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It is well established that an entanglement encoded in the Bell states of a two-qubit system with correlated
spins exhibits completely different evolution properties from that encoded in states with the anticorrelated
spins. A complete and abrupt loss of the entanglement, called the entanglement sudden death, can be found to
occur for the spin-correlated states, but the entanglement evolves without any discontinuity or decays asymp-
totically for the spin-anticorrelated states. We consider the evolution of an initial entanglement encoded in the
spin-anticorrelated states and demonstrate that the asymptotic behavior predicted before occurs only in the
weak-coupling limit or equivalently when the rotating-wave approximation (RWA) is made on the interaction
Hamiltonian of the qubits with the field. If we do not restrict ourselves to the RWA, we find that the entangle-
ment undergoes a discontinuity, the sudden-death phenomenon. We illustrate this behavior by employing an
efficient scheme for entanglement evolution between two cold-trapped atoms located inside a single-mode
cavity. Although only a single excitation is initially present in the system, we find that the two-photon excited
state, which plays the key role for the discontinuity in the behavior of the entanglement, gains a population
over a short time of the evolution. When the RWA is made on the interaction, the two-photon excited state
remains unpopulated for all times and the discontinuity is absent. We attribute this phenomenon to the principle
of complementarity between the evolution time and energy, and the presence of the counter-rotating terms in

the interaction Hamiltonian.
DOI: 10.1103/PhysRevA.79.044305

An understanding of entanglement evolution and en-
tanglement transfer between qubits is of fundamental interest
in quantum information processing [1,2]. The controlled
transfer that preserves initial entanglement is crucially im-
portant. Transfer processes are susceptible to decoherence
and dissipation due to the inevitable coupling of the qubits
and the transfer channels to an external environment. There-
fore, in order to minimize decoherence effects and to achieve
the perfect fidelity, fast transfer processes or transfer opera-
tions performed over a very short time scale are highly de-
sirable.

It has been recognized that the entanglement evolution
depends on the state in which it is encoded. For a simple
system of two qubits, the basis states for entanglement are
four mutually orthogonal Bell states [3]. The states can be
divided into two groups, one involving linear superpositions
of the spin-correlated states and the other involving spin-
anticorrelated states. The states belonging to these groups are
often called two-photon and one-photon entangled states, re-
spectively. The qubits can be prepared in a spin-correlated
state by a transfer of two-photon entangled states from
quantum-correlated light fields produced, e.g., in a nonlinear
process of parametric down-conversion [4]. Preparation of a
spin-anticorrelated state is more sophisticated as it involves a
single excitation “shared” between two qubits. In principle, it
can be achieved, for example, by applying a short single
laser pulse either in a running- or in a standing-wave con-
figuration [5]. This will result in the qubits prepared either in
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a symmetric or in an antisymmetric combination of the spin-
anticorrelated states.

Dynamics of an entanglement encoded in spin-correlated
states has been extensively studied since the pioneering work
of Yu and Eberly [6,7], who showed that an initial entangle-
ment encoded in two separate qubits interacting with local
environments can decay to zero in a finite time [8]. When the
qubits are subjected to the interaction with each other
through the coupling to the same environment, the already
dead entanglement may revive after a finite time [9]. The
interaction between the qubits induces a population differ-
ence between the symmetric and antisymmetric combina-
tions of the spin-anticorrelated states, which results in a non-
zero entanglement.

A completely different conclusion applies to the evolution
of entanglement initially encoded in a spin-anticorrelated
state. It was pointed out by Jamréz [10] that an initial en-
tanglement encoded in a spin-anticorrelated state of two in-
dependent qubits interacting with local environments decays
asymptotically in time without any discontinuity. This pre-
diction agrees with the work of Yonac et al. [11], and also
with other results [12]. The same conclusion applies to the
case of two qubits mutually interacting through the coupling
to a common environment [13]. In these papers, the analyses
were restricted to the rotating-wave approximation (RWA)
and this raises the question on the validity of the results in
the strong-coupling regime where the breakdown in the
RWA occurs [14].

