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A scheme is presented to realize transfer of a three-dimensional quantum state between two atoms trapped
in distant cavities connected by an optical fiber, whose mode is resonant with the polarization cavity modes.
Performing an adiabatic passage along dark states, the fiber mode remains in the vacuum state and the
population of the cavities being excited can be negligible under certain conditions. In addition, atomic transi-
tions in our scheme are largely detuned from cavity modes. As a consequence, the atomic spontaneous
emission and the fiber decay can be effectively eliminated. Furthermore, we give some discussions about the
fidelity of our scheme.
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In the new era of quantum information science, quantum
network �1� has played an important role for it offers a vari-
ety of novel applications ranging over distributed quantum
computation �2�, teleportation �3�, and metrology �4�. The
realization of quantum networks, which consists of spatially
separated nodes connected by quantum communication
channels, requires new scientific capabilities for operating
quantum coherent and quantum entanglement �5�. Cavity
quantum electrodynamics �cavity QED� provides a promis-
ing tool for quantum networking �6� because of its important
paradigm for coherent coupling of optical and atomic qubits
�7�. From a practical perspective, photon, as a good flying
qubit, is perfect for the transmission of quantum information
while atom is particularly well suited for storing qubit in its
long-lived internal states. So in the implementation of quan-
tum networks �5,8–11�, atom represents the quantum
memory while photon propagating in an optical fiber �10� or
free space serves as the data bus to realize the quantum chan-
nel. Through a coherent coupling mediated by optical fiber,
which is a good method to entangle two separate atomic
qubit, Mancini et al. �5� obtained an effective direct interac-
tion between two atoms placed in distant cavities. Specially,
a deterministic gates between two-level atoms in separate
optical cavities has been realized in Ref. �9�. About the quan-
tum transfer, Cirac et al. �11� outlined the first scheme to
realize the quantum transmission between distant atoms with
unit efficiency by tailoring time-symmetric photon wave
packets, so precise control of the laser-pulse shape is re-
quired. This problem has also been addressed by Pellizzari
�10�, whose approach is based on an adiabatic passage
through two cavities which remain in their respective
vacuum states during the whole operation. In the above two
schemes, it is easy to dephase during the transmission pro-
cess because the qubits of cavities and fiber are represented
by vacuum one-photon states, respectively �12�. Recently,
based on the cavity input-output process, Refs. �13,14�. have
constructed the schemes of quantum state exchange between
atoms or between atom and photon, by dint of single-pulse
injection. However, they are probabilistic schemes as they
depend on the detection of the photon decaying from the

leaking cavities and, thus, high efficient photon detectors are
required. In particular, initial single-photon injection is very
difficult to meet.

In this Brief Report, we present a scheme to transfer a
three-dimensional quantum state between two atoms located
at spatially separated cavities connected by an optical fiber.
Based on the adiabatic passage along dark states, our scheme
has the following characteristics: �i� The fiber modes remain
in the vacuum state and the population of the cavities being
exited can be negligible under certain conditions, so the de-
cays of fiber and cavities can be effectively eliminated. �ii�
Atomic spontaneous emission can be efficiently reduced
since the cavity frequency is largely detuned from the atomic
transition frequency. �iii� The information of cavities and fi-
ber are encoded in the photonic polarization states. �iv� Our
scheme works robustly beyond Lamb-Dicke limit, which is
important for current experimental technique.

The framework of our proposal is shown in Fig. 1. The
atoms are modeled by five-level systems with three ground
states, �0� , �g� , �1�, and two excited states, �e1� , �e2�, as shown
in Fig. 2. In the model, two classical laser pulses incident
from one mirror of the cavity and collinear with the cavity
axis, couple to the atom transition �e0�↔ �0���e1�↔ �1�� with
the time-dependent Rabi frequency 2�L�R��t�. The transition
�e0�1��↔ �g� is coupled with cavity mode aL�R� with left-
circular �right-circular� polarization with coupling strength
gL�R� �15�. Without loss of generality, all the Rabi frequencies
and coupling rates are assumed to be real. In the rotation
frame, the Hamiltonian has the following form ��=1�:

Hi = �L�e0�i�e0� + �R�e1�i�e1� + �L
�i���e0�i�0� + H.c.�

+ �R
�i���e1�i�1� + H.c.� + gL��e0�i�g�aL

�i� + H.c.�

+ gR��e1�i�g�aR
�i� + H.c.��i = A,B� , �1�
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FIG. 1. �Color online� Schematic representation of quantum
state transmission between two atoms in spatially separate optical
cavities connected by an optical fiber.
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where the detuning �L�R� is defined as energy difference be-
tween the atomic transition �e0�1��↔ �g� and the relevant cav-
ity mode, and H.c. stands for the Hermitian conjugate. If we
assume �L�R���L�R�

