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We commence the evaluation of the one- and two-loop binding corrections to the g factor for an electron in
a hydrogenlike system of order �2�Z��5 and consider diagrams with closed fermion loops. The one-loop
vacuum-polarization correction is rederived and confirmed. For the two-loop vacuum-polarization correction,
due to a specific gauge-invariant set of diagrams with closed fermion loops, we find a correction �g
=7.442�� /��2�Z��5. Based on the numerical trend of the coefficients inferred from the gauge-invariant subset,
we obtain a numerically large tentative estimate for the complete two-loop binding correction to the g factor
�sum of self-energy and vacuum polarization�.
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I. INTRODUCTION

The bound-electron g factor has been the subject of in-
tense investigations over the past decade both experimentally
as well as theoretically. It describes the response of the
bound electron to an external homogeneous magnetic field
and is naturally different from the g factor of a free electron
due to the binding of the electron to the nucleus. Recent
measurements for hydrogenlike ions with a spinless nucleus
in the region of low nuclear charge number Z have been
reported and discussed in Refs. �1–4�.

For precision experiments with trapped hydrogenlike
ions, the most important atomic state to be considered is the
ground state, and we restrict the discussion to the g factor of
the electronic ground state, for which we write g�g�1S�.
From the relativistic �Dirac� theory of the bound electron
�which does not include radiative corrections�, one obtains
�5�

g = 2 − 2
3 �Z��2 − 1

6 �Z��4 + O�Z��6. �1�

Here, � is the fine-structure constant and Z is the nuclear
charge number. The negative sign of the correction terms of
higher order in the Z� expansion implies that g�2 for
higher nuclear charge numbers Z. Therefore, planned experi-
ments in the high-Z region �6� have been termed 2−g experi-
ments.

The quantum electrodynamic �QED� corrections to the
bound-electron g factor can be expressed as a combined ex-
pansion in � and Z�, where the latter parameter describes the
strength of the coupling to the nucleus �7�. The first few
terms in the expansion of the one-loop correction �g�1� to the
bound-electron g factor �sum of self-energy and vacuum po-
larization� in powers of Z� read �8,9�

�g�1� =
�

�
�1 +

�Z��2

6
+ �Z��4�32

9
ln��Z��−2� − 11.303 191�

+ a50�Z��5 + O�Z��6	 . �2�

According to commonly accepted conventions, the coeffi-
cient a50 carries two indices, the first of which counts the
power of Z�, whereas the second counts the power of the
logarithm ln��Z��−2�.

The two-loop correction reads �10�

�g�2� = 
�

�
�2�− 0.656 958�1 +

�Z��2

6
�

+ �Z��4�56

9
ln��Z��−2� − 16.436 842 + b50�Z��5

+ O�Z��6�	 . �3�

Our goals here are to evaluate the contribution to b50 due to
a subset of the diagrams containing closed fermion loops and
to rederive the known result for the vacuum-polarization
contribution to a50. We recall that according to Fig. 21 of
Ref. �1�, the number of two-loop diagrams contributing to
the g factor is large, and the particular diagrams considered
here form one of the most straightforward gauge-invariant
subsets in two-loop order. As the whole set of two-loop dia-
grams can be broken up into smaller gauge-invariant subsets,
the evaluation could be initiated by considering gauge-
invariant subsets. Since the diagrams for the g factor are
related to those for the Lamb shift �except for the additional
presence of an external magnetic field�, a by-product of our
calculations is a confirmation of results obtained previously
for the contribution of corresponding diagrams to the two
loop, binding correction to the Lamb shift �11� of order
�2�Z��5.

This Brief Report is organized as follows. After a discus-
sion of the one-loop correction in the order ��Z��5 �see Sec.
II�, we describe the two-loop calculations in the order
�2�Z��5 in Sec. III. Conclusions are drawn in Sec. IV.

II. ONE-LOOP CORRECTION

First, we would like to rederive the leading vacuum-
polarization correction to the bound-electron g factor of or-
der ��Z��4. To this end, we recall that for the interaction of
an electron with a constant magnetic field, one can derive the
following effective Hamiltonian based on long-wavelength
quantum electrodynamics �12� for the interaction of an elec-

tron with an external static magnetic field B� ,
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H� = e�� · B�
−
1

2m
+

p�2

4m3 −
1

12m2 �r� · �� V�� , �4�

where p� is the bound-electron momentum, m is the electron
mass, and V is the total static potential felt by the electron.
This potential can be either the Coulomb potential, which we
denote by VC in the following, or a vacuum-polarization cor-
rection �V.