In contrast to the numerous publications concerning
atomic dynamics under the RWA, there are only a limited
number of studies beyond the RWA. In terms of applications,
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the non-RWA calculations exploit short-time or high-
intensity dynamics where interesting effects appear not ob-
served when the RWA is introduced. In this connection, we
should mention the work on the Bloch-Siegert shift [15],
chaos in the Jaynes-Cummings model [16], bifurcations in
the phase space [17], and a fine structure in the optical Stern-
Gerlach effect [18]. In the connection to entanglement, cor-
relations between two separate atomic ensembles were re-
cently analyzed by Ng and Burnett [19]. It was demonstrated
that the ensembles interacting with the cavity field and ini-
tially prepared in their ground states undergo time evolution
and become entangled over a short time only if the RWA is
not made on the interaction Hamiltonian.

In this Brief Report, we consider dynamics of the spin-
anticorrelated states of two identical qubits without the pres-
ence of any external excitations. We treat the problem fully
quantum mechanically and do not restrict ourselves to the
RWA. We find significant quantitative deviations from the
RWA for the time evolution of an initial entanglement en-
coded in the spin-anticorrelated states. We show that the en-
tanglement may undergo a discontinuity that, on the other
hand, requires either an initial or a transient buildup of the
population in the two-photon state of the system. One could
argue that this rules out the discontinuity in the entanglement
evolution since only a single excitation was present initially.
We shall demonstrate that this is not the case if one considers
an evolution with the non-RWA Hamiltonian and interpret
this result is a consequence of the principle of complemen-
tarity between the evolution time and energy.

To describe the entanglement evolution in a two-qubit
system, we use concurrence, an entanglement measure that
relates entangled properties to the coherence properties of the
qubits [20]. In order to compute the concurrence, one needs
the density matrix of the two-qubit system written in the
basis of the product states |[1)=|| 1), |2)=|T1), |3)=|11), and
|4)=|11). Here, |T|) represents the qubit 1 in the excited
(“up”) state, and the qubit 2 in the ground (“down™) state.
The density matrix is in general composed of 16 nonzero
elements. We make an assumption that the qubits evolve
without the presence of any external fields. In this case, the
density matrix takes a simple block diagonal form,

pi( 0 0 0
0 ppn() ps@ O
0 pn@® pu@ 0 |
0 0 0 pu®)

in which we keep all the diagonal elements (populations) and
the coherences p,3(f) and ps,(¢) that might be nonzero ini-
tially or can build up during the evolution of the system.

For a system described by density matrix (1), the concur-
rence has the form

p(t) = (1)

C(1) = max{0,C(1)}, (2)
with
C(1) = 2]y (D] = 2Vp11 (D pas(t), (3)

from which we see immediately that the discontinuity behav-
ior cannot be achieved in any state of the system if only a
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single excitation was present since py(¢)=0. In this case, the
concurrence depends solely on the coherence py;(7). The dis-
continuity or threshold behavior of the concurrence requires
a nonzero population of the ground and the upper two-
photon states of the system. If an initial excitation were re-
distributed during the evolution among all of the states, we
would have the possibility of a discontinuous evolution of
entanglement. We then would have a prototype of the en-
tanglement sudden death.

To gain further insight into the discontinuity behavior of
entanglement, we employ the Bell states that are maximally
entangled states of two qubits with correlated and anticorre-
lated spins,

== D+, lay=—=(1 D11,
V2 V2

1 1
|a) = @(H D+, 8= Tz(lT D=1 @
In terms of the Bell states, concurrence (3) has the form
C(t) = \"’[pxs(t) - paa(t)]z - [psa(t) - pas(t)]z

= \[Paal?) + pps) ] = [pap(t) + ppa0].  (5)

As the entanglement has been defined by the requirement
that C(¢) >0, it follows immediately from Eq. (5) that the
entanglement depends on the distribution of the population
between the spin-correlated and -anticorrelated states. An en-
tanglement creation involving the spin-anticorrelated states
is diminished by the presence of population and coherence
between the spin-correlated states. The evident competition
between the spin-correlated and -anticorrelated states in the
creation of entanglement may lead to a discontinuity in the
time evolution of the entanglement. Therefore it immediately
raises the question of whether a discontinuity in the evolu-
tion of the entanglement can ever be achieved if initially
only a single excitation was present and no external excita-
tions are applied to the system. This problem is treated quan-
titatively below.

