

r2 =
M���

2
r2, �3�

� = Mz
c

�e�B
+

e

�e�
m

2
=

z

���
+

e

�e�
m

2
. �4�

In Eq. �3� 	
 indicates that the smallest values among r and
r1 must appear in the right-hand side and 	� indicates that
the greatest one must appear in the right-hand side. The defi-
nitions for the gamma function �, the Whittaker functions
M�,�m�/2, W�,�m�/2 in Eq. �2�, are the standard one, as defined,
for example, in �9�. Let us recall some properties of these
functions �9,10�. The gamma function has no zeros; the only
singularities of the gamma function are simple poles at the
negative integers. The function M�,�m�/2 is regular at the ori-
gin, and the function W�,�m�/2 decreases exponentially at in-
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finity. The radial Green’s function �2� satisfies the radial dif-
ferential Schrödinger equation for the Hamiltonian H
�Eq. �1�� with respect either the variable r or r1 for r�r1.
The poles of the resolvent G according to Eq. �2� are given
by the poles of �� 1+�m�

2 −��, i.e., 1+�m�
2 −�=−n with n being

positive integers, and one obtains the Landau spectrum �11�.

III. ANALYTICAL EXPRESSION FOR THE
NORMALIZATION CONSTANT

Let a be the radius of the circular billiard whose center is
at the origin of the coordinate system discussed above. The
eigenstates of the Hamiltonian must have a vanishing wave
function for r�a and therefore must be proportional to
�

=G�E��a ,m
, with the energies E determined as the roots
of M�,�m�/2� M���

2 a2� with respect to the variable z �see Eq. �4��.
A real normalizing factor NEm, is then given by
NEm= ��a ,m��G�E��2�a ,m
�−1/2. The total normalized wave
function is


�r� = NEm�r�G�E��a,m
 ,


�r� = NEm
exp�im��

�2�
�r,m�G�E��a,m
 . �5�

It remains to compute the normalization factor NEm. This is
easily done from the relation

�r,m��G�z��2�r1,m1
 = −
��r,m�G�z��r1,m1


�z
�6�

with �r ,m�G�z��r1 ,m1
 given by Eq. �2�,

NEm
−2 = −

��a,m�G�E��a,m

�z

,

NEm
−2 =

2

��1 + �m���2a2

�

��
��
1 + �m�

2

− ��M�,�m�/2
M���
2

a2�W�,�m�/2
M���
2

a2�� , �7�

where the value of the derivative has to be computed at
�= E

��� +
e

�e�
m
2 with E as the eigenvalue of H. Taking into ac-

count the simplification induced by the boundary condition
M�,�m�/2� M���

2 a2�=0,

NEm
−2 =

2

��1 + �m���2a2�
1 + �m�
2

− ��
�W�,�m�/2
M���

2
a2� �

��
�M�,�m�/2
M���

2
a2�� . �8�

For the classical interpretation to be discussed in Sec. IV, still
another expression will now be given. The Wronskian rela-
tion �10�

W�,��z�
dM�,��z�

dz
− 
dW�,��z�

dz
�M�,��z� =

��1 + ��
�� 1+�

2 − ��
and the boundary condition M�,�m�/2� M���

2 a2�=0 yield

NEm
−2 =

2

�2a2�� �M�,�m�/2
M���
2

a2�
��

�
�=E/���+e/�e�m/2

� �M�,�m�/2�x�

�x
�

x=�M���/2a2�

� . �9�

Let us recapitulate the global procedure. First determine
the roots E of M�,�m�/2� M���

2 a2� with respect to the variable z
which appears only in � �see Eq. �4��. Then each root E is an
eigenvalue of H, and the corresponding eigenstate is given
by


Em�r� =
exp�im��

�2�
REm�r� ,

REm�r� = − 2NEm

�� 1+�m�
2 − ��

��1 + �m��a���r
W�,�m�/2
M���

2
r�

2 �
�M�,�m�/2
M���

2
r


2 � �10�

with r�=max�r ,a�, r
=min�r ,a� and with NEm defined by
Eq. �7� and �8�, or �9�. It is then clear from Eq. �10� that the
radial wave function REm�r� is regular at origin and satisfies
REm�r�=0 if r�a. The orthonormalization relations is �with
�E�E the Kronecker symbol� �0

adrrRE�m�r�REm�r�=�E�E.

IV. PHYSICAL INTERPRETATION OF THE
NORMALIZATION FACTOR

We now consider �E
�a , i.e., the behavior of energies with

respect to the billiard radius a. If z is a root of
M�,�m�/2� M���

2 a2�, it can be viewed as a function of a and

0 = dM�,�m�/2
M���
2

a2� =
�M�,�m�/2� M���

2 a2�
�z

dz

+
�M�,�m�/2� M���

2 a2�
�a

da ,

�E

�a
= − M�2a�� �M�,�m�/2�x�

�x
�

x=�M���/2a2�
�

��� �M�,�m�/2� M���
2 a2�

��
�

�=E/���+e/�e�m/2
�−1

. �11�

The comparison of this expression with Eq. �9� gives the
physical interpretation in term of the partial derivative of the
energy eigenvalue with respect to the radius of the billiard,