We now briefly recall how to evaluate the one-loop
vacuum-polarization correction based on effective Hamil-
tonian �4� and on well-known formulas for vacuum-
polarization effects. Indeed, we use the well-known Uehling
approximation for the vacuum-polarization potential and
identify the potential in Eq. �4� as V→�V→VU,

VU�r�� =
�

�
�

0

1

dv
v2�1 − v2/3�

1 − v2 exp�− �r��− Z�

r
� , �5�

with �=2m /
1−v2.
The first correction E1 to the spin-dependent magnetic-

field interaction energy �and thus to the g factor� is obtained
if we replace V→VU in the third term in parentheses in Eq.
�4�,

E1 = ��� −
e

12m2 �r� · �� VU���� · B� ����

=
1

3
���r� ·

�� VU

m
����−

e

4m
�� · B�� , �6�

where ��� denotes the nonrelativistic atomic ket vector cor-
responding to the atomic state under investigation �here, the
ground state�. Of course, the rightmost term in Eq. �6� is
evaluated on the bound-state wave function, but we write it

as being proportional to ��� ·B� �, where it is understood that
for an S state, the spin is either pointing up or down. This
means that the expectation value on the right-hand side is to
be evaluated using the spin degrees of freedom only, and it is
therefore denoted by a simple bracket. Because E1 is a first-
order spin-dependent energy correction in a uniform external
magnetic field, it can be related directly to a correction to the
g factor. For this purpose, we write the interactions as mul-

tiplicative corrections to the normalized interaction − e
4m�� ·B� ;

the latter leads to a g factor of unity.
The correction E1, which is a first-order correction, now

has to be supplemented by some second-order effects. Let us
therefore consider the case where V in Eq. �4� represents the
Coulomb potential VC. In order to evaluate the second-order
effects, we investigate the Uehling correction in conjunction
with the second and the third terms in parentheses in Eq. �4�,
which represent corrections to the �� ·B� interaction of relative
order �Z��2. The perturbation to the wave function induced

by the leading-order interaction −e�� ·B� / �2m�=

−ge�� ·B� / �4m� vanishes.
The first of the nonvanishing second-order effects is ob-

tained by considering a second-order perturbation involving
the Uehling potential and the second term in parentheses in
Eq. �4�,

E2 = 2���VU
 1

E − H
��
 p�2

4m3e�� · B�����

= 4���
VU

m

 1

E − H
��

V����−
e

4m
�� · B�� . �7�

The second of these is obtained by considering again the
third term in parentheses in Eq. �4�, but this time acting on
the Coulomb potential V in second-order perturbation theory,

E3 = 2���
VU

m

 1

E − H
��
−

e

12m
��r · �� �VC��� · B�����

= −
2

3
���

VU

m

 1

E − H
��

VC����−
e

4m
�� · B�� . �8�

Taking into account the Hellmann-Feynman theorem,


 1

E − H
��

VC��� = Z
�

�Z
��� , �9�

the sum of the corrections E1+E2+E3 leads to the known
result �9�,

�g =
1

3
���r� ·

�� VU

m
��� +

10

3
���

VU

m
Z

�

�Z
��� . �10�

In the lowest-order in the Z� expansion, Eq. �5� then imme-
diately leads to the leading-order vacuum-polarization cor-
rection to the g factor �9�,

�gU
�1� =

�

�
�Z��4
−

16

15
� , �11�

where the index U reminds us of the Uehling potential.
We now consider the wave function slope and the ��Z��5

correction. According to Schwinger’s textbook �13�, one can
obtain the vacuum-polarization correction of order ��Z��5 to
the Lamb shift by considering the slope of the bound-state
wave function at the origin. This holds equally well for the g
factor. The reason is that the bound-state wave function de-
cays exponentially as exp�−Z�mr� whereas the Uehling po-
tential decays much faster, namely, according to Eq. �5� as
exp�−�r� where � is of the order of the electron rest mass. In
the resulting product

�	�r���2VU�r� � exp�− Z�mr − �r�

= exp�− �r��1 − Z�mr + O�r2�� , �12�

one can thus expand in the first argument of the exponential
using �
Z�m. The correction term 1−Z�mr corresponds to
the slope of the wave function at the origin. A straightfor-
ward evaluation gives the following vacuum-polarization
correction for the ground state:

�gVP
�1� =

�

�
�Z��4
−

16

15
+

5�

9
�Z��� , �13�

which includes the correction of relative order Z�. We here
confirm the result in Ref. �14�. For completeness, it is useful
to recall the corresponding one-loop vacuum-polarization
correction to the Lamb shift, which reads �13�
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�EVP
�1� =

�

�
�Z��4m
−

4

15
+

5�

48
�Z��� . �14�

This concludes the consideration of the one-loop vacuum-
polarization correction of order ��Z��5 to the g factor.

III. TWO-LOOP CORRECTION

We now discuss the two-loop calculation. The leading-
order result �10� follows as we replace the Uehling potential
VU in Eq. �10� by the Källén-Sabry �15� term. It reads

�gKS = 
�

�
�2

�Z��4
−
328

81
� . �15�

The Källén-Sabry term �15� is a genuine two-loop effect, and
one might wonder why the iterated one-loop diagrams do not
also contribute in the order �2�Z��4 �these correspond to the
second and third diagrams in Fig. 1�. However, the first-order
correction to the wave function induced by the leading-order

magnetic interaction −e�� ·B� / �2m� vanishes, and the remain-
ing contribution due to the iterated Uehling term cancels
explicitly in third-order perturbation theory because the term
with the magnetic interaction “in the middle” cancels against
the derivative term obtained by considering the derivative of
the second-order Uehling correction with respect to the
bound-state energy.