Let us now examine the above general results for the
properties of the concurrence on a simple example of two
identical two-level atoms (qubits) located inside a high-Q
single-mode standing-wave cavity [21]. We assume that the
qubits undergo a strong coupling to the cavity mode when
located at the antinode of the cavity field, and consider the
situation where the strength of the coupling is controlled by
varying the position of the qubits inside the standing-wave
cavity mode. The dynamics of the system is determined by
the master equation of the density operator p, of the total
qubits plus the cavity field system,

%
Jat

j 1
=- é[H, pil = Kla'ap +pa‘a=2apa’),  (6)

where « is the damping rate of the cavity mode, and
: 2 2
H.rwa = EthE o+ hwata+hY, [g(rj)a’j‘a% +g"(rj)ao’]
j=1 j=1
(7
is the non-RWA Hamiltonian of the qubits of transition fre-
quency w, interacting with the single-mode cavity field of
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FIG. 1. Concurrence as a function of the scaled time wt and
distance between the qubits evaluated without the RWA for gy=w,
(w—wy)/ ©=0.01, k=0.1w, and L=\/2.

frequency . The operators a and a' are the annihilation and
creation operators of the cavity field, while o, and o, are the
Pauli matrices in the x and z directions, respectively. The
parameter g(r;) is the coupling constant between the jth qu-
bit and the cavity mode at a position r; of the qubit along the
cavity axis. The coupling constant varies with the position of
the qubits as

g(r12) = go sin[m(L * d)/\], (8)

where L is the size of the cavity and A is the cavity wave-
length. We assume that the qubits are placed symmetrically
about the antinode of the cavity mode such that r{+r,=L and
r,—ry=d is the distance between the qubits. When d=0, the
qubits are then at the antinode of the cavity mode and expe-
rience the peak coupling strength g,. As d increases, the
coupling strength decreases and approaches zero at d=L.
When the RWA is made, Hamiltonian (7) takes the form

2 2

1 B . i
Hgwa = Eﬁwoz T+ hoata + Y, [g(rj)gjaT +g (Vj)atf_,!],
J=1 j=1

)

where the counter-rotating terms have been ignored. The
RWA is valid if the cavity field is nearly resonant with the
atomic transition frequency, w= w,, and the coupling con-
stant g(r;) is much smaller than o, i.e., g(r) < w.

Master equation (6) can be solved numerically for various
values of L and d and for different initial conditions. For our
purposes here, it is sufficient to focus on the initial condition
of the two qubits prepared in the spin-anticorrelated state |s).
We calculate the concurrence between the atoms by tracing
the density operator p, over the cavity field assumed to be in
the vacuum state |0).

Consider first the evolution of an initial entanglement
without the RWA. Figure 1 displays the time evolution of the
concurrence for the initial spin-antisymmetric state |s) and
for the case of a strong coupling of the qubits to the cavity
mode, go=w. We see that the initial entanglement undergoes
the discontinuity, the sudden-death behavior. The entangle-
ment disappears quite rapidly over a very short evolution
time, wt= 1. The sudden-death behavior appears for small
distances between the qubits, where a strong coupling is
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present, with g(r;) not much different from g,. For large
distances, where g(r;) are very small, the discontinuity dis-
appears and the entanglement decays asymptotically in time,
the behavior predicted before under the RWA.

The entanglement sudden death seen in Fig. 1 seem puz-
zling at first, because it appears to contradict the predictions
based on a simple argument that with a single excitation
present in the system, it is impossible to achieve the discon-
tinuity as, according to Eq. (3), it requires population of the
two-photon state. To resolve this problem, we now discuss
the origin of the population of the two-photon state. We offer
two complementary views of the underlying physics. The
first is provided by the derivation of the reduced density
operator for the atoms using state vectors of the combined
atoms plus the cavity field system. Assume that there is only
a single excitation in the system that evolves under the RWA
Hamiltonian. In this case, the space of the system is spanned
by three-state vectors, |T])[0), |1 1)|0), and || |)|1), where |0)
and |1) are the zero-photon and one-photon Fock states of
the cavity mode.