�i� , gL�R�, the excited state will then essen-
tially remain unpopulated and, thus, we can adiabatically
eliminate the excited states from temporal evolution state
space. For simplicity and feasibility, we assume that
�L

�i��t�=�R
�i��t�=�i�t�, gL=gR=g, and �L=�R=�. Under

these conditions, it is natural to describe the atom-cavity sys-
tem by the effective Hamiltonian

Hi
eff = −

�i
2�t�
�

��0�i�0� + �1�i�1�� −
g2

�
�g�i�g��aL

�i�†aL
�i� + aR

�i�†aR
�i��

−
�i�t�g

�
���0�i�g�aL

�i� + �1�i�g�aR
�i�� + H.c.� �i = A,B� . �2�

Next step we will consider two atom-cavity systems con-
nected by an optical fiber. The interaction Hamiltonian for
the fiber coupled to the modes of two cavities are assumed to
take the following form �9,10�:

Hfib = �
k=1

�

�
j=L,R

� j,k�bj,k
† �aj

A + �− 1�ke−i�aj
B�� + H.c., �3�

where bj,k
† is the creation operator of the fiber mode k with

polarization j �=L ,R, corresponding to left-circular and right-
circular polarizations�, � j,k is the coupling strength between
the cavity mode j and the fiber mode k, and the phase � is
due to the propagation of the field through the fiber of length
l �9�. The subscripts A and B distinguish the two atom-cavity
subsystems. In the short fiber limit 2l� / �2	c�
1, where �
is the decay rate of the cavity fields into a continuum of fiber
modes, only resonant modes of the fiber interact with the
cavity modes �9�. For this case, the Hamiltonian Hfib may be
approximated to

Hfib = �
j=L,R

��bj
†�aj

A + aj
B� + H.c.� , �4�

where the phase �−1�ke−i� in Eq. �3� has been absorbed into
the annihilation and creation operators of the modes of the
second cavity field �16,17�. Here �R=�L has been assumed.
The Hamiltonian for the total system of atom-cavity fiber is

Htot = HA
eff + HB

eff + Hfib, �5�

specified in Eqs. �2� and �4�. For the initial state
�0�A�g�B�00��vac� f, the state evolution remains in the sub-
space spanned by the basis-state vectors 	�0�A�g�B�00��vac� f,

�g�A�g�B�L0��vac� f, �g�A�g�B�0L��vac� f, �g�A�g�B�00��L� f,
�g�A�0�B�00��vac� f
. Here, the first and second kets refer to the
quantum states of atoms A and B. The third ket represents the
polarization state of cavity modes of cavities A and B, re-
spectively, where �L�R�� represents there is a photon with
left-circular �right-circular� polarization in the cavity. The
last ket �vac� f denotes the subsystem of the fiber modes in the
vacuum state. Then the corresponding dark state of the
Hamiltonian Htot is

�D0� � g�B�0�A�g�B�00��vac� f

− �A�B�g�A�g�B��L0� − �0L���vac� f

− g�A�g�A�0�B�00��vac� f . �6�

For the initial state �1�A�g�B�00��vac� f, the state evolution re-
mains in the subspace spanned by the basis-state vectors
	�1�A�g�B�00��vac� f, �g�A�g�B�R0��vac� f, �g�A�g�B�0R��vac� f,
�g�A�g�B�00��R� f, �g�A�1�B�00��vac� f
, and we can write the
other dark state

�D1� � g�B�1�A�g�B�00��vac� f

− �A�B�g�A�g�B��R0� − �0R���vac� f

− g�A�g�A�1�B�00��vac� f . �7�

For the initial state �g�A�g�B�00��vac� f, it does not change un-
der the time evolution generated by Htot because it is decou-
pled from the laser interaction �10�. So it is the third dark
state of the system,