For some of the diagrams in Fig. 1, the g factor correction
of order �2�Z��5 can be obtained by expanding the wave
function about the origin, as it was done for the one-loop
theory. An example is the first diagram in Fig. 1, which can
be expressed as the expectation value of the loop-after-loop
Uehling potential, evaluated with wave functions perturbed
by the magnetic interaction. For the other diagrams, the cal-
culation is more complicated. In particular, since the iterated
Uehling correction �second and third diagrams in the first
row in Fig. 1� contributes at the order of �2�Z��5, one cannot
avoid the complete calculation of the �first-order� perturba-
tion to the wave function by the Uehling correction, which

involves exponentials, exponential integrals, logarithms, and
powers of the radial variable. For example, the magnetic in-
teraction in the middle vertex demands a further integration
over the radial coordinate. The further calculation proceeds
along the lines outlined in Ref. �11� for the two-loop
vacuum-polarization corrections to the Lamb shift.

We finally obtain for the two-loop binding contribution
�gVP

�2� due to the diagrams in Fig. 1,

�gVP
�2� = 
�

�
�2

�Z��4�−
328

81
+ �Z���
1 420 807

238 140

+
832

189
ln 2 −

400

189
���

= 
�

�
�2

�Z��4�− 4.049 + 7.442�Z��� . �16�

The numerical coefficient of the �Z�� correction is rather
large mainly because it has a factor � in the numerator.

Just as for the one-loop calculation, it is useful to compare
our results to those for the Lamb shift, selecting the corre-
sponding set of diagrams. For the Lamb shift, we can iden-
tify the diagrams corresponding to those in Fig. 1 by simply
eliminating the interaction with the external magnetic field.
The resulting diagrams after this removal operation are
equivalent to the diagrams labeled as IV and VI in Ref. �11�.
The corresponding contribution to the Lamb shift is �11,16�

�EVP
�2� = 
�

�
�2

m�Z��4�−
82

81
+ �Z���
7421

6615

+
52

63
ln 2 −

25

63
���

= 
�

�
�2

�Z��4�− 1.012 + 1.405�Z��� , �17�

and we have verified it using our approach. This concludes
our two-loop vacuum-polarization calculations.

IV. SUMMARY

In this Brief Report, we describe the evaluation of a part
of the binding vacuum-polarization correction to the bound-
electron g factor. The vacuum-polarization corrections repre-
sent a preparatory calculation for the self-energy corrections,
which are much more difficult to evaluate. In view of the
multitude of terms generated in comparison to the corre-
sponding self-energy correction to the Lamb shift of order
��Z��5 and in view of the additional complexity of the cal-
culation due to the added external magnetic field, consider-
able difficulties are expected.

It may, already at this point, be permitted to speculate a
little about the magnitude of the complete correction to the g
factor of order �2�Z��5, which is less than an estimate but
perhaps more than just guesswork. Namely, we observe there
appears to be a rather universal factor in the range of 3.5–5.5
by which the g factor coefficients of a given order in the Z�
expansion are larger than the corresponding Lamb-shift co-
efficients for the ground state. In particular, we compare in

FIG. 1. Feynman diagrams for the two-loop vacuum-
polarization corrections to the bound-electron g factor. The first of
these is the loop-after-loop Uehling vacuum-polarization correction
and gives a contribution of −368� /1701 in units of �� /��2�Z��5

for the g factor. The sum of the second and third diagrams �upper
row�, which are iterated one-loop perturbations, yields a contribu-
tion of −851� /6804 in the same units. The two last two diagrams
�lower row� are Källén-Sabry diagrams. They lead to a g factor
correction of ��125 176 /19 845+832 ln 2 /189−400� /189�.

BRIEF REPORTS PHYSICAL REVIEW A 79, 044501 �2009�

044501-3



the order ��Z��4 the coefficient −16 /15 in Eq. �13� to the
coefficient −4 /15 in Eq. �14� �the g factor coefficient is
larger than the Lamb-shift coefficient by a relative factor 4�.
At relative order Z�, the relative factor is 5.33 �the coeffi-
cients are 5� /9 versus 5� /48�. For the g factor at two-loop
order, the relative factor at �2�Z��5 is 5.30, as evident from
Eqs. �16� and �17�. A factor in the range of 3.5–5.5 also
appears for the self-energy corrections. We recall that the
complete two-loop correction to the Lamb shift in the order
�2�Z��5 is �17–20�

�E5
�2� = − 21.55
�

�
�2

�Z��5m . �18�

Our “educated guess” for the complete correction to the g
factor thus is

�g5
�2� = C
�

�
�2

�Z��5, − 118 � C � − 75. �19�

The magnitude of this estimate of the coefficient generates
obvious interest.
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