NEm
2 = −

a

2M

�E

�a
. �12�

V. CLASSICAL ESTIMATE OF THE NORMALIZATION
FACTOR

Let us calculate the change in momentum due to a colli-
sion on the circular billiard. The center O of the circular
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billiard is the origin of coordinates, C denotes the center of
the circular trajectory r�t� of radius R, and rc denotes the
distance between O and C. Then classical mechanics yields
�see, e.g., �12�� E=M�2R2 /2, rc

2=2 E+m�

M�2 , and

r�t� = rc�1 + 
 R

rc
�2

+ 2
R

rc
cos��t� . �13�

Classically, if r�t�
a all the times, the circular trajectory
does not collide with the billiard. Collisions with the billiard
occur only for r=a, and it is clear from Eq. �13� that colli-
sions can occur only for

rc + R =
1

���
� 2

M
��E + m� + �E� � a , �14�

a condition that is now assumed.
Figure 1�a� represents some quantum energy levels in or-

der of increasing energy, and Fig. 1�b� shows corresponding
possible classical trajectories inside the billiard. The data of
this figure are for M =1, �=2, a=5, and m=5. It is seen on
Fig. 1�b� that the four firsts trajectories do not collide the
billiard. It is also seen in Fig. 1�a� that the energies of these
four first levels are very close to the Landau energy levels, as
expected.

Let P be a point of collision and �OPC be the angle at P
determined by the lines PO and PC. Then cos��OPC�
=

a2+R2−rc
2

2aR . The angle � of the circular trajectory with the nor-
mal to the circular billiard at the point of collision P satisfies
�= �

2 − �OPC, and therefore cos���=�1−cos2��OPC�.
A collision yields a change in momentum �p

=2�2MEcos���. The time interval T between two successive
collisions is the difference between the time 2�

��� for a full
circular trajectory �in absence of the billiard� and the time
2 ��−�OCP�

��� of a fictitious trajectory outside the circular bil-
liard. The ratio �p /T is the mean force exerted by the particle
on the billiard due to collisions and therefore is the classical
equivalent to �E

�a , to be denoted � �E
�a �c. It remains to collect all

results in terms of basic variables of the problem. If Eq. �14�
is satisfied one obtains


 �E

�a
�

c

= − ���
�8a2EM − �a2M� − 2m�2

2a�arccos
4E + ��2m − a2M��
4�E�E + m��

��
�15�

and the classical estimate for the normalization factor is
NEm

2 =− a
2M � �E

�a �c. Condition �14� ensures that the particle col-
lides with the billiard. If this condition is not satisfied, the
particle does not interact with the billiard and � �E

�a �c=0.
Although the derivation of Eq. �15� relies completely on

classical mechanics, it is stressed that the energy E in its
right-hand side is computed quantum mechanically, and the
values of m are quantified �integers�.

For the same conditions as for Fig. 1, Fig. 2 reports the
natural logarithm of the relative error �� �E

�a �− � �E
�a �c� / � �E

�a � for
the 32 first energy levels. For the four first energy levels
whose classical trajectory does not encounter the billiard,
� �E

�a �c=0, and the relative error is maximal, i.e., unity, giving
zero for the logarithm. For the following energy levels, the
agreement between the exact results �Eq. �11�� and the clas-
sical result �Eq. �15�� is seen to be very good and the accu-
racy of the classical estimate increases with energy. The rela-
tive error is only 6.78�10−6 for the last energy level.
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�b� Part of classical trajectories inside the billiard

FIG. 1. �a� The dots are the quantum energies in units of ��� for
the first 32 levels. The small circles are the corresponding energies
1
2 + i, i=1, . . . ,32, of Landau levels. �b� For each energy, part of a
corresponding classical trajectory inside the circular billiard whose
boundary is represented by a dashed circle.
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FIG. 2. For the same conditions as those of Fig. 1 �see text�, the
natural logarithm of the relative error of the classical estimate with
respect to the quantum result is plotted in order of increasing energy
levels �see text�.
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VI. CONCLUDING REMARKS

The present method can be applied to other problems.
Consider, for example, the magnetic hard disk, where the
particle is now confined outside a circle in the plane. The
essential change is that W�,�m�/2 should be used in place of
M�,�m�/2 for the determination of energy eigenvalues and in
Eq. �9�. The expression for the classical estimate of the de-
rivative of the energy with respect to the radius a of the hard
disk can also be shown to be


 �E

�a
�

c

= ���
�8a2EM − �a2M� − 2m�2

2a�� − arccos
4E + ��2m − a2M��
4�E�E + m��

��
to be compared with Eq. �15�. The generalization to the mag-
netic annulus billiard �a charged particle confined between

two concentric circles� is a little more complicated but pre-
sents no basic difficulties. Other generalizations concern
two- or three-dimensional systems for which the Green’s
function is analytically known, such as free or Coulombic
billiard systems.

Semiclassical approaches such as the Jeffreys, Wentzel,
Kramers, Brillouin �JWKB� method have not been discussed
in this Brief Report because they are well known, but it is
clear that they are well suitable �1� to all the problems con-
sidered here.

It is worth interesting to note that comparison of the right-
hand sides of Eqs. �11� and �15� provides a purely math-
ematical approximate relation for partial derivatives of Whit-
taker functions at some zeros of these functions. This
approximate mathematical relation has been obtained by
comparison between a quantum and a classical approach to
the same physical problem.
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