If we evaluate the reduced density operator p for the at-
oms by tracing over the cavity mode, we find

p=Treiy p= > lpliy=pr |1 IX] L]+ poa®]T 1YL 1]

i=0,1
+ p33(D|L DT L+ pas@|T DX L+ 2@ L 1T

where |i) refers to the cavity mode and p;j are populations
(i=j) of the atomic states and coherences (i# j) between
them. Thus, under the RWA, the evolution of the atoms does
not involve the two-photon (upper) atomic state.

Consider now the evolution of the system under the non-
RWA Hamiltonian, which includes the counter-rotating terms
aajf and (r;a*. In this case, we must include the processes
that do not strictly conserve excitation number, when one of
the atoms goes to the excited (ground) state by emitting (ab-
sorbing) a photon. Thus, the space of the system is now
spanned by six-state vectors, |T1)[0), [LT)[0), [L L)1), [T1)]2),
[L1)]2), and |TT)|1). This leads to the reduced density opera-
tor of the form

p=pu[L DL+ pn@[T DX T+ pas@]L 1T L
+ pag (O[T DT+ e AT+ pas@]T 1T ]
+pOL DX T+ pag DT LI (11)

It is evident from Eq. (11) that the evolution of the atoms
under the non-RWA Hamiltonian involves the two-photon
state, that population of the state |T) becomes possible.

A second explanation follows the principle of comple-
mentarity between the evolution time A and uncertainty AE
in the energy,

. (10)

AtAE = 1. (12)

For the evolution time on the order of 1/w, which is consid-
ered here, the uncertainty in the energy is on the order of fiw,
the order required to achieve a nonzero population of the
upper state |11) of the two-atom system.

To emphasize the participation of the two-photon state in
the atomic dynamics under the non-RWA Hamiltonian, we
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FIG. 2. Time evolution of the population of the two-photon state
|4) calculated without the RWA for gy=w, (w-wy)/w=0.01,
k=0.lw, L=N/2, and d=0.

plot in Fig. 2 the time evolution of the population of the
two-photon state [4)=|11) for the same parameters as in Fig.
1 with d=0. It is seen that initially unpopulated state |4)
becomes populated in a comparatively short time.

As we have already pointed out, the two-photon state can
be populated only if the counter-rotating terms are present in
the interaction Hamiltonian. To show this explicitly, we look
at the evolution of the entanglement under the RWA approxi-
mation. In Fig. 3, we illustrate the time evolution of the
concurrence for the same parameters as in Fig. 1, but under
RWA Hamiltonian (9). We see that in contrast to the non-
RWA case, the entanglement evolves continuously without
any discontinuity. Clearly, the counter-rotating terms are re-
sponsible for the entanglement sudden death. Under the
strong-coupling situation and small distances between the
qubits, the entanglement oscillates with the Rabi frequency
go- The oscillations disappear and the evolution ceased for
large distances, where the coupling constants are small. The
fact that the RWA version of the interaction precludes the
entanglement sudden death suggests that caution should be
exercised in the studies of entanglement evolution in a
strong-coupling limit. We stress that the coupling strengths
considered in this Brief Report have not been realized yet.
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FIG. 3. Concurrence as a function of the scaled time wf and
distance between the qubits calculated with the RWA for gy=w,
(w—wy)/ =0.01, k=0.1w, and L=\/2.

However, there are proposals of realistic systems involving
high-Q cavities [21-23] or nanomechanical resonators [24],
where such strong couplings could be realized experimen-
tally with the current technology.

In summary, we have considered the time evolution of an
entanglement initially encoded in a spin-anticorrelated state
of two identical qubits. What is special with this entangle-
ment is that no discontinuity behavior has been predicted
under the RWA. We have demonstrated the failure of the
RWA in the description of the evolution of entanglement in
the strong-coupling regime of the qubits to the field they
interact with. The results show that the better the RWA is in
describing the dynamics, the weaker the entanglement
sudden-death behavior is, and only in the limit of a weak
coupling is the RWA an excellent approximation for the en-
tanglement evolution of the spin-anticorrelated states.
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