�Dg� = �g�A�g�B�00��vac� f . �8�

Note that if the system remains in the dark states,
the two atoms are always in ground states and the fiber
mode is in vacuum state. In the dark states �D0� and �D1�
the fiber modes are not populated due to destructive
quantum interference. Taking �D0� for example, since the
transition �g�A�g�B�L0��vac� f ↔ �g�A�g�B�0L��vac� f is mediated
by the intermediate state �g�A�g�B�00��L� f and the
transition paths �g�A�g�B�L0��vac� f → �g�A�g�B�00��L� f and
�g�A�g�B�0L��vac� f → �g�A�g�B�00��L� f interfere destructively,
the fiber mode remains in vacuum state. Moreover,
we assume that the condition g��i�t��i=A ,B� is
always satisfied throughout the whole process. Therefore,
the population of the cavity modes in excited states
can be negligible as shown in Fig. 3. Here the pulse shape
of the laser fields is assumed to be Gaussian �18�:
�A,B�t�=�0 exp�−�t−2 /T− tA,B�2 / �2�2��, where �0 is the
maximal values of the �A,B, T is the total adiabatic time, and
� is the laser beam waist. We have chosen the pulse
parameters as �0=0.2g , T=60 /g , tA=−tB=8 /g , �=12 /g
and g=1 GHz. It is obvious that all population is completely
transferred from the state �n�A�g�B�00��vac� f to the state
−�g�A�n�B�00��vac� f�n=0,1�. Especially, the population
of the cavity modes in excited states �g�A�g�B��j0�
− �0j���vac� f /�2�j=L ,R� is close to zero. So we could write
the Eqs. �6� and �7� into

�D0� � g�B�t��0�A�g�B�00��vac� f − g�A�t��g�A�0�B�00��vac� f ,

�9a�
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FIG. 2. �Color online� The relevant level structure and transition
of the atom.
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�D1� � g�B�t��1�A�g�B�00��vac� f − g�A�t��g�A�1�B�00��vac� f .

�9b�

Our goal is to accomplish the quantum state transfer

��0�A + ��1�A + ��g�A� � �g�B � �00��vac� f

→ �g�A � ��0�B + ��1�B + ��g�B� � �00��vac� f , �10�

where  ,�, and � are complex numbers and
��2+ ���2+ ���2=1. Using the dark states of Eqs. �4�–�6� for
adiabatic passage is our central idea. If the system is pre-
pared in a superposition of the three dark states in Eqs.
�4�–�6� and the laser intensities are changed slowly �i.e.,
adiabatically� no other eigenstates of Htot will be populated.
Initially, subsystem A is prepared in an unknown quantum
superposition as given in Eq. �10�. In practice, this initial
state can be written as a superposition of the three dark states
�D0,1,g� provided that �B�t���A�t�,

��0�A + ��1�A + ��g�A� � �g�B � �00��vac� f

= �D0� + ��D1� + ��Dg� f . �11�

In fact, this means that at the beginning of the transfer the
laser which acts on the atom B is switched on first. In this
case, the dark states �D0� and �D1� are approximately
�0�A�g�B�00��vac� f and �1�A�g�B�00��vac� f, respectively. During
the transfer process, we slowly change the laser intensities,
i.e., increase �A�t� and decrease �B�t� so that at the end
the inequality �A��B holds and the state transfer
�n�A�g�B�00��vac� f →−�g�A�n�B�00��vac� f �n=0,1� is realized
adiabatically. If the change is carried out slowly enough, the
finial state of the system is still the above superposition of
�D0�, �D1�, and �Dg� and as mentioned above we can write it
as

�D0� + ��D1� + ��Dg�

= �g�A � �− �0�B − ��1�B + ��g�B� � �00��vac� . �12�

This quantum state corresponds to the desired final state of
the transfer, apart from phase factors that can be eliminated
by the appropriate subsequent logic operations.

In what follows, we will consider more practical situation.
Considering the experimental feasibility of the present con-
text, various decoherence processes such as atomic sponta-
neous emission from the atomic excited states and photon
loss may influence the fidelity of our scheme. We know that
under the large-detuning condition, the effect of spontaneous
emission can be well suppressed �19�, so we ignore it and set
the spontaneous emission rate to zero in our scheme. Photon
loss mainly comes from the leakage of cavities and fiber. We
find that the effect of photon leakage out of the fiber can be
greatly eliminated and even ignored. This is because the fiber
mode is really not excited and is always kept in the vacuum
state in the whole process. However, compared to the fiber,
the photon losses in cavities have greater impact on the fi-
delity of our scheme. We note that, as shown in Fig. 4, if
the condition g��A,B�t� is not ideally satisfied, the popula-
tion of the cavities being excited cannot be negligible any
more. That is to say cavity modes may be excited. In this
case, during the adiabatically transferring procedure
�n�A�g�B�00��vac� f →−�g�A�n�B�00��vac� f �n=0,1�, according
to the Eqs. �6� and �7�, there is a probability of the states
�g�A�g�B��j0��vac� f − �0j��vac� f� /�2 �j=L ,R� being populated.
Then, due to the cavity decay they will evolve into
�g�A�g�B�00��vac� f after emitting photons, which will reduce
the fidelity of transmission. As a concrete numerical ex-
ample, let us assume that g=1 GHz and the reliable transfer
can be achieved, as shown in Fig. 3, for the total adiabatic
time of the order of T=60 ns. Considering the cavity
leakage, for the initial state of atoms A and B:
���= ��0�A+��1�A+��g�A� � �g�B, the finial state can be ap-
proximately given by �20�

� = �������� + �1 − ���2��1 − Psuc��g�A�g�B�g�A�g�B, �13�

where

Psuc = 1 − k�
0

T 2��A�t��B�t��2

��A�t�g�2 + 2��A�t��B�t��2 + ��B�t�g�2dt ,

�14�

and

FIG. 3. �Color online� The time dependence of the
populations. P1 represents the population of the state
�n�A�g�B�00��vac� f, P2 represents the population of the state
−�g�A�n�B�00��vac� f�n=0,1�, and P3 represents the population of the
state �g�A�g�B��j0�− �0j���vac� f /�2�j=L ,R�. Here we assume
the pulse shape of the laser fields is Gaussian �18�, �A,B�t�
=�0 exp�−�t−2 /T− tA,B�2 / �2�2��, with g=1 GHz, �0=0.2g ,T
=60 /g , tA=−tB=8 /g ,�=12 /g.

FIG. 4. �Color online� The time dependence of the population
�P3� of the state �g�A�g�B��j0�− �0j���vac� f /�2�j=L ,R� for
�0 /g=0.4, 0.6, 0.8, and 1.0 �solid, dashed, dotted, and dot-dashed
lines, respectively�. Other parameters are as in Fig. 3.
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���� = �Psuc�g�A�0�B + ��Psuc�g�A�1�B + ��g�A�g�B. �15�

Thus the fidelity is

F = ��������� = ��1 − ���2��Psuc + ���2�2 + ���2�1 − ���2�Psuc.

�16�

In Fig. 5�a� the fidelity F of our scheme is studied as a
function of �0 /g for different transferring state with �
=0.02g for the same parameters and laser-pulse shapes as in
Fig. 3. Figure 5�b� exhibits the effect of cavity decay rate �
on fidelity F when we assume �0=0.4g.

The last but not the least, we discuss the experimental
feasibility of the present scheme. For the atomic level struc-
ture, we can take 87Rb as our choice. The ground states �0�,

�1�, and �g� can be achieved in pairs of Zeeman hyperfine
levels �F=2,m=−2�, �F=2,m=2�, and �F=1,m=0� of 5S1/2,
respectively. The upper levels �e0� and �e1� correspond to
�F=2,m=−1� and �F=2,m=1� of 5P1/2, respectively. The
two pairs of Zeeman hyperfine levels of the ground states
�0� , �g� and �1� , �g� are coupled via two far-detuned Raman
transition, i.e., their respective transitions to the upper levels
�e0� and �e1� have the same large detuning �, which is con-
sistent with our assumption �L=�R=�. In real experiments,
it is very challenging to control atoms precisely to meet the
Lamb-Dicke condition. But when all the applied laser pulses
are collinear with their respective cavities axes and thus
share the same spatial mode structure with their respective
cavities, the systemic adiabatic dynamics evolution only de-
pends on the ratios g�r�� /�A�B��r� , t� and �A�r� , t� /�B�r� , t�
�21,22�. So in the cavity the atomic position is not required
to be accurately controlled, i.e., our scheme works robustly
beyond Lamb-Dicke limit.

In summary, we have proposed a scheme for quantum
transmission of three-dimensional atomic state between two
remote nodes connected by optical fiber. Based on the adia-
batic passages, the system of atom-cavity fiber is always on
the dark states by using a sequence of pulsed laser field.
During the transfer process, the fiber mode remains in
vacuum states, thus, the decay of the optical fiber can be
ignored. In addition, atomic transitions in our scheme are
largely detuned with cavity modes so the atomic spontaneous
emission can be effectively avoid. Furthermore, we encode
the qubits of cavity and fiber in their polarization state in-
stead of vacuum one-photon state, which is sensitive to
phase fluctuations during the transmission. We also make an
estimation on the fidelity by considering different param-
eters.
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